ISO26262 开发接口协议DIA
iso26262标准各章节具体内容
ISO xxx是国际上广泛认可的汽车电子系统安全标准,它对汽车电子系统的设计、开发和生产提出了严格的要求和规范。
ISO xxx标准共分为12个章节,每个章节都涵盖了汽车电子系统安全的关键方面。
下面,我将对ISO xxx标准的各章节具体内容进行全面评估并撰写一篇有价值的文章,希望能够帮助你更深入地理解ISO xxx标准。
1. 概述 ISO xxx标准的概述部分主要介绍了该标准的出台背景、范围和目的,以及对术语和定义进行了详细解释。
在概述部分,标准对汽车电子系统安全的重要性进行了阐述,指出了汽车电子系统安全的挑战和风险,为后续章节的内容提供了重要的背景铺垫。
2. 术语和定义第二章节主要对ISO xxx标准中所涉及的术语和定义进行了详细的解释和说明。
这对于标准的理解和运用起到了重要的作用,也为后续的章节内容提供了必要的概念基础。
**3. 管理*/ 第三章节是关于汽车电子系统安全管理的内容,主要包括了安全管理的责任和任务分配、安全管理计划的制定和执行、安全管理过程的控制和监督等内容。
在这一章节中,标准提出了对于汽车电子系统安全管理的严格要求,要求相关的责任人员必须具备专业的知识和经验,以确保汽车电子系统的安全管理得到有效执行。
**4. 安全计划项的内容和要求*/ 第四章节主要包括了对汽车电子系统安全计划的内容和要求的详细阐述。
安全计划是确保汽车电子系统从设计到生产都符合ISO xxx标准要求的关键部分,标准对安全计划的编制、实施和审核提出了明确的要求,并对安全计划的内容进行了详细的列举和解释。
**5. 扩展性依赖性和适用性*/ 第五章节主要讨论了ISO xxx标准的扩展性依赖性和适用性。
在这一章节中,标准指出了在特定的情况下,对标准的适用性可能会有所不同,因此需要根据具体情况进行灵活的解释和应用。
这一章节的内容对于理解和正确应用ISO xxx标准具有重要的指导意义。
**6. 安全管理过程*/ 第六章节是关于汽车电子系统安全管理过程的内容,主要包括了安全需求的确定、安全分析和评估、功能安全验证和确认等内容。
iso26262功能安全评价方法
iso26262功能安全评价方法【原创实用版2篇】目录(篇1)1.Iso26262 功能安全评价方法的背景和意义2.Iso26262 功能安全评价方法的具体内容3.Iso26262 功能安全评价方法的实施步骤4.Iso26262 功能安全评价方法的优势和应用5.Iso26262 功能安全评价方法的未来发展正文(篇1)一、Iso26262 功能安全评价方法的背景和意义Iso26262 功能安全评价方法是一种针对汽车电子系统功能安全的国际标准,它的出现是为了确保汽车电子系统在失效情况下能够按照预期方式进行故障处理,从而避免对人员和环境造成伤害。
随着汽车电子化程度的不断提高,功能安全日益受到重视,Iso26262 功能安全评价方法应运而生,成为了保证汽车安全的重要手段。
二、Iso26262 功能安全评价方法的具体内容Iso26262 功能安全评价方法主要包括以下几个方面:1.安全目标的定义:根据汽车电子系统的功能和失效模式,明确安全目标,确保系统在失效情况下能够按照预期方式进行故障处理。
2.危害分析:通过对汽车电子系统可能的失效模式进行分析,评估可能带来的风险和危害程度。
3.功能安全等级:根据危害分析结果,为汽车电子系统中的各个功能分配相应的安全等级。
4.安全要求和措施:针对不同安全等级的功能,制定相应的安全要求和措施,确保系统在失效情况下能够满足安全目标。
5.验证和评估:对汽车电子系统进行实际验证和评估,检查系统在失效情况下是否能够按照预期方式进行故障处理。
三、Iso26262 功能安全评价方法的实施步骤1.建立项目团队:由汽车制造商、零部件供应商、技术服务公司等相关方共同组成项目团队,明确各方职责和任务。
2.收集和分析相关信息:收集汽车电子系统的设计、制造、使用等方面的信息,进行系统分析和失效模式分析。
3.制定安全目标和功能安全等级:根据分析结果,制定安全目标和功能安全等级。
4.制定和实施安全要求和措施:针对不同安全等级的功能,制定相应的安全要求和措施,并确保在系统设计和制造过程中得到有效实施。
iso26262 代码覆盖率等级 -回复
iso26262 代码覆盖率等级-回复ISO 26262是一种国际标准,旨在为汽车电子系统的功能安全性提供指导。
该标准的一个重要方面是代码覆盖率等级,它衡量了对代码进行了多少程度的测试。
本文将逐步解释ISO 26262代码覆盖率等级,并探讨其对汽车功能安全的重要性。
第一部分:ISO 26262概述和代码覆盖率ISO 26262是国际标准化组织(ISO)发布的一项标准,旨在为汽车电子系统的功能安全性提供指南。
该标准适用于整个汽车电子系统的生命周期,包括其设计、开发、生产和维护。
其目的是确保在汽车中使用的电子和电气系统的功能安全,以保护乘客和道路使用者的安全。
代码覆盖率是ISO 26262中的一个重要概念。
它指的是在测试过程中,被测试代码的执行程度有多大。
代码覆盖率的目标是确保所有的代码逻辑都经过了测试,并且能够正确地执行。
代码覆盖率等级则指明了对代码的覆盖程度有多高。
第二部分:ISO 26262代码覆盖率等级的不同等级和要求根据ISO 26262,代码覆盖率等级可以分为四个等级:A、B、C和D。
每个等级都有不同的覆盖要求和测试策略。
- A等级要求最高,它要求对所有的代码逻辑进行100的覆盖。
这意味着所有的路径和可能的条件都必须被测试到。
这个等级通常适用于安全相关的系统,如制动系统或引擎控制系统。
- B等级要求适度的代码覆盖率,通常在80-90之间。
虽然不需要对所有的代码路径都进行测试,但仍需要对绝大多数重要的路径进行覆盖。
B等级通常适用于需要高度可靠性的系统,如安全气囊系统。
- C等级要求基本的代码覆盖率,通常在60-70之间。
这个等级适用于一些常规的汽车电子系统,如音频和导航系统。
虽然C等级要求较低,但仍需要确保关键路径经过测试。
- D等级是最低的等级,它只要求进行最基本的代码覆盖。
D等级通常适用于一些非关键的系统或组件,如空调和车窗控制系统。
第三部分:代码覆盖率等级的重要性和影响代码覆盖率等级的定义和要求在ISO 26262中是非常重要的,因为它们直接影响到汽车功能安全的实现和验证。
26262标准翻译版
26262标准翻译版26262标准是指ISO/IEC 26262标准,是一项用于汽车电子系统功能安全的国际标准。
该标准旨在确保汽车电子系统在整个产品生命周期内的功能安全性。
它适用于所有电子和电气系统,包括车辆动力总成、底盘和车身电子、电动和混合动力系统、车载通讯和连接系统等。
26262标准的翻译版对于全球汽车行业具有重要意义。
它为汽车制造商、零部件供应商和相关行业提供了统一的安全标准,有助于提高汽车电子系统的安全性和可靠性。
同时,它也为国际贸易提供了便利,使得不同国家和地区的汽车电子系统在安全性方面具有一致的标准和要求。
26262标准的翻译版内容主要包括以下几个方面:1. 术语和定义,对于汽车电子系统功能安全相关的术语和定义进行了明确定义,以确保在标准的实施和使用过程中,各方对术语的理解和解释是一致的。
2. 管理和组织,包括了对功能安全管理和组织的要求,以及对功能安全管理过程的规划、实施、评估和改进的指导。
3. 产品开发,对汽车电子系统的安全要求、硬件和软件开发过程中的安全性活动、安全验证和确认等方面进行了详细规定。
4. 生命周期支持,包括了对于汽车电子系统整个生命周期内的安全性支持活动的要求,如安全性评估、安全性验证、安全性确认、故障诊断和安全性改进等。
5. 供应链,对于汽车电子系统供应链管理中的功能安全要求和活动进行了规定,确保供应商在产品开发和交付过程中符合功能安全标准的要求。
26262标准的翻译版对于汽车电子系统的安全性具有重要意义。
它不仅是汽车制造商和零部件供应商的重要参考,也为全球范围内的汽车电子系统提供了统一的安全标准和要求。
通过遵循26262标准,汽车行业能够提高产品的安全性和可靠性,为消费者提供更加安全的驾驶和乘坐体验。
总的来说,26262标准的翻译版对于汽车电子系统的功能安全具有重要的指导意义,有助于提高汽车产品的安全性和可靠性,促进全球汽车行业的发展和合作。
希望各相关企业和机构能够认真遵循和实施该标准,共同推动汽车电子系统的安全发展。
5.5-相关技术---功能安全法规ISO26262简介
ISO26262
形式认证法规ECER79(转向)包含对功能安全的基本要求。北 美的OEM和供应商已经加快了追赶欧洲的步伐,正在依照ISO26262 建立自己IDE功能安全体系,SAE组织(美国机动车工程师协会)已 经组件汽车功能安全委员会(AFSC:Automotive Functional safety committee)在为欧洲OEM提供产品的一级供应商的驱动下,日本 在2010年末至2011年初,主流OEM启动了对ISO26262合规进程的启 动会议,由JAMA(一般社团法人日本自动车工业会)和JARI(日本自 动车研究所)合作创建通用的工作流程。国内的OEM和一级供应商 也非常关注ISO26262的动态,国标的转化工作正在中国汽车技术研 究中心的指导下全面展开
参考文献:电动助力转向系统故障诊断与失效保护 作者:张 瑞 硕士论文 2014.10 中国科学技术大学
故障诊断技术
系统故障自诊断是指系统的自身的硬件设计或者程序对系统 正常工作状态和工作异常作出判断,并根据故障特征,诊断系统故 障通过失效保护及处理程序,准确的定位故障。根据不同的故障类 型,使系统进入到安全的工作模式。
故障诊断技术
• 故障自诊断系统的主要任务有以下几块:系统对系统自身的故障 探测、诊断系统对故障类别的判断、系统故障定位及系统故障失 效保护等等。故障探测定义为系统正常工作后,通过周期性地实 时监测系统的运行状态,并通过系统设计好的诊断条件,判断系 统有没有产生了故障;诊断系统对故障类别的判断就是故障自诊 断系统在检测出故障发生后,自动告知系统故障的模式;故障定 位认为在故障自诊断系统监测出系统工作异常,并已经进行了系 统故障类别的判断,按照系统预定义的诊断条件定义具体故障位 置并记录故障诊断条件参数。同时,为系统的失效保护提供输入 信息;故障失效保护是系统故障诊断过程中最后一个环节,同时 也是最重要的一个环节,使系统能够根据故障原因,采取不同的 保护措施。
功能安全FunctionalSafetyISO26262-1
功能安全FunctionalSafetyISO26262-1ISO 26262-1 词汇表ISO26262是基于IEC61508标准演化⽽来的⼀项标准,旨在满⾜道路车辆电⼦电⽓系统领域的特定需求。
这种改编适⽤于由电⼦电⽓元件和软件组件组成的安全系统的整个⽣命周期内的所有活动。
安全是未来汽车发展的关键问题之⼀。
⼀些新的功能,在驾驶员辅助、动⼒、车内动态控制和主动&被动安全系统等⽅⾯⽇益牵涉到越来越多的系统安全⼯程。
这些功能的开发和集成会增加对安全系统开发流程、并证明所有合理的系统安全⽬标都得到满⾜的证据的需求程度。
随着技术复杂度、软件内容和机电⼀体化程度的不断提⾼,系统失效和随机硬件失效的风险也越来越⼤。
ISO 26262会提供适当的要求和流程来避免这些风险。
系统安全是通过⼀系列安全措施来实现的,通过应⽤各种技术(例如机械、液压、⽓动、电⽓、电⼦、可编程电⼦),并在开发过程的各个层⾯上应⽤。
尽管ISO26262涉及到电⼦电⽓系统的功能安全,但是它也会提供其他系统常⽤安全技术的框架。
ISO26262可以:a)提供车辆安全⽣命周期的⽀持(管理、开发、⽣产、操作、服务、报废);b)提供车辆专⽤的风险评估⽅法(ASIL,Automotive Safety Integrity Levels,汽车安全完整性等级);c)使⽤ASIL评级提出可实施的功能安全需求,来避免不合理的剩余风险;d)向供应商提供功能安全需求。
功能安全受到开发流程(需求规范、设计、实现、集成、验证、确认和配置)、⽣产和服务流程、管理流程的影响。
安全问题与以功能为导向、以质量为导向的开发活动和⼯作产品交织在⼀起。
ISO 26262阐述了开发活动和⼯作产品等安全相关的内容。
1 名称解释:⽂档、标准或者经验。
1.3architecture:架构;代表相关项/功能/系统/元件的构造块及构造块的边界和接⼝,且相关的功能已经分配给了硬件/软件元件。
《基于ISO26262的汽车电子功能安全:方法与应用》笔记
《基于ISO26262的汽车电子功能安全:方法与应用》读书札记目录一、内容描述 (2)1.1 书籍简介 (3)1.2 ISO26262标准概述 (4)二、汽车电子功能安全基础 (5)2.1 功能安全概念 (6)2.2 ISO26262标准体系 (8)2.3 功能安全等级 (9)三、ISO26262在汽车电子中的应用 (11)3.1 驱动电机控制系统 (12)3.2 电池管理系统 (14)3.3 传感器与执行器 (15)3.4 车载通信系统 (17)四、功能安全方法与技术 (18)4.1 安全需求分析 (19)4.2 安全完整性等级 (21)4.3 故障模式与影响分析 (22)4.4 控制器设计与测试 (24)4.5 人机界面设计 (26)五、案例分析 (27)5.1 案例一 (29)5.2 案例二 (29)六、实践与建议 (30)6.1 企业实施功能安全的步骤 (32)6.2 政策建议与行业标准 (33)七、总结与展望 (35)7.1 本书总结 (36)7.2 未来发展趋势 (37)一、内容描述《基于ISO2的汽车电子功能安全:方法与应用》是一本关于汽车电子系统功能安全的专业书籍,作者通过对国际标准化组织(ISO)2标准的研究和实践,详细介绍了汽车电子功能安全的基本概念、原则、方法和技术。
本书旨在帮助读者深入了解汽车电子功能安全的重要性,掌握相关的理论知识,并能够将其应用于实际的汽车电子系统中。
本书共分为五个部分:第一部分为引言,介绍了汽车电子功能安全的背景、意义和发展趋势;第二部分为ISO2标准概述,详细解读了ISO2标准的体系结构、架构和要求;第三部分为基础知识和方法,包括汽车电子系统的安全性分析、故障模式与影响分析(FMEA)、耐久性测试等方面的内容;第四部分为实际应用案例,通过分析典型的汽车电子系统实例,展示了如何将ISO2标准应用于实际项目中;第五部分为结论和展望,总结了本书的主要内容,并对未来汽车电子功能安全的发展进行了展望。
ISO26262_DIA模板
eate validation plan 6 Specification of the technical safety requirements
Derive technical safety requirements Verify technical safety requirements Refine validation plan 7 System design
Refine software safety requirements Perform safety analysis (Check if required) Perform dependent failure analyses (Checkk if required) Verify software architecture 8 Software unit design and implementation Specify software units Implement software untis Perform static verification of implemented software units 9 Software unit testing Refine software verification plan Specfiy unit tests Perform unit test 10 Software integration and testing Plan software integration testing Specify software integration tests Perform software integration test 11 Verification of software safety requirements Plan verification of software safety requirements Specify software safety requirements verification tests Perform software safety requirements verification test 12 Annex C Configuration Specify configuration data Specify calibration data Refine safety plan Create configuration data Create calibration data Refine software verification plan Specify tests of variants Perform test of configurations 7 Production
ISO 26262-4
Reference numberISO 26262-4:2011(E)© ISO 2011INTERNATIONALSTANDARD ISO 26262-4First edition2011-11-15Road vehicles — Functional safety —Part 4: Product development at the system levelVéhicules routiers — Sécurité fonctionnelle —Partie 4: Développement du produit au niveau du systèmeISO 26262-4:2011(E)COPYRIGHT PROTECTED DOCUMENT © ISO 2011All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical,including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.ISO copyright office Case postale 56CH-1211 Geneva 20 Tel. + 41 22 749 01 11Fax + 41 22 749 09 47E-mail copyright@Web Published in Switzerlandii © ISO 2011 – All rights reservedISO 26262-4:2011(E)Contents PageForeword (v)Introduction ........................................................................................................................................................ v i 1Scope (1)2Normative references (2)3Terms, definitions and abbreviated terms (2)4Requirements for compliance (2)4.1General requirements (2)4.2Interpretations of tables (3)4.3ASIL-dependent requirements and recommendations (3)5Initiation of product development at the system level (3)5.1Objectives (3)5.2General (4)5.3Inputs to this clause (6)5.4Requirements and recommendations (6)5.5Work products (6)6Specification of the technical safety requirements (7)6.1Objectives (7)6.2General (7)6.3Inputs to this clause (7)6.4Requirements and recommendations (7)6.5Work products (10)7System design (10)7.1Objectives (10)7.2General (11)7.3Inputs to this clause (11)7.4Requirements and recommendation (11)7.5Work products (16)8Item integration and testing (16)8.1Objectives (16)8.2General (16)8.3Inputs to this clause (16)8.4Requirements and recommendation (17)8.5Work products (25)9Safety validation (25)9.1Objectives (25)9.2General (25)9.3Inputs to this clause (26)9.4Requirements and recommendation (26)9.5Work products (27)10Functional safety assessment (28)10.1Objectives (28)10.2General (28)10.3Inputs to this clause (28)10.4Requirements and recommendation (28)10.5Work products (28)11Release for production (28)© ISO 2011 – All rights reserved iiiISO 26262-4:2011(E)11.1Objectives (28)11.2General (29)11.3Inputs to this clause (29)11.4Requirements and recommendations (29)11.5Work products (30)Annex A (informative) Overview and document flow of product development at the system level (31)Annex B (informative) Example contents of hardware-software interface (33)Bibliography (36)iv © ISO 2011 – All rights reservedISO 26262-4:2011(E)ForewordISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.ISO 26262-4 was prepared by Technical Committee ISO/TC 22, Road vehicles, Subcommittee SC 3, Electrical and electronic equipment.ISO 26262 consists of the following parts, under the general title Road vehicles — Functional safety: Part 1: VocabularyPart 2: Management of functional safetyPart 3: Concept phasePart 4: Product development at the system levelPart 5: Product development at the hardware levelPart 6: Product development at the software levelPart 7: Production and operationPart 8: Supporting processesPart 9: Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analysesPart 10: Guideline on ISO 26262© ISO 2011 – All rights reserved vISO 26262-4:2011(E)IntroductionISO 26262 is the adaptation of IEC 61508 to comply with needs specific to the application sector of electrical and/or electronic (E/E) systems within road vehicles.This adaptation applies to all activities during the safety lifecycle of safety-related systems comprised of electrical, electronic and software components.Safety is one of the key issues of future automobile development. New functionalities not only in areas such as driver assistance, propulsion, in vehicle dynamics control and active and passive safety systems increasingly touch the domain of system safety engineering. Development and integration of these functionalities will strengthen the need for safe system development processes and the need to provide evidence that all reasonable system safety objectives are satisfied.With the trend of increasing technological complexity, software content and mechatronic implementation, there are increasing risks from systematic failures and random hardware failures. ISO 26262 includes guidance to avoid these risks by providing appropriate requirements and processes.System safety is achieved through a number of safety measures, which are implemented in a variety of technologies (e.g. mechanical, hydraulic, pneumatic, electrical, electronic, programmable electronic) and applied at the various levels of the development process. Although ISO 26262 is concerned with functional safety of E/E systems, it provides a framework within which safety-related systems based on other technologies can be considered. ISO 26262:a) provides an automotive safety lifecycle (management, development, production, operation, service,decommissioning) and supports tailoring the necessary activities during these lifecycle phases;b) provides an automotive-specific risk-based approach to determine integrity levels [Automotive SafetyIntegrity Levels (ASIL)];c) uses ASILs to specify applicable requirements of ISO 26262 so as to avoid unreasonable residual risk;d) provides requirements for validation and confirmation measures to ensure a sufficient and acceptablelevel of safety being achieved;e) provides requirements for relations with suppliers.Functional safety is influenced by the development process (including such activities as requirements specification, design, implementation, integration, verification, validation and configuration), the production and service processes and by the management processes.Safety issues are intertwined with common function-oriented and quality-oriented development activities and work products. ISO 26262 addresses the safety-related aspects of development activities and work products.Figure 1 shows the overall structure of this edition of ISO 26262. ISO 26262 is based upon a V-model as a reference process model for the different phases of product development. Within the figure:the shaded “V”s represent the interconnection between ISO 26262-3, ISO 26262-4, ISO 26262-5, ISO 26262-6 and ISO 26262-7;the specific clauses are indicated in the following manner: “m-n”, where “m” represents the number of the particular part and “n” indicates the number of the clause within that part.EXAMPLE “2-6” represents Clause 6 of ISO 26262-2.vi © ISO 2011 – All rights reservedISO 26262-4:2011(E)Figure 1 — Overview of ISO 26262© ISO 2011 – All rights reserved viiINTERNATIONAL STANDARD ISO 26262-4:2011(E)© ISO 2011 – All rights reserved1Road vehicles — Functional safety —Part 4: Product development at the system level1 ScopeISO 26262 isintended to be applied to safety-related systems that include one or more electrical and/or electronic (E/E)systems and that are installed in series production passenger cars with a maximum gross vehicle mass up to 3 500 kg. ISO 26262 does not addressunique E/E systems in special purpose vehicles such as vehicles designed for drivers with disabilities.Systems andtheir components released for production, or systems and their components already under developmentprior to the publication date of ISO 26262, are exempted from the scope. For further developmentor alterations based on systems and their components released for production prior to the publication of ISO 26262, only the modifications will be developed in accordance with ISO 26262.ISO 26262 addressespossible hazards caused by malfunctioning behaviour of E/E safety-related systems, including interaction of these systems. It does not address hazards related to electric shock, fire, smoke, heat, radiation, toxicity,flammability, reactivity, corrosion, release of energy and similar hazards, unless directly caused by malfunctioning behaviour of E/E safety-related systems.ISO 26262 doesnot address the nominal performance of E/E systems, even if dedicated functional performancestandards exist for these systems (e.g. active and passive safety systems, brake systems, Adaptive Cruise Control).This part of ISO 26262 specifies the requirements for product development at the system level for automotive applications, including the following:requirements for the initiation of product development at the system level,specification of the technical safety requirements,the technical safety concept,system design,item integration and testing,safety validation,functional safety assessment, andproduct release.ISO 26262-4:2011(E)2 Normative referencesThe following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.ISO 26262-1:2011, Road vehicles — Functional safety — Part 1: VocabularyISO 26262-2:2011, Road vehicles — Functional safety — Part 2: Management of functional safetyISO 26262-3:2011, Road vehicles — Functional safety — Part 3: Concept phaseISO 26262-5:2011, Road vehicles — Functional safety — Part 5: Product development at the hardware levelISO 26262-6:2011, Road vehicles — Functional safety — Part 6: Product development at the software levelISO 26262-7:2011, Road vehicles — Functional safety — Part 7: Production and operationISO 26262-8:2011, Road vehicles — Functional safety — Part 8: Supporting processesISO 26262-9:2011, Road vehicles — Functional safety — Part 9: Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analyses3 Terms, definitions and abbreviated termsFor the purposes of this document, the terms, definitions and abbreviated terms given in ISO 26262-1:2011 apply.4 Requirements for compliance4.1 General requirementsWhen claiming compliance with ISO 26262, each requirement shall be complied with, unless one of the following applies:a) tailoring of the safety activities in accordance with ISO 26262-2 has been planned and shows that therequirement does not apply, orb) a rationale is available that the non-compliance is acceptable and the rationale has been assessed inaccordance with ISO 26262-2.Information marked as a “NOTE” or “EXAMPLE” is only for guidance in understanding, or for clarification of the associated requirement, and shall not be interpreted as a requirement itself or as complete or exhaustive.The results of safety activities are given as work products. “Prerequisites” are information which shall be available as work products of a previous phase. Given that certain requirements of a clause are ASIL-dependent or may be tailored, certain work products may not be needed as prerequisites.“Further supporting information” is information that can be considered, but which in some cases is not required by ISO 26262 as a work product of a previous phase and which may be made available by external sources that are different from the persons or organizations responsible for the functional safety activities.2 © ISO 2011 – All rights reserved4.2 Interpretations of tablesTables are normative or informative depending on their context. The different methods listed in a table contribute to the level of confidence in achieving compliance with the corresponding requirement. Each method in a table is eithera) a consecutive entry (marked by a sequence number in the leftmost column, e.g. 1, 2, 3), orb) an alternative entry (marked by a number followed by a letter in the leftmost column, e.g. 2a, 2b, 2c).For consecutive entries, all methods shall be applied as recommended in accordance with the ASIL. If methods other than those listed are to be applied, a rationale shall be given that these fulfil the corresponding requirement.For alternative entries, an appropriate combination of methods shall be applied in accordance with the ASIL indicated, independent of whether they are listed in the table or not. If methods are listed with different degrees of recommendation for an ASIL, the methods with the higher recommendation should be preferred. A rationale shall be given that the selected combination of methods complies with the corresponding requirement.NOTE A rationale based on the methods listed in the table is sufficient. However, this does not imply a bias for or against methods not listed in the table.For each method, the degree of recommendation to use the corresponding method depends on the ASIL and is categorized as follows:“++” indicates that the method is highly recommended for the identified ASIL;“+” indicates that the method is recommended for the identified ASIL;“o” indicates that the method has no recommendation for or against its usage for the identified ASIL.4.3 ASIL-dependent requirements and recommendationsThe requirements or recommendations of each subclause shall be complied with for ASIL A, B, C and D, if not stated otherwise. These requirements and recommendations refer to the ASIL of the safety goal. If ASIL decomposition has been performed at an earlier stage of development, in accordance with ISO 26262-9:2011, Clause 5, the ASIL resulting from the decomposition shall be complied with.If an ASIL is given in parentheses in ISO 26262, the corresponding subclause shall be considered as a recommendation rather than a requirement for this ASIL. T his has no link with the parenthesis notation related to ASIL decomposition.5 Initiation of product development at the system level5.1 ObjectivesThe objective of the initiation of the product development at the system level is to determine and plan the functional safety activities during the individual subphases of system development. This also includes the necessary supporting processes described in ISO 26262-8.This planning of system-level safety activities will be included in the safety plan.© ISO 2011 – All rights reserved34 © ISO 2011 – All rights reserved5.2 GeneralThe necessary activities during the development of a system are given in Figure 2. After the initiation of product development and the specification of the technical safety requirements, the system design is performed. During system design the system architecture is established, the technical safety requirements are allocated to hardware and software, and, if applicable, on other technologies. In addition, the technical safety requirements are refined and requirements arising from the system architecture are added, including the hardware-software interface (HSI). Depending on the complexity of the architecture, the requirements for subsystems can be derived iteratively. After their development, the hardware and software elements are integrated and tested to form an item that is then integrated into a vehicle. Once integrated at the vehicle level, safety validation is performed to provide evidence of functional safety with respect to the safety goals.ISO 26262-5 and ISO 26262-6 describe the development requirements for hardware and software. This part of ISO 26262 applies to both the development of systems and subsystems. Figure 3 is an example of a system with multiple levels of integration, illustrating the application of this part of ISO 26262, ISO 26262-5 and ISO 26262-6.NOTE 1 Table A.1 provides an overview of objectives, prerequisites and work products of the particular subphases of product development at the system level.ײ·¬·¿¬·±² ±º °®±¼«½¬ ¼»ª»´±°³»²¬ ¿¬ ¬¸» -§-¬»³ ´»ª»´ìóëÍ°»½·º·½¿¬·±² ±º ¬¸» ¬»½¸²·½¿´ -¿º»¬§®»¯«·®»³»²¬-ìóê׬»³ ·²¬»¹®¿¬·±² ¿²¼ ¬»-¬·²¹ìóèÍ¿º»¬§ ª¿´·¼¿¬·±²ìóçÚ«²½¬·±²¿´ -¿º»¬§ ¿--»--³»²¬ìóïðλ´»¿-» º±® °®±¼«½¬·±²ìóïïͧ-¬»³ ¼»-·¹²ìóéﮬ ìæ Ю±¼«½¬ ¼»ª»´±°³»²¬æ -§-¬»³ ´»ª»´NOTE 2 Within the figure, the specific clauses of each part of ISO 26262 are indicated in the following manner: “m-n”, where “m” represents the number of the part and “n” indicates the number of the clause, e.g. “4-5” represents Clause 5 of ISO 26262-4.Figure 2 — Reference phase model for the development of a safety-related item© ISO 2011 – All rights reserved5NOTE Within the figure, the specific clauses of each part of ISO 26262 are indicated in the following manner: “m-n”, where “m” represents the number of the part and “n” indicates the number of the clause, e.g. “4-5” represents Clause 5 of ISO 26262-4.Figure 3 — Example of a product development at the system level5.3 Inputs to this clause5.3.1 PrerequisitesThe following information shall be available:project plan (refined) in accordance with ISO 26262-2:2011, 6.5.2;safety plan in accordance with ISO 26262-3:2011, 6.5.2;functional safety assessment plan in accordance with ISO 26262-2:2011, 6.5.4; andfunctional safety concept in accordance with ISO 26262-3:2011, 8.5.1.5.3.2 Further supporting informationThe following information can be considered:preliminary architectural assumptions (from external source); anditem definition (see ISO 26262-3:2011, 5.5).5.4 Requirements and recommendations5.4.1 The safety activities for the product development at the system level shall be planned including determination of appropriate methods and measures during design and integration.NOTE The results of planning of the verification activities during design in accordance with 6.4.6 (Verification and validation) and 7.4.8 (Verification of system design) are part of the safety plan while the planning of item integration and testing in accordance with 8.4.2 (hardware/software), 8.4.3 (element integration) and 8.4.4 (item integration) is represented in a separate item integration and testing plan in accordance with requirement 8.4.1.3.5.4.2 The validation activities shall be planned.5.4.3 The functional safety assessment activities for the product development at the system level shall be planned (see also ISO 26262-2).NOTE An example of a functional safety assessment agenda is provided in ISO 26262-2:2011, Annex E.5.4.4 The tailoring of the lifecycle for product development at system level shall be performed in accordance with ISO 26262-2, and based on the reference phase model given in Figure 2.NOTE The project plan can be used to provide the relationship between the individual subphases of product development at the system level and the hardware and software development phases. This can include the integration steps at each level.5.5 Work products5.5.1 Project plan (refined) resulting from requirement 5.4.4.5.5.2 Safety plan (refined) resulting from requirement 5.4.1 to 5.4.4.5.5.3 Item integration and testing plan resulting from requirement 5.4.1.5.5.4 Validation plan resulting from requirement 5.4.2.5.5.5 Functional safety assessment plan (refined) resulting from requirement 5.4.3.6 © ISO 2011 – All rights reserved6 Specification of the technical safety requirements6.1 ObjectivesThe first objective of this subphase is to specify the technical safety requirements. The technical safety requirements specification refines the functional safety concept, considering both the functional concept and the preliminary architectural assumptions (see ISO 26262-3).The second objective is to verify through analysis that the technical safety requirements comply with the functional safety requirements.6.2 GeneralWithin the overall development lifecycle, the technical safety requirements are the technical requirements necessary to implement the functional safety concept, with the intention being to detail the item-level functional safety requirements into the system-level technical safety requirements.NOTE Regarding the avoidance of latent faults, requirements elicitation can be performed after a first iteration of the system design subphase.6.3 Inputs to this clause6.3.1 PrerequisitesThe following information shall be available:functional safety concept in accordance with ISO 26262-3:2011, 8.5.1; andvalidation plan in accordance with 5.5.4.6.3.2 Further supporting informationThe following information can be considered:safety goals (see ISO 26262-3:2011, 7.5.2);functional concept (from external source, see ISO 26262-3:2011, 5.4.1); andpreliminary architectural assumptions (from external source, see ISO 26262-3:2011, 8.3.2).6.4 Requirements and recommendations6.4.1 Specification of the technical safety requirements6.4.1.1 The technical safety requirements shall be specified in accordance with the functional safety concept, the preliminary architectural assumptions of the item and the following system properties:a) the external interfaces, such as communication and user interfaces, if applicable;b) the constraints, e.g. environmental conditions or functional constraints; andc) the system configuration requirements.NOTE The ability to reconfigure a system for alternative applications is a strategy to reuse existing systems. EXAMPLE Calibration data (see ISO 26262-6:2011, Annex C) is frequently used to customise electronic engine control units for alternate vehicles.© ISO 2011 – All rights reserved76.4.1.2 The consistency of the preliminary architectural assumptions in ISO 26262-3:2011, 8.3.2 and the preliminary architecture assumptions in this subphase shall be ensured.6.4.1.3 If other functions or requirements are implemented by the system or its elements, in addition to those functions for which technical safety requirements are specified in accordance with 6.4.1 (Specification of the technical safety requirements), then these functions or requirements shall be specified or references made to their specification.EXAMPLE Other requirements are coming from Economic Commission for Europe (ECE) rules, Federal Motor Vehicle Safety Standard (FMVSS) or company platform strategies.6.4.1.4 The technical safety requirements shall specify safety-related dependencies between systems or item elements and between the item and other systems.6.4.2 Safety mechanisms6.4.2.1 The technical safety requirements shall specify the response of the system or elements to stimuli that affect the achievement of safety goals. This includes failures and relevant combinations of stimuli in combination with each relevant operating mode and defined system state.EXAMPLE The Adaptive Cruise Control (ACC) ECU disables the ACC functionality if informed by the brake system ECU that the Vehicle Stability Control functionality is unavailable.6.4.2.2 The technical safety requirements shall specify the necessary safety mechanisms (see ISO 26262-8:2011, Clause 6) including:a) the measures relating to the detection, indication and control of faults in the system itself;NOTE 1 This includes the self-monitoring of the system or elements to detect random hardware faults and, if appropriate, to detect systematic failures.NOTE 2 This includes measures for the detection and control of failure modes of the communication channels (e.g.data interfaces, communication buses, wireless radio link).b) the measures relating to the detection, indication and control of faults in external devices that interact withthe system;EXAMPLE External devices include other electronic control units, power supply or communication devices.c) the measures that enable the system to achieve or maintain a safe state;NOTE 3 This includes prioritization and arbitration logic in the case of conflicting safety mechanisms.d) the measures to detail and implement the warning and degradation concept; ande) the measures which prevent faults from being latent [see 6.4.4 (Avoidance of latent faults)].NOTE 4 These measures are usually related to tests that take place during power up (pre-drive checks), as in the case of measures a) to d), during operation, during power-down (post-drive checks), and as part of maintenance.6.4.2.3 For each safety mechanism that enables an item to achieve or maintain a safe state the following shall be specified:a) the transition to the safe state;NOTE 1 This includes the requirements to control the actuators.b) the fault tolerant time interval;NOTE 2 In-vehicle testing and experimentation can be used to determine the fault tolerant time interval.8 © ISO 2011 – All rights reservedc) the emergency operation interval, if the safe state cannot be reached immediately; andNOTE 3 In-vehicle testing and experimentation can be used to determine the emergency operation interval.EXAMPLE 1 Switching off can be an emergency operation.d) the measures to maintain the safe state.EXAMPLE 2 A safety mechanism for a brake-by-wire application, which depends on the power supply, can include the specification of a secondary power supply or storage device (capacity, time to activate and operate, etc.).6.4.3 ASIL Decomposition6.4.3.1 If ASIL decomposition is applied during the specification of the technical safety requirements it shall be applied in accordance with ISO 26262-9:2011, Clause 5 (Requirements decomposition with respect to ASIL tailoring).6.4.4 Avoidance of latent faults6.4.4.1 This requirement applies to ASILs (A), (B), C, and D, in accordance with 4.3: if applicable, safety mechanisms shall be specified to prevent faults from being latent.NOTE 1 Concerning random faults, only multiple-point faults have the potential to include latent faults.EXAMPLE On-board tests are safety mechanisms which verify the status of components during the different operation modes such as power-up, power-down, at runtime or in an additional test mode to detect latent faults. Valve, relay or lamp function tests that take place during power up routines are examples of such on-board tests.NOTE 2 Evaluation criteria that identify the need for safety measures preventing faults from being latent are derived in accordance with good engineering practice. The latent fault metric, given in ISO 26262-5:2011, Clause 8, provides evaluation criteria.6.4.4.2 This requirement applies to ASILs (A), (B), C, and D, in accordance with 4.3: to avoid multiple-point failures, the multiple-point fault detection interval shall be specified for each safety mechanism implemented in accordance with 6.4.4 (Avoidance of latent faults).6.4.4.3 This requirement applies to ASILs (A), (B), C, and D, in accordance with 4.3: to determine the multiple-point fault detection interval, the following parameters should be considered:a) the reliability of the hardware component with consideration given to its role in the architecture;b) the probability of exposure of the corresponding hazardous event(s);c) the specified quantitative target values for the maximum probability of violation of each safety goal due tohardware random failures (see requirement 7.4.4.3); andd) the assigned ASIL of the related safety goal.NOTE The use of the following measures depends on the time constraints:periodic testing of the system or elements during operation;on board tests of elements during power-up or power-down; andtesting the system or elements during maintenance.© ISO 2011 – All rights reserved9。
ISO 26262介绍
ISO26262是国际标准化组织文件第26262号(ISO 26262)为机动车辆开发和测试紧急安全电子系统提供了一个过程框架和程序模型。
从电子、电气及可编程器件功能安全基本标准IEC61508派生出来的,主要定位在汽车行业中特定的电气器件、电子设备、可编程电子器件等专门用于汽车领域的部件,旨在提高汽车电子、电气产品功能安全的国际标准。
ISO26262从2005年11月起正式开始制定,经历了大约6年左右的时间,已于2011年11月正式颁布,成为国际标准。
中国也正在积极进行相应国标的制定。
安全在将来的汽车研发中是关键要素之一,新的功能不仅用于辅助驾驶,也应用于车辆的动态控制和涉及到安全工程领域的主动安全系统。
将来,这些功能的研发和集成必将加强安全系统研发过程的需求,同时,也为满足所有预期的安全目的提供证据。
随着系统复杂性的提高,软件和机电设备的应用,来自系统失效和随机硬件失效的风险也日益增加,制定ISO 26262标准的目的是使得人们对安全相关功能有一个更好的理解,并尽可能明确地对它们进行解释,同时为避免这些风险提供了可行性的要求和流程。
ISO 26262为汽车安全提供了一个生命周期(管理、开发、生产、经营、服务、报废)理念,并在这些生命周期阶段中提供必要的支持。
该标准涵盖功能性安全方面的整体开发过程(包括需求规划、设计、实施、集成、验证、确认和配置)。
ISO 26262标准根据安全风险程度对系统或系统某组成部分确定划分由A 到D的安全需求等级(Automotive Safety Integrity Level 汽车安全完整性等级ASIL),其中D级为最高等级,需要最苛刻的安全需求。
伴随着ASIL等级的增加,针对系统硬件和软件开发流程的要求也随之增强。
对系统供应商而言,除了需要满足现有的高质量要求外还必须满足这些因为安全等级增加而提出的更高的要求。
系统安全可以从大量的安全措施中获得,包括各种技术的应用(如:机械,液压,气动,电力,电子,可编程电子元件)。
iso26262中文
一、ISO26262ISO26262-1 适用范围和主要内容 ................................ ...... ...... 4 ISO26262二、ISO26262 -2 功能安全管理 ............................................ 5 三、ISO26262ISO26262-3 概念阶段 概念阶段 ...................................... .. ... ....... 7 1、项目定义............................................................................................................................. 7 2、项目的安全生命周期 ......................................................................................................... 8 3、项目的危险分析和风险评估 ............................................................................................. 8 4、功能安全概念 ................................................................................................................... 11 四、 ISO26262ISO26262-4 系统级产品开发 ............
功能安全 Functional Safety ISO26262-1
ISO 26262-1 词汇表ISO26262是基于IEC61508标准演化而来的一项标准,旨在满足道路车辆电子电气系统领域的特定需求。
这种改编适用于由电子电气元件和软件组件组成的安全系统的整个生命周期内的所有活动。
安全是未来汽车发展的关键问题之一。
一些新的功能,在驾驶员辅助、动力、车内动态控制和主动&被动安全系统等方面日益牵涉到越来越多的系统安全工程。
这些功能的开发和集成会增加对安全系统开发流程、并证明所有合理的系统安全目标都得到满足的证据的需求程度。
随着技术复杂度、软件内容和机电一体化程度的不断提高,系统失效和随机硬件失效的风险也越来越大。
ISO 26262会提供适当的要求和流程来避免这些风险。
系统安全是通过一系列安全措施来实现的,通过应用各种技术(例如机械、液压、气动、电气、电子、可编程电子),并在开发过程的各个层面上应用。
尽管ISO26262涉及到电子电气系统的功能安全,但是它也会提供其他系统常用安全技术的框架。
ISO26262可以:a)提供车辆安全生命周期的支持(管理、开发、生产、操作、服务、报废);b)提供车辆专用的风险评估方法(ASIL,Automotive Safety Integrity Levels,汽车安全完整性等级);c)使用ASIL评级提出可实施的功能安全需求,来避免不合理的剩余风险;d)向供应商提供功能安全需求。
功能安全受到开发流程(需求规范、设计、实现、集成、验证、确认和配置)、生产和服务流程、管理流程的影响。
安全问题与以功能为导向、以质量为导向的开发活动和工作产品交织在一起。
ISO 26262阐述了开发活动和工作产品等安全相关的内容。
1 名称解释:1.1allocation:分配;将需求分配给架构级元件。
1.2anomaly:异常;指偏离期望的一些条件,这些条件包括需求、说明书、设计文档、用户文档、标准或者经验。
1.3architecture:架构;代表相关项/功能/系统/元件的构造块及构造块的边界和接口,且相关的功能已经分配给了硬件/软件元件。
ISO26262电控开发流程概述
ISO26262电控开发流程概述摘要:功能安全(Functional Safety)的要求是无论零部件或者安全相关控制系统发生的失效是硬件随机失效还是系统失效,都需要使受控设备可靠地进入和维持安全状态,避免对人员或者环境产生危害;本文从电控开发流程角度触发,介绍功能安全流程的建立、要求及方法,并结合标准要求,给出完整的电控开发流程体系。
关键词:功能安全;电控单元;ASIL等级引言在过去近40年中,功能安全的理念和技术不断发展,已经在全球范围深入各个行业和领域,成为社会、行业、企业控制各种灾难性事故的有效措施。
ISO26262是欧洲多个知名主机厂及供应商共同讨论制定的,于2005年启动,2011年底发布,2018年发布第二版,加入商用车。
新版ISO26262标准为实现汽车电子系统全生命周期内的功能安全起到了至关重要的指导作用,但对新版标准的详细解读以及如何将其应用到实际的产品中,目前可供参考的应用案例还很少。
因此,以ISO26262新版标准作为指南,进行电控系统的产品开发,对于正确解读和应用ISO 26262 标准具有重大参考意义。
1 标准介绍2018版的ISO 26262 标准主要包括 12 个部分,其体系结构图如图 1所示[1、2]。
图1 ISO26262标准体系结构ISO26262标准的第一部分介绍相关术语;第二部分功能安全管理,定义了涉及安全相关系统开发的组织和人员应满足的要求,定义功能安全管理指南及安全计划,建立公司安全文化;第三部分概念阶段,主要是对危害分析和风险评估的描述,导出功能安全目标,确定功能安全相关概念,导出客户需求;第四部分为系统层面的产品开发,完成系统设计及安全分析,并按要求进行系统相关测试,导出系统需求,FMEA及FTA概念;第五部分为硬件层面的产品开发,确定基于ASIL等级的硬件安全指标,包含SPFM,LFM,PMHF指标,完成硬件安全分析及设计;第六部分为软件层面的产品开发,包含软件开发指南、软件需求、软件实现、软件验证计划、软件验证报告;第七部分为生产、运行、服务和报废过程中功能安全相关的要求和建议;第八部分为是对支持过程的归纳;第九部分为基于汽车安全完整性等级(ASIL)和安全的分析,明确ASIL等级的分配原则;第十部分为对整个ISO26262标准的应用导则。
MCC AVR ISO26262诊断库 v2.0.0 发布说明书
MCC AVR ISO26262 Diagnostic Library v2.0.0 ReleaseNotesWhat is the MCC AVR ISO26262 Diagnostic LibraryThe MPLAB® Code Configurator AVR ISO26262 Diagnostic Library is a suite of diagnostic tests implementing the diagnostics mechanisms described in the device's ISO 26262 functional safety manual. The library is distributedas an MPLAB® X MCC module, which allows for quick and easy configuration using graphical interfaces. MCC generates code for MPLAB® X and the MPLAB® XC8 compiler projects, based on the selections and configuration.Table of ContentsWhat is the MCC AVR ISO26262 Diagnostic Library (1)1.System Requirements (3)2.What's New? (4)3.Repairs and Enhancements (6)4.Known Issues (9)5.Supported Devices and Families (10)6.Revision History (11)The Microchip Website (12)Product Change Notification Service (12)Customer Support (12)Microchip Devices Code Protection Feature (12)Legal Notice (12)Trademarks (13)Quality Management System (13)Worldwide Sales and Service (14)System Requirements1. System Requirements1.MPLAB® X IDE v5.50 or later2.MCC v4.0.1 or later–MCC Core v5.0.0 or later3.MCC AVR® MCUs library v2.8.0 or later4.MPLAB® XC8 Compilers:–Recommended: TÜV SÜD Certified XC8 Functional Safety Compiler v2.29 or later2. What's New?•v2.0.0–Added support for AVR32DA and AVR64DA devices•AVR32DA28•AVR32DA32•AVR32DA48•AVR64DA28•AVR64DA32•AVR64DA48•AVR64DA64–Fix MISRA violations–Added the following diagnostic test for AVR-DA devices:•SW_CPU_SELF_TEST_LIB_01 - v1.0.0–Updates for the following diagnostic tests:•SW_CPU_REGISTER_TEST_01 - v1.0.2•SW_FLASH_MEMORY_CHECKSUM_CRC_TEST_01 - v1.0.2•SW_EEPROM_MEMORY_CHECKSUM_CRC_TEST_01 - v2.0.0•SW_SRAM_MARCH_TEST_01 - v1.0.1•SW_WATCHDOG_SIMPLE_TIMER_STARTUP_TEST - v1.1.0•SW_WATCHDOG_WINDOWED_TIMER_STARTUP_TEST - v1.1.0•SW_CLOCK_PERIODIC_MONITOR_01 - v1.0.1•SW_INTERRUPT_FREQUENCY_TEST_01 - v1.0.1–Deprecated the following diagnostic tests:•SW_CPU_REGISTER_RESET_STATE_CHECK_01 - v1.0.0–The new SRAM March test on AVR is destructive and must run first as outline by AoU-SRAM_MARCH_TEST-01 in the SRAM March test Assumptions of Use document. However,the cpu-reg-reset-state must also run first.–If cpu-reg-reset-state is run first, the result of the test is lost after the March test.–If the March test is run first, the cpu-reg-reset-state test will fail because not all CPU registers are 0x0.–It would be easiest to drop the cpu-reg-reset-state entirely to circumvent the issue.–Registers which were tested with cpu-reg-reset-state are already being tested with CPU Register Test and CPU Self Test.•SW_SRAM_MARCH_TEST_01 - March B and March C only–The March C algorithm has the exact same coverage as March C-, but with a longer executiontime.–March B is significantly more expensive in terms of test length and code size compared to March C- and does not fully cover all Linked Faults (LFs), while LFs are comparatively rare faults tooccur.–The ISO 26262 standard does not specify which March algorithm to implement, but mentions aset of fault models which are covered by March C-.–Various fixes and improvements (see 3. Repairs and Enhancements)•v1.2.0–Compatibility update with MCC Plugin v4.0.1 and MCC Core v5.0.1 (refer to MCC v4.0.1 Release Notes)–Renamed the library package–Added the following diagnostic tests:•SW_CLOCK_PERIODIC_MONITOR_01 - v1.0.0•SW_INTERRUPT_FREQUENCY_TEST_01 - v1.0.0–Updates, fixes, and improvements for the following diagnostic tests:•SW_CPU_REGISTER_TEST_01 - v1.0.1•SW_CPU_REGISTER_RESET_STATE_CHECK_01 - v1.0.0•SW_WATCHDOG_SIMPLE_TIMER_STARTUP_TEST - v1.0.2•SW_WATCHDOG_WINDOWED_TIMER_STARTUP_TEST - v1.0.2•SW_FLASH_MEMORY_CHECKSUM_CRC_TEST_01 - v1.0.1•SW_SRAM_MARCH_TEST_01 - v1.0.1•SW_EEPROM_MEMORY_CHECKSUM_CRC_TEST_01 - v1.0.1•v1.1.0–Added support for AVR128DAxx devices–Updates for the following diagnostic tests:•SW_WATCHDOG_SIMPLE_TIMER_STARTUP_TEST - v1.0.1•SW_WATCHDOG_WINDOWED_TIMER_STARTUP_TEST - v1.0.1•v1.0.0–Initial release with support for these Software Requirement IDs:•SW_CPU_REGISTER_TEST_01 - v1.0.0•SW_CPU_REGISTER_RESET_STATE_CHECK_01 - v1.0.0•SW_WATCHDOG_SIMPLE_TIMER_STARTUP_TEST - v1.0.0•SW_WATCHDOG_WINDOWED_TIMER_STARTUP_TEST - v1.0.0•SW_FLASH_MEMORY_CHECKSUM_CRC_TEST_01 - v1.0.0•SW_SRAM_MARCH_TEST_01 - v1.0.0•SW_EEPROM_MEMORY_CHECKSUM_CRC_TEST_01 - v1.0.03. Repairs and EnhancementsKnown Issues 4. Known IssuesSupported Devices and Families5. Supported Devices and Families•8-bit AVR Families–TinyAVR 1-series1•ATtiny2122•ATtiny2142•ATtiny4122•ATtiny4142•ATtiny4162•ATtiny4172•ATtiny814•ATtiny816•ATtiny817•ATtiny1614•ATtiny1616•ATtiny1617•ATtiny3216•ATtiny3217–AVR-DA•AVR32DA28•AVR32DA32•AVR32DA48•AVR64DA28•AVR64DA32•AVR64DA48•AVR64DA64•AVR128DA28•AVR128DA32•AVR128DA48•AVR128DA64Notes:1.These devices currently do not support SW_CPU_SELF_TEST_LIB_012.These devices have limited memory. Enabling multiple tests may result to a compilation error.Revision History 6. Revision HistoryThe Microchip WebsiteMicrochip provides online support via our website at /. This website is used to make files and information easily available to customers. Some of the content available includes:•Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software•General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing•Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representativesProduct Change Notification ServiceMicrochip’s product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.To register, go to /pcn and follow the registration instructions.Customer SupportUsers of Microchip products can receive assistance through several channels:•Distributor or Representative•Local Sales Office•Embedded Solutions Engineer (ESE)•Technical SupportCustomers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.Technical support is available through the website at: /supportMicrochip Devices Code Protection FeatureNote the following details of the code protection feature on Microchip devices:•Microchip products meet the specification contained in their particular Microchip Data Sheet.•Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.•There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.•Microchip is willing to work with the customer who is concerned about the integrity of their code.•Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.Legal NoticeInformation contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets withyour specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.TrademarksThe Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky,BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, , Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM,MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, , PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, SerialQuad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.All other trademarks mentioned herein are property of their respective companies.© 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.ISBN:Quality Management SystemFor information regarding Microchip’s Quality Management Systems, please visit /quality.Worldwide Sales and Service。
ISO26262
ISO 26262系統功能安全設計標準之研究The Study of ISO 26262 System Functional Safety Design Standards陳柏睿副工程師財團法人車輛研究測試中心研發處底盤與系統驗證工程專案主要聯絡人:陳柏睿電話:04-7811222#2426E-mail:Bo-Ruei@.tw地址:彰化縣鹿港鎮鹿工南七路6號摘要車輛產業是一個不允許失效發生的產業,為了防止系統失效的發生,必須有一套嚴謹且可靠的開發流程來讓開發工程師依循。
ISO 26262標準提供一套功能安全設計流程來讓開發工程師依循,且對於分析結果有一嚴謹的確認制度,因此未來ISO 26262將成為車輛產業系統功能安全設計分析手法的主流。
本文針對ISO 26262標準進行研究及解析,內容主要包含(1)ISO 26262簡介(2)ISO 26262執行流程(3)ISO 26262議題探討。
ABSTRACTThe occurrence of system failure is not allowed in vehicle industry. In order to prevent it, developers must have rigorous and reliable development processes. ISO 26262 standards provide a set of functional safety design processes to help developers to follow, and a strict accreditation criteria to ensure that analysis results are consistent with requirements. Consequently, ISO 26262 will become the main analysis techniques of a system function safety design for vehicle industry in the future. This paper elaborates on ISO 26262 standards, which includes (1) ISO 26262 introduction, (2) ISO 26262 implementation processes, and (3) ISO 26262 issues.關鍵字:ISO 26262、功能安全、安全程度等級Keywords: ISO 26262, Functional Safety, Automotive Safety Integrity Levels (ASILs)一、前言車輛產業是一個不允許系統失效發生的產業,因為一發生失效車輛廠商將面臨官司賠償與商譽受損的巨大風險,為了防止系統失效的發生,必須有一套嚴謹且可靠的開發流程來讓系統開發工程師依循,以往車輛產業大部分是採用失效模式效應分析(Failure Mode and Effects Analysis, FMEA)手法來進行失效分析與預防,FMEA手法對於硬體失效有一定程度的預防效果,但對於軟體失效的預防效果就較為有限,除FMEA手法外,近期亦漸漸有車輛廠商將ISO 26262功能安全設計標準應用於失效分析與預防上,ISO 26262標準可補足FMEA手法於軟體分析的不足,在軟硬體功能安全設計方面皆提供一套流程來讓開發工程師依循,且對於功能安全分析結果有一嚴謹的確認制度,因此未來ISO 26262將成為車輛產業系統功能安全設計分析手法的主流。
04-汽车功能安全(ISO26262)系列:系统阶段开发-技术安全需求(TSR)及安全机...
04-汽车功能安全(ISO26262)系列:系统阶段开发-技术安全需求(TSR)及安全机...本篇属于汽车功能安全专题系列第04篇内容,我们主要聊聊,到底什么是技术安全需求(TSR)和安全机制(Safety Mechanism)。
在上一篇:''03 - 汽车功能安全(ISO 26262)系列: 概念阶段开发 - 功能安全需求及方案(FSR&FSC)''我们在概念开发阶段,通过组件层别的安全分析(FTA, FMEA)对功能安全开发最初的安全需求,即安全目标(SG),进行细化,得到了组件级别的功能安全需求(FSR)和方案(FSC)。
但FSR本质上还是属于功能层面的逻辑安全需求,属于'需要做什么'的层次,无法具体实施,所以需要将FSR进一步细化为技术层面的安全需求(TSR),即'怎么做',为后续的软件和硬件的安全开发奠定技术需求基础。
根据ISO 26262,功能安全系统阶段开发内容可以分为两大部分:•技术安全需求及方案开发及验证•系统集成测试及安全确认(Validation)它们在开发过程中并不连续,分别隶属于系统开发V模型的左边和右边,中间穿插了硬件和软件开发。
系统阶段技术安全需求(TSR)和方案(TSC)开发和概念阶段功能安全需求(FSR)和方案(FSC)一脉相承,和概念开发开发紧密衔接。
只有硬件和软件开发完成,才能进行系统层面集成测试和需求确认。
系统集成这部分我们留在软件和硬件开发之后再聊。
针对第一个大的部分,即技术安全需求(TSR)和方案(TSC),我们主要聊以下内容:•什么是技术安全需求TSR•安全机制的本质•怎么从FSR到TSR•什么是技术安全方案TSC•系统安全架构设计•安全分析•技术安全需求分配至系统架构鉴于内容较多,今天我们先聊前三部分内容。
01什么是TSR总体而言,技术安全需求(TSR: Technical Safety Requirement)是为满足安全目标SG或功能安全需求(FSR),由功能安全需求(FSR)在技术层面派生出的可实施的安全需求。
ISO 26262功能安全标准简介及组件重用的优势及效率提升
ISO 26262 功能安全标准简介及组件重用的优势及效
率提升
随着各行业引进一系列产品设计和测试的标准化流程,安全保障也日益规
范化。
ISO 26262 满足了人们对于汽车行业国际标准的需求,重点关注安全关键部件。
ISO 26262 基于IEC 61508-电气和电子(E/E)系统的通用功能安全标准。
本白皮书介绍ISO 26262 的关键组成以及软硬件认证。
此外,本白皮书还包含ISO 26262 的测试过程,以及ISO 26262 合规的认证工具。
1. 背景
随着汽车行业复杂性的日益提升,人们加大了开发安全合规系统的力度。
例如,现代汽车使用线控系统,如油门线控。
司机踩油门时,踏板中的传感
器将向电子控制元件发送信号。
该控制单元将分析多种因素,如引擎速度、
车辆速度及踏板位置。
接着,控制单元将向油门传递指令。
对油门线控这类
系统进行测试和验证,对汽车行业造成了挑战。
ISO 26262 的目标是为汽车电气和电子系统提供统一的安全标准。
ISO 26262 的国际标准草案(DIS)发布于2009 年6 月。
自发布起,ISO 26262 就获得了汽车行业的支持。
标准草案生效后,律师将ISO 26262 视为技术巅峰,即特定时期内某种设备或流程的最高发展水平。
德国法律规定,。
iso26262标准中文版
iso26262标准中文版
ISO 26262标准:中文版
一、简介
ISO 26262是国际标准化组织为实现可靠性而制定的一套标准,它旨在
确保汽车系统的安全性能。
该标准涵盖了以下内容:总体安全评估,
设计控制,软件安全,软件可靠性,资源和适当培训等。
二、内容概述
(1)总体安全评估:本标准要求汽车制造商在设计和制造汽车系统时,必须对其可靠性进行总体安全评估,以识别可能导致系统安全事故的
因素,并确定预防措施。
(2)设计控制:本约定要求汽车制造商在早期设计阶段建立设计控制,以保证设计可靠、在全部生命周期内持续实施。
(3)软件安全:本标准要求在软件设计和实施过程中,对潜在风险进
行识别、定义和解决,以确保系统的可靠性。
(4)软件可靠性:本标准要求制造商在汽车软件设计和验证过程中,
必须确保软件的可靠性指标达到资格的系统安全性要求。
(5)资源:本标准要求汽车制造商实施该标准需要足够的资源支持,
包括人员、设备、财务、技术指导和信息流程等。
(6)适当培训:本标准要求汽车制造商为使用该标准的员工提供安全、可靠和高效的培训,以保证员工对汽车安全性工作具有足够的了解和
能力。
三、结论
ISO 26262标准是汽车安全性可靠性的国际标准,要求汽车制造商在设计、制造及维护过程中,遵守相关的安全标准,确保汽车的安全性、可靠性和可操作性。
该标准涉及与汽车可靠性相关的诸多方面,包括总体安全评估、设计控制、软件安全、软件可靠性、资源和适当培训等。
ISO 26262中的ASIL等级确定与分解
ISO 26262中的ASIL等级确定与分解1. 引言汽车上电子/电气系统(E/E)数量不断的增加,一些高端豪华轿车上有多达70多个ECU(Electronic Control Unit电子控制单元),其中安全气囊系统、制动系统、底盘控制系统、发动机控制系统以及线控系统等都是安全相关系统。
当系统出现故障的时候,系统必须转入安全状态或者转换到降级模式,避免系统功能失效而导致人员伤亡。
失效可能是由于规范错误(比如安全需求不完整)、人为原因的错误(比如:软件bug)、环境的影响(比如:电磁干扰)等等原因引起的。
为了实现汽车上电子/电气系统的功能安全设计,道路车辆功能安全标准ISO 26262[1]于2011年正式发布,为开发汽车安全相关系统提供了指南,该标准的基础是适用于任何行业的电子/电气/可编程电子系统的功能安全标准IEC 61508[2]。
ISO 26262标准中对系统做功能安全设计时,前期重要的一个步骤是对系统进行危害分析和风险评估,识别出系统的危害并且对危害的风险等级——ASIL等级(Automotive Safety Integration Level,汽车安全完整性等级)进行评估。
ASIL有四个等级,分别为A,B,C,D,其中A是最低的等级,D是最高的等级。
然后,针对每种危害确定至少一个安全目标,安全目标是系统高级别的安全需求,由安全目标导出系统级别的安全需求,再将安全需求分配到硬件和软件。
ASIL等级决定了对系统安全性的要求,ASIL等级越高,对系统的安全性要求越高,为实现安全付出的代价越高,意味着硬件的诊断覆盖率越高,开发流程越严格,相应的开发成本增加、开发周期延长,技术要求严格。
ISO 26262中提出了在满足安全目标的前提下降低ASIL等级的方法——ASIL分解,这样可以解决上述开发中的难点。
本文首先介绍了ISO 26262标准中的危害分析和风险评估阶段中的ASIL等级确定方法,然后介绍了ASIL分解的原则,并辅以实例进行说明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Development Interface Agreement
INSTRUCTIONS FOR COMPLETION For each Work Product: - SUPPLIER shall confirm the responsibility in completing Work Products (Col. Q, R, S, T) - SUPPLIER shall confirmthe Work Product submission level (Col. V) - SUPPLIER shall state all the document references covering the WP for the concerned EE component (Col. U) - SUPPLIER documents submission content shall comply with the DCI when existing (Col. G) Requirement level for ASIL ++: Highly recommended : SUPPLIER should provide document
WP
Submission level
R
A
a
S
I X X X
R X X X X
A X X X X X X X X
S
I Full Full Full Full Full Full Full Full X Consultation
Part 2 - Management of functional safety
+ : recommended
ISO26262 reference Requirement level for ASIL
SU PP LI ER
Sc an i
Activity
Part / §
Work products
Requested A B C D documents
Scania - SUPPLIER Comments & Details on Activity and Documents
Part 2 / 5.5.1 Overall safety management Part 2 / 5.5.2 Part 2 / 5.5.3 Part 2 / 6.5.1 Safety management during the concept phase and the product development Part 2 / 6.5.2 Part 2 / 6.5.3 Part 2 / 6.5.4 Part 2 / 6.5.5 Safety management after the item's Part 2 / 7.5.1 release for production Item definition Part 3 / 5.5.1 Part 3 / 6.5.1 Part 3 / 6.5.2 Part 3 / 7.5.1 Hazard analysis and risk assessment Part 3 / 7.5.2 Part 3 / 7.5.3 Part 3 / 8.5.1 Functional safety concept Part 3 / 8.5.2 Verification report of the functional safety concept. X Supplier organization specific rules and processes for functional safety. Supplier evidence of competence. Supplier evidence of quality management. Supplier safety plan. Supplier project plan. Supplier safety case. Supplier functional safety assessment plan. Supplier confirmation measure reports. Evidence of a field monitoring. ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + ++ ++ ++ + ++ ++ ++ ++ ++ ++ X X X X X
Work Product Submission Level : Full : Delivery of the full document Short : Delivery of a synthesis or a relevant extract of the document Consultation: The document is consultable at supplier's premises Key responsability roles in completing tasks or Work Products: Responsible : Those who do the work to achieve the task. Accountable : The one ultimately answerable for the correct and thorough completion of the Work Product or task. Support : To provide information to support the creation of work products. . Informed : Those who are kept up-to-date on completion of the task or Work Product.