IEEE Std 1018-2004
气相色谱-串联质谱法测定罗汉果中22种农药残留量
气相色谱-串联质谱法测定罗汉果中22种农药残留量任永霞1,黄纯婷2,徐日文1,翁福良1,梁 宁1(1.拱北海关技术中心,广东珠海 519000;2.中山百盛生物技术有限公司,广东中山 528400)摘 要:建立气相色谱-串联质谱法测定罗汉果中22种农药残留量的分析方法。
样品用乙腈提取后经PSA/GCB固相萃取柱净化,采用气相色谱-串联质谱法检测,外标法定量。
结果表明,所有农药在0.005~0.500 μg·mL-1线性关系良好,相关系数R2均大于0.999,方法定量限为0.010 mg·kg-1。
样品中3个加标水平的回收率为71.1%~116.7%,相对标准偏差为0.7%~7.5%。
该方法准确并易于操作,符合农药残留检测要求,可对罗汉果中多种农药进行定性和定量检测。
关键词:罗汉果;气相色谱-串联质谱;固相萃取Determination of 22 Pesticide Residues in Siraitia grosvenorii by Gas Chromatography Tandem Mass Spectrometry REN Yongxia1, HUANG Chunting2, XU Riwen1, WENG Fulang1, LIANG Ning1(1.Technical Center of Gongbei Customs District P.R., Zhuhai 519000, China; 2.Zhongshan PASSION BiotechnologyCo., Ltd., Zhongshan 528400, China)Abstract: A method for the determination of 22 pesticide residues in Siraitia grosvenorii was established by gas chromatography tandem mass spectrometry. The sample was extracted with acetonitrile and purified by PSA/GCB solid-phase extraction column. Gas chromatography tandem mass spectrometry was used for detection, and external standard method was used for quantification. The results showed that all pesticides had good linear relationships within the range of 0.005~0.500 μg·mL-1, with correlation coefficients R2 greater than 0.999. The quantitative limit of the method was 0.010 mg·kg-1. The recoveries of the three spiked levels in the sample were 71.1% ~ 116.7%, with a relative standard deviation of 0.7% ~ 7.5%. The method is accurate and easy to operate, and meets the requirements of pesticide residue detection. It can be used for qualitative and quantitative detection of various pesticides in Siraitia grosvenorii.Keywords:Siraitia grosvenorii; gas chromatography-tandem mass spectrometry; solid phase extraction罗汉果(Siraitia grosvenorii)是葫芦科多年生藤本植物的果实,是国家批准的药食两用食品,具有抗癌、抗氧化、抑菌、免疫、润便通肺以及止咳化痰等功效[1-3]。
ISOIEC 17050-1-供应商符合性声明第一部分
© ISO 2004 — All rights reserved
iii
ISO/IEC 17050-1:20This part of ISO/IEC 17050 has been developed with the objective of providing general requirements for a supplier’s declaration of conformity. It addresses one of the three types of attestation of conformity, namely attestation undertaken by the first party (e.g. the supplier of a product). Other types are second-party attestation (e.g. where a user issues an attestation for the product the user is using) or third-party attestation. Each of these three types is used in the market in order to increase confidence in the conformity of an object. This part of ISO/IEC 17050 specifies requirements applicable when the individual or organization responsible for fulfilment of specified requirements (supplier) provides a declaration that a product (including service), process, management system, person or body is in conformity with specified requirements, which can include normative documents such as standards, guides, technical specifications, laws and regulations. Such a declaration of conformity can also make reference to the results of assessments by one or more first, second or third parties. Such references are not to be interpreted as reducing the responsibility of the supplier in any way. These general requirements are applicable to all sectors. However, these requirements might need to be supplemented for specific purposes, for example for use in connection with regulations. A supplier's declaration of conformity of a product (including service), process, management system, person or body to specified requirements can be substantiated by supporting documentation under the responsibility of the supplier. In cases where this is desirable, or necessary, reference is made to ISO/IEC 17050-2.
802.1d_2004
1摘要:以前描述的是IEEE Std 802.1D 1998 Edition [ISO/IEC 15802-3: 1998])版本:现在描述的是IEEE Std 802.1D-2004,它们之间的区别是:1.增加了IEEE Std 802.1t-2001,里面针对了IEEE Std 802.1D 1998技术和编辑上面的一些修改。
2.IEEE Std 802.1w-2001:指定了快速生成树协议和算法。
2名词解释:STP : 生成树算法。
BPDU: STP的数据单元,在网桥局域网内传递信息。
TCN: 拓扑改变通知BPDU.根网桥:具有最小网桥ID的网桥被选作根网桥,网桥ID应为唯一的。
指定网桥:局域网通过所连的网桥,接收和发送数据帧,如果局域网有且只有一个网桥相连,那么这个网桥必定是指定网桥,如果有多个网桥跟这个局域网相连,那么到根网桥路径花费最少的那个网桥为指定网桥,如果,有几个网桥到到根网桥路径花费一样,那么比较网桥id,id最小的被选作为指定网桥。
指定端口:指定网桥上面和局域网相连的端口叫做指定端口,如果指定网桥上面有几个端口,同时和局域网相连,那么选择端口id 最小的端口为所在局域网的指定端口。
根端口:在指定网桥上面,到根网桥路径花费最小的端口为根端口,如果指定网桥上面有几个端口,到根网桥路径花费一样小,那么选择端口id 最小的端口为根端口.根路径花费:当端口为根端口时候,通过这个端口的路径花费。
对于这个网桥来说,路径费用是到根网桥的费用之和。
指定花费:当端口为所在局域网的指定端口时候,即为根路径费用,当不为指定端口时候,是所在局域网指定端口到根网桥的费用。
过滤表:也可以称为转发表,每一条表项对应了目的地址,转发接口,和表项生存时间(默认值是300秒)3网桥局域网中间信息传播处理分析3.1数据帧类型分析网桥局域网中间传播有两大类信息:1.链路层应用数据帧(只能在端口处于forwarding状态,才能转发)。
美国电力系统保护和自动化标准
IEEE 242-2001
工业和商业电力系统保护和协调推荐规程
IEEE Recommended Practice for Protection and Coordinationof Industral and Commercial Power Systems
7.
IEEE Std 336-2010
25.
IEEE Std 1402
-2000(R2008)
变电所的物理和电气安全指南
IEEEGuideforElectricPowerSubstationPhysicalandElectronic Security
26.
IEEE Std 1512
-2006
能量管理中心通用事件管理信息装置的应用
IEEE Standard for Common Incident Management Message Sets for Use by Emergency Management Centers
-2010
船用1kVto35kV中压直流电力系统推荐的操作规程
IEEERecommendedPracticefor1kVto35kVMedium
-Voltage DC Power Systems on Ships
39.
IEEE Std 1815
-2010
电力系统通信-分布式网络协议(DNP3)
IEEE Standard for Estributed Network Protocol (DNP3)
IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems
IEEE标准列表
IEEE NESCIR551-2009
IEEE NESCIR550-2008 IEEE NESCIR549-2008 IEEE NESCIR548-2009 IEEE NESCIR547-2008 IEEE NESCIR546-2007 IEEE NESCIR545-2007 IEEE NESCIR544-2007 IEEE N42.48-2008
补充公用事业行业的终端设备数据表的光接口通信协议ieee16762010应用在电力输电和配电系统中的大功率电子器件1mw或更大控制结构用指南ieee1656201038kv以上高架配电系统野生动物防护设施的电气机械和耐用性能测试指南ieee16512010降低鸟类引起的断电指南ieee1609
标准号 IEEE 1581-2011 IEEE C 62.82.1-2010 IEEE 802.3.1-2011
说明.第41节:供给和通信系统.雇主规则410A3一 般要求的规范.总论
第26节:法规261C的B和C级建造的强度要求.牵索 和支索绝缘子
第34节:法规341Blc的地下结构内电缆的安装.检 修孔和拱顶内的电缆.支撑结构
第44节:法规444D供电员工分离励磁设备或线路 用以保护员工的附加法规.员工保护接地
用于保护继电器的电流互感器应用指南.勘误表 1:等式18和等式19的更正
移动电话用可再充电电池 传动装置静态无功补偿器的功能规范指南 国际单位制(SI)使用的ANSI标准:现代米制 国际单位制(SI)使用:现代公制.勘误表
低压(1000 V和更小)交流线路负荷端服务设备用 电涌保护装置(SPDs)的标准试验规范
智能变电站继电保护测试装置通用技术条件-江苏电科院
智能变电站继电保护测试装置通用技术条件-江苏电科院目录11. 范围本标准规定了数字式继电保护微机型试验装置的产品分类、技术要求、检验方法及验收规则、包装、运输、贮存、标志、标签、使用说的成套性及质量保证等。
本标准适用于各类智能变电站继电保护和安全自动装置的微机型试验装置。
2. 规范性引用文件下列文件对于本标必不可少的。
凡是注日期的引用文件,仅注日期的版本适用于本标准。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本标准。
3. 术语定义DL/T 860、GB/T 20840.8中确立的以及下列术语适用于本标准。
3.1. 基准值reference value基准条件之一的规定值,是与试验装置性能有关的影响量的规定值。
基准值应带有允许偏差。
3.2. 基准范围reference range基准条件之一的规定值的范围。
3.3. 真值true value表征在所处条件下,一个完全确定的量的值。
一个量的真值是一个理想概念,无法准确获得。
3.4. 约定真值conventional true value一个量的真值的近似值,使用该近似值时,它与真值之间的差别可忽略不计。
—般用多次测量结果的平均值来确定某量的约定真值。
3.5. 总有效值total root mean square各次谐波与基波的方均根值。
3.6. 影响量influence quantity影响试验装置的任一输出量的量。
影响量不是测量的对象,但影响试验装置输出量的准确度。
3.7. 影响量的标称范围nominal range of an influence quantity在规定的条件下,试验装置能满足规定要求的影响量的值的范围。
在此范围内,测量试验装置的变量和工作误差。
3.8. 影响量的极限范围extreme range of an influence quantity试验装置只经受自发的可逆变化而不必满足任何其他要求的影响量值的范围。
EMC 2004.108.EEC standard
IV(Notices)NOTICES FROM MEMBER STATESCommission communication in the framework of the implementation of Directive2004/108/EC of the European Parliament and of the Council of15December2004on the approximation of the laws of the Member States relating to electromagnetic compatibility and repealing Directive89/336/EEC(Text with EEA relevance)(Publication of titles and references of harmonised standards under the Directive)(2007/C167/01)European Standardisation Organisation(1)Reference and title of the standard(and reference document)Reference of thesuperseded standardDate of cessation ofpresumption ofconformity of thesuperseded standardNote1Cenelec EN50065-1:2001Signalling on low-voltage electrical installations in the frequency range3kHz to 148,5kHz—Part1:General requirements,frequency bands and electro-magnetic disturbances EN50065-1:1991+A1:1992+A2:1995+A3:1996Note2.1Date expired(1.4.2003)Cenelec EN50065-2-1:2003Signalling on low-voltage electrical installations in the frequency range3kHz to 148,5kHz—Part2-1:Immunity requirements for mains communications equipment and systems operating in the range of frequencies95kHz to 148,5kHz and intended for use in residential,commercial and light industrial environments Relevant genericstandard(s)Note2.3Date expired(1.10.2004)Amendment A1:2005to EN50065-2-1:2003Note3 1.7.2008 Cenelec EN50065-2-2:2003Signalling on low-voltage electrical installations in the frequency range3kHz to 148,5kHz—Part2-2:Immunity requirements for mains communications equipment and systems operating in the range of frequencies95kHz to 148,5kHz and intended for use in industrial environments Relevant genericstandard(s)Note2.3Date expired(1.10.2004)Amendment A1:2005to EN50065-2-2:2003Note3 1.7.2008 Cenelec EN50065-2-3:2003Signalling on low-voltage electrical installations in the frequency range3kHz to 148,5kHz—Part2-3:Immunity requirements for mains communications equipment and systems operating in the range of frequencies3kHz to95kHz and intended for use by electricity suppliers and distributors Relevant genericstandard(s)Note2.3Date expired(1.8.2004)Amendment A1:2005to EN50065-2-3:2003Note3 1.7.2008European Standardisation Organisation(1)Reference and title of the standard(and reference document)Reference of thesuperseded standardDate of cessation ofpresumption ofconformity of thesuperseded standardNote1Cenelec EN50083-2:2001Cable networks for television signals,sound signals and interactive services—Part2:Electromagnetic compatibility for equipment EN50083-2:1995+A1:1997Note2.1Date expired(1.1.2004)Amendment A1:2005to EN50083-2:2001Note3 1.4.2008 Cenelec EN50090-2-2:1996Home and Building Electronic Systems(HBES)—Part2-2:System overview—General technical requirements Relevant genericstandard(s)Note2.3Date expired(1.10.1999)Cenelec EN50091-2:1995Uninterruptible power systems(UPS)—Part2:EMC requirements Relevant genericstandard(s)Note2.3Date expired (1.3.1999)Cenelec EN50130-4:1995Alarm systems—Part4:Electromagnetic compatibility—Product family standard:Immunity requirements for components of fire,intruder and social alarm systems Relevant genericstandard(s)Note2.3Date expired(1.1.2001)Amendment A1:1998to EN50130-4:1995Note3Date expired(1.1.2001)Amendment A2:2003to EN50130-4:1995Note3 1.9.2007 Cenelec EN50148:1995Electronic taximeters Relevant genericstandard(s)Note2.3Date expired (15.12.1995)Cenelec EN50240:2004Electromagnetic compatibility(EMC)—Product standard for resistance welding equipment Relevant genericstandard(s)Note2.3Date expired(1.4.2007)Cenelec EN50263:1999Electromagnetic compatibility(EMC)—Product standard for measuring relays and protection equipment Relevant genericstandard(s)Note2.3Date expired(1.8.2002)Cenelec EN50270:1999Electromagnetic compatibility—Electrical apparatus for the detection and measurement of combustible gases,toxic gases or oxygen Relevant genericstandard(s)Note2.3Date expired(1.10.2001)Cenelec EN50293:2000Electromagnetic compatibility—Road traffic signal systems—Product standard Relevant genericstandard(s)Note2.3Date expired(1.4.2003)Cenelec EN50295:1999Low-voltage switchgear and controlgear—Controller and device interface systems—Actuator Sensor interface(AS-i)Relevant genericstandard(s)Note2.3Date expired(1.12.1999)Cenelec EN50370-1:2005Electromagnetic compatibility(EMC)—Product family standard for machine tools—Part1:Emission Relevant genericstandard(s)Note2.31.2.2008European Standardisation Organisation(1)Reference and title of the standard(and reference document)Reference of thesuperseded standardDate of cessation ofpresumption ofconformity of thesuperseded standardNote1Cenelec EN50370-2:2003Electromagnetic compatibility(EMC)—Product family standard for machine tools—Part2:Immunity Relevant genericstandard(s)Note2.3Date expired(1.11.2005)Cenelec EN50412-2-1:2005Power line communication apparatus and systems used in low-voltage installations in the frequency range1,6MHz to30MHz—Part2-1: Residential,commercial and industrial environment—Immunity requirements Relevant genericstandard(s)Note2.31.4.2008Cenelec EN50428:2005Switches for household and similar fixed electrical installations—Collateral standard—Switches and related accessories for use in home and building electronic systems(HBES)Relevant genericstandard(s)Note2.31.1.2008Cenelec EN55011:1998Industrial,scientific and medical(ISM)radio-frequency equipment—Radio disturbance characteristics—Limits and methods of measurement (CISPR11:1997(Modified))EN55011:1991+A1:1997+A2:1996Note2.1Date expired(1.1.2001)Amendment A1:1999to EN55011:1998 (CISPR11:1997/A1:1999)Note3Date expired(1.8.2002)Amendment A2:2002to EN55011:1998 (CISPR11:1999/A2:2002)Note3Date expired(1.10.2005)Cenelec EN55012:2002Vehicles,boats and internal combustion engine driven devices—Radio disturbance characteristics—Limits and methods of measurement for the protection of receivers except those installed in the vehicle/boat/device itself or in adjacent vehicles/boats/devices(CISPR12:2001)Relevant genericstandard(s)Note2.3Date expired(1.2.2005)Note8Amendment A1:2005to EN55012:2002(CISPR12:2001/A1:2005)Note3 1.3.2008 Cenelec EN55013:2001Sound and television broadcast receivers and associated equipment—Radio disturbance characteristics—Limits and methods of measurement (CISPR13:2001(Modified))N55013:1990+A12:1994+A13:1996+A14:1999Note2.1Date expired(1.9.2004)Amendment A1:2003to EN55013:2001 (CISPR13:2001/A1:2003)Note3Date expired(1.4.2006)Amendment A2:2006to EN55013:2001(CISPR13:2001/A2:2006)Note3 1.3.2009 Cenelec EN55014-1:2000Electromagnetic compatibility—Requirements for household appliances, electric tools and similar apparatus—Part1:Emission(CISPR14-1:2000)EN55014-1:1993+A1:1997+A2:1999Note2.1Date expired(1.8.2003)Amendment A1:2001to EN55014-1:2000 (CISPR14-1:2000/A1:2001)Note3Date expired(1.10.2004)Amendment A2:2002to EN55014-1:2000 (CISPR14-1:2000/A2:2002)Note3Date expired(1.10.2005)European Standardisation Organisation(1)Reference and title of the standard(and reference document)Reference of thesuperseded standardDate of cessation ofpresumption ofconformity of thesuperseded standardNote1Cenelec EN55014-2:1997Electromagnetic compatibility—Requirements for household appliances, electric tools and similar apparatus—Part2:Immunity—Product family standard(CISPR14-2:1997)EN55104:1995Note2.1Date expired(1.1.2001)Amendment A1:2001to EN55014-2:1997 (CISPR14-2:1997/A1:2001)Note3Date expired(1.12.2004)Cenelec EN55015:2000Limits and methods of measurement of radio disturbance characteristics of electrical lighting and similar equipment(CISPR15:2000)EN55015:1996+A1:1997+A2:1999Note2.1Date expired(1.8.2003)Amendment A1:2001to EN55015:2000 (CISPR15:2000/A1:2001)Note3Date expired(1.12.2004)Amendment A2:2002to EN55015:2000 (CISPR15:2000/A2:2002)Note3Date expired(1.10.2005)Cenelec EN55020:1994Electromagnetic immunity of broadcast receivers and associated equipment EN55020:1988Note2.1Date expired (31.12.1998)Amendment A11:1996to EN55020:1994Note3Date expired(1.6.1999)Amendment A13:1999to EN55020:1994Note3Date expired(1.8.2001)Amendment A14:1999to EN55020:1994Note3Date expired(1.8.2001)Amendment A12:1999to EN55020:1994Note3Date expired(1.8.2002) Cenelec EN55020:2002Sound and television broadcast receivers and associated equipment—Immunity characteristics—Limits and methods of measurement(CISPR20:2002)EN55020:1994and its amendmentsNote2.1Date expired(1.12.2006)Amendment A1:2003to EN55020:2002 (CISPR20:2002/A1:2002)Note3Date expired(1.12.2006)Amendment A2:2005to EN55020:2002(CISPR20:2002/A2:2004)Note3 1.2.2008 Cenelec EN55022:1994Limits and methods of measurement of radio disturbance characteristics of information technology equipment(CISPR22:1993)EN55022:1987Note2.1Date expired(31.12.1998)Amendment A1:1995to EN55022:1994 (CISPR22:1993/A1:1995)Note3Date expired(31.12.1998)Amendment A2:1997to EN55022:1994 (CISPR22:1993/A2:1996(Modified))Note3Date expired(31.12.1998)Amendment A1:2000to EN55022:1998(CISPR22:1997/A1:2000)Note3 1.8.2007Amendment A2:2003to EN55022:1998(CISPR22:1997/A2:2002)Note3 1.8.2007European Standardisation Organisation(1)Reference and title of the standard(and reference document)Reference of thesuperseded standardDate of cessation ofpresumption ofconformity of thesuperseded standardNote1Cenelec EN55022:1998Information technology equipment—Radio disturbance characteristics—Limits and methods of measurement(CISPR22:1997(Modified))EN55022:1994and its amendmentsNote2.11.8.2007Amendment A1:2000to EN55022:1998(CISPR22:1997/A1:2000)Note3 1.10.2009Amendment A2:2003to EN55022:1998(CISPR22:1997/A2:2002)Note3 1.10.2009 Cenelec EN55022:2006Information technology equipment—Radio disturbance characteristics—Limits and methods of measurement(CISPR22:2005(Modified))EN55022:1998and its amendments1.10.2009Cenelec EN55024:1998Information technology equipment—Immunity characteristics—Limits and methods of measurement(CISPR24:1997(Modified))Relevant genericstandard(s)Note2.3Date expired(1.7.2001)Amendment A1:2001to EN55024:1998 (CISPR24:1997/A1:2001)Note3Date expired(1.10.2004)Amendment A2:2003to EN55024:1998 (CISPR24:1997/A2:2002)Note3Date expired(1.12.2005)Cenelec EN55103-1:1996Electromagnetic compatibility—Product family standard for audio,video, audio-visual and entertainment lighting control apparatus for professional use —Part1:Emission Relevant genericstandard(s)Note2.3Date expired(1.9.1999)Cenelec EN55103-2:1996Electromagnetic compatibility—Product family standard for audio,video, audio-visual and entertainment lighting control apparatus for professional use —Part2:Immunity Relevant genericstandard(s)Note2.3Date expired(1.9.1999)Cenelec EN60034-1:1998Rotating electrical machines—Part1:Rating and performance(IEC60034-1:1996(Modified))——Amendment A11:2002to EN60034-1:1998Relevant genericstandard(s)Note2.3Date expired (1.7.2005)Cenelec EN60204-31:1998Safety of machinery—Electrical equipment of machines—Part31:Particular safety and EMC requirements for sewing machines,units and systems(IEC60204-31:1996(Modified))Relevant genericstandard(s)Note2.3Date expired(1.6.2002)Cenelec EN60439-1:1999Low-voltage switchgear and controlgear assemblies—Part1:Type-tested and partially type-tested assemblies(IEC60439-1:1999)EN60439-1:1994+A11:1996Note2.1Date expired(1.8.2002)European Standardisation Organisation(1)Reference and title of the standard(and reference document)Reference of thesuperseded standardDate of cessation ofpresumption ofconformity of thesuperseded standardNote1Cenelec EN60669-2-1:2000Switches for household and similar fixed electrical installations—Part2-1: Particular requirements—Electronic switches(IEC60669-2-1:1996(Modified)+A1:1997(Modified))EN60669-2-1:1996+A11:1997Note2.1Date expired(1.10.2005)Amendment A2:2001to EN60669-2-1:2000 (IEC60669-2-1:1996/A2:1999(Modified))Note3Date expired(1.10.2005)Cenelec EN60669-2-1:2004Switches for household and similar fixed electrical installations—Part2-1: Particular requirements—Electronic switches(IEC60669-2-1:2002(Modified))EN60669-2-1:2000and its amendmentNote2.11.7.2009Cenelec EN60669-2-2:1997Switches for household and similar fixed electrical installations—Part2: Particular requirements—Section2:Electromagnetic remote-control switches (RCS)(IEC60669-2-2:1996)Relevant genericstandard(s)Note2.3Date expired(1.6.1999)Cenelec EN60669-2-3:1997Switches for household and similar fixed electrical installations—Part2-3: Particular requirements—Time-delay switches(TDS)(IEC60669-2-3:1997)EN60669-2-3:1996Note2.1Date expired(1.6.1999)Cenelec EN60730-1:1995Automatic electrical controls for household and similar use—Part1:Generalrequirements(IEC60730-1:1993(Modified))——Amendment A11:1996to EN60730-1:1995Relevant genericstandard(s)Note2.3Date expired (1.1.1998)Amendment A17:2000to EN60730-1:1995Note3Date expired(1.10.2002) Cenelec EN60730-1:2000Automatic electrical controls for household and similar use—Part1:General requirements(IEC60730-1:1999(Modified))Note7EN60730-1:1995and its amendments—Amendment A1:2004to EN60730-1:2000(IEC60730-1:1999/A1:2003(Modified))Note3—Cenelec EN60730-2-5:1995Automatic electrical controls for household and similar use—Part2:Particular requirements for automatic electrical burner control systems(IEC60730-2-5:1993(Modified))EN60730-1:1995and its amendmentsNote2.3Date expired(15.12.2000)Cenelec EN60730-2-5:2002Automatic electrical controls for household and similar use—Part2-5:Particular requirements for automatic electrical burner control systems(IEC60730-2-5:2000(Modified))——Amendment A1:2004to EN60730-2-5:2002 (IEC60730-2-5:2000/A1:2004(Modified))EN60730-2-5:1995Note2.11.12.2008Amendment A11:2005to EN60730-2-5:2002Note3 1.12.2008European Standardisation Organisation(1)Reference and title of the standard(and reference document)Reference of thesuperseded standardDate of cessation ofpresumption ofconformity of thesuperseded standardNote1Cenelec EN60730-2-6:1995Automatic electrical controls for household and similar use—Part2:Particularrequirements for automatic electrical pressure sensing controls includingmechanical requirements(IEC60730-2-6:1991(Modified))——Amendment A1:1997to EN60730-2-6:1995 (IEC60730-2-6:1991/A1:1994(Modified))EN60730-1:1995and its amendmentsNote2.3Date expired(15.12.2003)Cenelec EN60730-2-7:1991Automatic electrical controls for household and similar use—Part2:Particularrequirements for timers and time switches(IEC60730-2-7:1990(Modified))——Amendment A1:1997to EN60730-2-7:1991 (IEC60730-2-7:1990/A1:1994(Modified))EN60730-1:1995and its amendmentsNote2.3Date expired(1.1.2004)Cenelec EN60730-2-8:1995Automatic electrical controls for household and similar use—Part2:Particularrequirements for electrically operated water valves,including mechanicalrequirements(IEC60730-2-8:1992(Modified))——Amendment A1:1997to EN60730-2-8:1995 (IEC60730-2-8:1992/A1:1994(Modified))EN60730-1:1995and its amendmentsNote2.3Date expired(1.1.2004)Amendment A2:1997to EN60730-2-8:1995 (IEC60730-2-8:1992/A2:1997)Note3Date expired(1.1.2004)Cenelec EN60730-2-8:2002Automatic electrical controls for household and similar use—Part2-8: Particular requirements for electrically operated water valves,including mechanical requirements(IEC60730-2-8:2000(Modified))EN60730-2-8:1995and its amendmentsNote2.11.12.2008Amendment A1:2003to EN60730-2-8:2002(IEC60730-2-8:2000/A1:2002(Modified))Note3 1.12.2008 Cenelec EN60730-2-9:1995Automatic electrical controls for household and similar use—Part2:Particularrequirements for temperature sensing controls(IEC60730-2-9:1992(Modified))——Amendment A1:1996to EN60730-2-9:1995 (IEC60730-2-9:1992/A1:1994(Modified))EN60730-1:1995and its amendmentsNote2.3Date expired(1.1.2004)Amendment A2:1997to EN60730-2-9:1995 (IEC60730-2-9:1992/A2:1994(Modified))Note3Date expired(1.1.2004)European Standardisation Organisation(1)Reference and title of the standard(and reference document)Reference of thesuperseded standardDate of cessation ofpresumption ofconformity of thesuperseded standardNote1Cenelec EN60730-2-9:2002Automatic electrical controls for household and similar use—Part2-9: Particular requirements for temperature sensing controls(IEC60730-2-9:2000(Modified))EN60730-2-9:1995and its amendmentsNote2.11.12.2008Amendment A2:2005to EN60730-2-9:2002(IEC60730-2-9:2000/A2:2004(Modified))Note3 1.12.2007Amendment A1:2003to EN60730-2-9:2002(IEC60730-2-9:2000/A1:2002(Modified))Note3 1.12.2008 Cenelec EN60730-2-11:1993Automatic electrical controls for household and similar use—Part2-11:Particular requirements for energy regulators(IEC60730-2-11:1993)——Amendment A1:1997to EN60730-2-11:1993 (IEC60730-2-11:1993/A1:1994(Modified))EN60730-1:1995and its amendmentsNote2.3Date expired(1.7.2000)Amendment A11:2005to EN60730-2-11:1993Note3 1.3.2009 Cenelec EN60730-2-13:1998Automatic electrical controls for household and similar use—Part2-13: Particular requirements for humidity sensing controls(IEC60730-2-13:1995(Modified))EN60730-1:1995and its amendmentsNote2.3Date expired(1.8.2001)Amendment A11:2005to EN60730-2-13:1998Note3 1.2.2009 Cenelec EN60730-2-14:1997Automatic electrical controls for household and similar use—Part2-14: Particular requirements for electric actuators(IEC60730-2-14:1995(Modified))EN60730-1:1995and its amendmentsNote2.3Date expired(1.6.2004)Amendment A1:2001to EN60730-2-14:1997(IEC60730-2-14:1995/A1:2001)Note3 1.7.2008 Cenelec EN60730-2-18:1999Automatic electrical controls for household and similar use—Part2-18: Particular requirements for automatic electrical water and air flow sensing controls,including mechanical requirements(IEC60730-2-18:1997(Modified))EN60730-1:1995and its amendmentsNote2.3Date expired(1.4.2002)Cenelec EN60870-2-1:1996Telecontrol equipment and systems—Part2:Operating conditions—Section1:Power supply and electromagnetic compatibility(IEC60870-2-1:1995)Relevant genericstandard(s)Note2.3Date expired(1.9.1996)Cenelec EN60945:2002Maritime navigation and radiocommunication equipment and systems—General requirements—Methods of testing and required test results(IEC60945:2002)EN60945:1997Note2.1Date expired(1.10.2005)European Standardisation Organisation(1)Reference and title of the standard(and reference document)Reference of thesuperseded standardDate of cessation ofpresumption ofconformity of thesuperseded standardNote1Cenelec EN60947-1:1999Low-voltage switchgear and controlgear—Part1:General rules (IEC60947-1:1999(Modified))Note6EN60947-1:1997Note2.1Date expired(1.11.2001)Amendment A2:2001to EN60947-1:1999 (IEC60947-1:1999/A2:2001)Note3Date expired(1.12.2004)Cenelec EN60947-1:2004Low-voltage switchgear and controlgear—Part1:General rules (IEC60947-1:2004)Note6EN60947-1:1999and its amendmentNote2.1Date expired(1.4.2007)Cenelec EN60947-2:2003Low-voltage switchgear and controlgear—Part2:Circuit-breakers (IEC60947-2:2003)EN60947-2:1996+A1:1997+A2:2001Note2.1Date expired(1.6.2006)Cenelec EN60947-3:1999Low-voltage switchgear and controlgear—Part3:Switches,disconnectors, switch-disconnectors and fuse-combination units(IEC60947-3:1999)EN60947-3:1992+A1:1995Note2.1Date expired(1.1.2002)Amendment A1:2001to EN60947-3:1999 (IEC60947-3:1999/A1:2001)Note3Date expired(1.3.2004)Cenelec EN60947-4-1:2001Low-voltage switchgear and controlgear—Part4-1:Contactors and motor-starters—Electromechanical contactors and motor-starters(IEC60947-4-1:2000)——Amendment A1:2002to EN60947-4-1:2001 (IEC60947-4-1:2000/A1:2002)EN60947-4-1and its amendmentsNote2.1Date expired(1.10.2005)Amendment A2:2005to EN60947-4-1:2001(IEC60947-4-1:2000/A2:2005)Note3 1.7.2008 Cenelec EN60947-4-2:2000Low-voltage switchgear and controlgear—Part4-2:Contactors and motor-starters—AC semiconductor motor controllers and starters(IEC60947-4-2:1999)EN60947-4-2:1996+A2:1998Note2.1Date expired(1.12.2002)Amendment A1:2002to EN60947-4-2:2000 (IEC60947-4-2:1999/A1:2001)Note3Date expired(1.3.2005)Cenelec EN60947-4-3:2000Low-voltage switchgear and controlgear—Part4-3:Contactors and motor-starters—AC semiconductor controllers and contactors for non-motor loads (IEC60947-4-3:1999)Relevant genericstandard(s)Note2.3Date expired(1.12.2002)Cenelec EN60947-5-1:1997Low-voltage switchgear and controlgear—Part5-1:Control circuit devices andswitching elements—Electromechanical control circuit devices(IEC60947-5-1:1997)——Amendment A12:1999to EN60947-5-1:1997EN60947-5-1:1991+A12:1997Note2.1Date expired (1.10.2002)European Standardisation Organisation(1)Reference and title of the standard(and reference document)Reference of thesuperseded standardDate of cessation ofpresumption ofconformity of thesuperseded standardNote1Cenelec EN60947-5-1:2004Low-voltage switchgear and controlgear—Part5-1:Control circuit devices and switching elements—Electromechanical control circuit devices(IEC60947-5-1:2003)EN60947-5-1:1997and its amendmentsNote2.1Date expired(1.5.2007)Cenelec EN60947-5-2:1998Low-voltage switchgear and controlgear—Part5-2:Control circuit devices and switching elements—Proximity switches(IEC60947-5-2:1997(Modified))EN60947-5-2:1997Note2.1Date expired(1.10.2001)Amendment A2:2004to EN60947-5-2:1998 (IEC60947-5-2:1997/A2:2003)Note3Date expired(1.2.2007)Cenelec EN60947-5-3:1999Low-voltage switchgear and controlgear—Part5-3:Control circuit devices and switching elements—Requirements for proximity devices with defined behaviour under fault conditions(PDF)(IEC60947-5-3:1999)Relevant genericstandard(s)Note2.3Date expired(1.5.2002)Amendment A1:2005to EN60947-5-3:1999(IEC60947-5-3:1999/A1:2005)Note3 1.3.2008 Cenelec EN60947-5-6:2000Low-voltage switchgear and controlgear—Part5-6:Control circuit devices and switching elements—DC interface for proximity sensors and switching amplifiers(NAMUR)(IEC60947-5-6:1999)EN50227:1997Note2.1Date expired(1.1.2003)Cenelec EN60947-5-7:2003Low-voltage switchgear and controlgear—Part5-7:Control circuit devices and switching elements—Requirements for proximity devices with analogue output(IEC60947-5-7:2003)Relevant genericstandard(s)Note2.3Date expired(1.9.2006)Cenelec EN60947-6-1:1991Low-voltage switchgear and controlgear—Part6-1:Multiple function equipment—Automatic transfer switching equipment(IEC60947-6-1:1989)Relevant genericstandard(s)Note2.3Date expired(1.10.1997)Amendment A2:1997to EN60947-6-1:1991 (IEC60947-6-1:1989/A2:1997)EN60947-6-1:1991/A11:1997Note3Date expired(1.7.1998)Cenelec EN60947-6-1:2005Low-voltage switchgear and controlgear—Part6-1:Multiple function equipment—Transfer switching equipment(IEC60947-6-1:2005)EN60947-6-1:1991and its amendmentsNote2.11.10.2008Cenelec EN60947-6-2:2003Low-voltage switchgear and controlgear—Part6-2:Multiple function equipment—Control and protective switching devices(or equipment)(CPS) (IEC60947-6-2:2002)EN60947-6-2:1993+A1:1997Note2.1Date expired(1.9.2005)Cenelec EN60947-8:2003Low-voltage switchgear and controlgear—Part8:Control units for built-in thermal protection(PTC)for rotating electrical machines(IEC60947-8:2003)Relevant genericstandard(s)Note2.3Date expired(1.7.2006)European Standardisation Organisation(1)Reference and title of the standard(and reference document)Reference of thesuperseded standardDate of cessation ofpresumption ofconformity of thesuperseded standardNote1Cenelec EN60974-10:2003Arc welding equipment—Part10:Electromagnetic compatibility(EMC) requirements(IEC60974-10:2002(Modified))EN50199:1995Note2.1Date expired(1.3.2006)Cenelec EN61000-3-2:2000Electromagnetic compatibility(EMC)—Part3-2:Limits—Limits for harmonic current emissions(equipment input current up to and including16A per phase)(IEC61000-3-2:2000(Modified))EN61000-3-2:1995+A1:1998+A2:1998+A14:2000Note2.1Date expired(1.1.2004)Amendment A2:2005to EN61000-3-2:2000(IEC61000-3-2:2000/A1:2001+IEC61000-3-2:2000/A2:2004)Note3 1.1.2008 Cenelec EN61000-3-3:1995Electromagnetic compatibility(EMC)—Part3-3:Limits—Limitation of voltage changes,voltage fluctuations and flicker in public low-voltage supply systems,for equipment with rated current≤16A per phase and not subject to conditional connection(IEC61000-3-3:1994)EN60555-3:1987+A1:1991Note2.2Date expired(1.1.2001)Amendment A1:2001to EN61000-3-3:1995 (IEC61000-3-3:1994/A1:2001)Note3Date expired(1.5.2004)Amendment A2:2005to EN61000-3-3:1995(IEC61000-3-3:1994/A2:2005)Note3 1.9.2008 Cenelec EN61000-3-11:2000Electromagnetic compatibility(EMC)—Part3-11:Limits—Limitation of voltage changes,voltage fluctuations and flicker in public low-voltage supply systems—Equipment with rated current≤75A and subject to conditional connection(IEC61000-3-11:2000)Relevant genericstandard(s)Note2.3Date expired(1.11.2003)Cenelec EN61000-3-12:2005Electromagnetic compatibility(EMC)—Part3-12:Limits—Limits for harmonic currents produced by equipment connected to public low-voltage systems with input current>16A and≤75A per phase(IEC61000-3-12:2004)Relevant genericstandard(s)Note2.31.2.2008Cenelec EN61000-6-1:2001Electromagnetic compatibility(EMC)—Part6-1:Generic standards—Immunity for residential,commercial and light-industrial environments (IEC61000-6-1:1997(Modified))EN50082-1:1997Note2.1Date expired(1.7.2004)Cenelec EN61000-6-2:2001Electromagnetic compatibility(EMC)—Part6-2:Generic standards—Immunity for industrial environments(IEC61000-6-2:1999(Modified))EN61000-6-2:1999Note2.1Date expired(1.7.2004)Cenelec EN61000-6-2:2005Electromagnetic compatibility(EMC)—Part6-2:Generic standards—Immunity for industrial environments(IEC61000-6-2:2005)EN61000-6-2:2001Note2.11.6.2008。
测量仪器特性评定技术规范
测量仪器特性评定技术规范篇一:计量技术规范国家计量技术规范目录JJF(截止2014年05月)JJF 1001-2011 通用计量术语及定义JJF 1002-2010 国家计量检定规程编定规则JJF 1004-2004 流量计量名词术语及定义JJF 1005-2005 标准物质常用术语和定义JJF 1006-1994 一级标准物质技术规范JJF 1007-2007 温度计量名词术语及定义JJF 1008-2008 压力计量名词术语及定义JJF 1009-2006 容量计量术语及定义JJF 1010-1987 长度计量名词术语及定义JJF 1011-2006 力值与硬度计量术语及定义JJF 1012-2007 湿度与水分计量名词术语及定义JJF 1013-1989 磁学计量常用名词术语及定义(试行)JJF 1014-1989 罐内液体石油产品计量技术规范JJF 1015-2002 计量器具型式评价和型式批准通用规范 JJF 1016-2009 计量器具型式评价大纲编写导则JJF 1017-1990 使用硫酸铈-亚铈剂量计测量γ射线水吸收剂量标准方法JJF 1018-1990 使用重铬酸钾(银)剂量计测量γ射线水吸收剂量标准方法JJF 1019-1990 60Co远距离治疗束吸收剂量的邮寄监测方法JJF 1020-1990 r射线辐射加工剂量保证监测方法JJF 1021-1990 产品质量检验机构计量认证技术考核规范 JJF 1022-1991 计量标准命名规范JJF 1023-1991 常用电学计量名词术语(试行)JJF 1024-2006 测量仪器可靠性分析JJF 1025-1991 机械秤改装规范JJF 1026-1991 光子和高能电子束吸收剂量测定方法JJF 1028-1991 使用重铬酸钾银剂量计测量γ射线水吸收剂量标准方法JJF 1029-1991 电子探针定量分析用标准物质研制规范 JJF 1030-1998 恒温槽技术性能测试规范JJF 1031-1992 依法管理的物理化学计量器具分类规范JJF 1032-2005 光学辐射计量名词术语及定义JJF 1033-2008 计量标准考核规范JJF 1034-2005 声学计量名词术语及定义JJF 1035-2006 电离辐射计量术语及定义JJF 1036-1993 交流电能表检定装置试验规范JJF 1037-1993 线列固体图像传感器特性参数测试技术规范JJF 1038-1993 直流电阻计量保证方案技术规范(试行)JJF 1039-1993 同轴功率计量保证方案技术规范(试行)JJF 1040-1993 射频衰减计量保证方案技术规范(试行) JJF 1041-1993 磁性材料磁参数计量保证方案技术规范(试行)JJF 1042-1993 直流电动势计量保证方案技术规范(试行) JJF 1043-1993 维氏硬度计量保证方案技术规范(试行) JJF 1044-1993 放射性核素活度计量保证方案技术规范(试行)JJF 1045-1993 长度(量块)计量保证方案技术规范(试行) JJF 1046-1994 金属电阻应变计的工作特性技术规范JJF 1047-1994 磁耦合直流电流测量变换器校准规范JJF 1048-1995 数据采集系统校准规范JJF 1049-1995 温度传感器动态响应校准规范JJF 1050-1996 工作用热传导真空计校准规范JJF 1051-2009 工作计量器具命名与分类代码规范JJF 1052-1996 气流式纤维细度测定仪的校准规范JJF 1053-1996 负荷传感器动态特性校准规范JJF 1054-1996 人血清无机成分分析结果评定规范JJF 1056-1998 燃油加油机税控装置技术规范JJF 1057-1998 数字存储示波器校准规范JJF 1059-1999* 测量不确定度评定与表示JJF 1061-1999 税控燃油加油机制造许可证考核规范JJF 1062-1999 电离真空计校准规范JJF 1063-2000 石油螺纹单项参数检查仪校准规范JJF 1064-2004 坐标测量机校准规范JJF 1065-2000 射频通信测试校准规范JJF 1066-2000 测长机校准规范JJF 1067-2000 工频电压比例标准装置校准规范【废除】 JJF 1068-2000 工频电流比例标准装置校准规范JJF 1069-2007 法定计量检定机构考核规范JJF 1070-2005 定量包装商品净含量计量检验规则JJF 1071-2000 国家计量校准规范编写规则JJF 1072-2000 齿厚卡尺校准规范JJF 1073-2000 高频Q表校准规范JJF 1074-2001 酒精密度-浓度测量用表JJF 1075-2001 钳形电流表校准规范JJF 1076-2001 湿度传感器校准规范JJF 1077-2002 测微准直望远镜校准规范JJF 1078-2002 光学测角比较仪校准规范JJF 1079-2002 阴极射线管彩色分析仪校准规范JJF 1080-2002 (-50~90)℃黑体辐射源校准规范JJF 1081-2002 垂准仪校准规范JJF 1082-2002 平板仪校准规范JJF 1083-2002 光学倾斜仪校准规范JJF 1084-2002 框式水平仪和条式水平仪校准规范JJF 1085-2002 水平尺校准规范JJF 1087-2002 直流大电流测量过程控制技术规范JJF 1088-2002 外径千分尺(测量范围500mm~3000mm)校准规范JJF 1089-2002 滚动轴承径向游隙测量仪校准规范JJF 1090-2002 非金属建材塑限测定仪校准规范JJF 1091-2002 测量内尺寸千分尺校准规范JJF 1092-2002 光切显微镜校准规范JJF 1093-2002 投影仪校准规范JJF 1094-2002 测量仪器特性评定技术规范JJF 1096-2002 引申计标定器校准规范JJF 1097-2003 平尺校准规范JJF 1098-2003 热电偶、热电阻自动测量系统校准规范 JJF 1099-2003 表面粗糙度比较样块校准规范JJF 1100-2003 平面等厚干涉仪校准规范JJF 1101-2003 环境试验设备温度、湿度校准规范JJF 1102-2003 内径表校准规范JJF 1103-2003 万能试验机计算机数据采集系统评定JJF 1104-2003 国家计量检定系统表编写规则JJF 1105-2003 触针式表面粗糙度测量仪校准规范JJF 1106-2003 眼镜产品透射比测量装置校准规范JJF 1107-2003 测量人体温度的红外温度计校准规范JJF 1108-2003 石油钻具接头螺纹工作量规、圆螺纹套管工作量规和油管螺纹工作量规校准规范JJF 1109-2003 跳动检查仪校准规范JJF 1110-2003 建筑工程质量检测器组校准规范JJF 1111-2003 调制度测量仪校准规范JJF 1112-2003 计量检测体系确认规范JJF 1113-2004 轴承套圈角度表针件测量仪校准规范JJF 1114-2004 光学、数显分度台校准规范JJF 1115-2004 光电轴角编码器校准规范JJF 1116-2004 线加速度计的精密离心机校准规范JJF 1117-2004 测量仪器比对规范JJF 1118-2004 全球定位系统(GPS)接收机(测地型和导航型)校准规范JJF 1119-2004 电子水平尺校准规范JJF 1120-2004 热电离同位素质谱计校准规范JJF 1121-2004 手持式齿距比较仪校准规范JJF 1122-2004 齿轮螺旋线测量仪器校准规范JJF 1123-2004 基圆齿距比较仪校准规范JJF 1125-2004 滚刀检查仪校准规范JJF 1126-2004 超声波测厚仪校准规范JJF 1127-2004 射频阻抗/材料分析仪校准规范JJF 1128-2004 矢量信号分析仪校准规范JJF 1129-2005 尿液分析仪校准规范JJF 1130-2005 几何量测量设备校准中的不确定度评定指南JJF 1131-2005 TDMA-GSM数字移动通信综合测试仪校准规范JJF 1132-2005 组合式角度尺校准规范JJF 1133-2005 X射线荧光光谱法黄金含量分析仪校准规范JJF 1134-2005 专用工作测力机校准规范JJF 1135-2005 化学分析测量不确定度评定JJF 1136-2005 音准仪校准规范JJF 1137-2005 传声器前置放大器校准规范JJF 1138-2005 铣刀磨后检查仪校准规范JJF 1139-2005 计量器具检定周期确定原则和方法JJF 1140-2006 直角式检查仪校准规范JJF 1141-2006 汽车转向角检验台校准规范JJF 1142-2006 建筑声学分析仪校准规范JJF 1143-2006 混响室声学特性校准规范JJF 1144-2006 电磁骚扰测量接收机校准规范JJF 1145-2006 驻极体传声器测试仪校准规范JJF 1146-2006 消声水池声学特性校准规范JJF 1147-2006 消声室和半消声室声学特性校准规范JJF 1148-2006 角膜接触镜检测仪校准规范JJF 1149-2006 心脏除颤器和心脏除颤监护仪校准规范JJF 1150-2006 光电探测器相对光谱响应度校准规范JJF 1151-2006 车轮动平衡机校准规范JJF 1152-2006 任意波发生器校准规范JJF 1153-2006 冲击加速度计(绝对法)校准规范篇二:计量标准考核规范JJF1033—2008JJF中华人民共和国国家计量技术规范JJF1033—2008计量标准考核规范Rule for the Examination of Measurement Standard2008-01-31 发布2008-09-01实施国家质量监督检验检疫总局发布计量标准考核规范Rule for the Examinationof Measurement Standard本规范经国家质量监督检验检疫总局2008年1月31日批准,并自2008年9月1日起施行。
IEEE STD's
1012 - 2004 IEEE Standard for Software Verificiation and Validation.pdf
1013-2000 IEEE Recommended Practice for Sizing Lead-Acid Batteries for Photovoltaic (PV) Systems.pdf
1364-2001 IEEE Standard Verilogr Hardware Description Language.pdf
1364.1-2002 IEEE Standard for Verilogr Register Transfer Level Synthesis.pdf
1349-2001 IEEE Guide for the Application of Electric Motors in Class I, Division 2 Hazardous (Classified) Locations.pdf
1361-2003 Ieee Guide For Selection, Charging, Test, And Evaluation Of Lead-Acid Batteries Used In Stand-Along Photovoltaic (Pv) Systems.pdf
12207.2-1997 - Software Lifecycle Processes.pdf
1222-2004 IEEE Standard For All-Dielectric Self-Supporting Fiber Optic Cable.pdf
IEEE 1222-2004 IEEE Standard for All Dielectric Self-Supporting Fiber Optic Cable
IEEE Std 1222™-2004I E E E S t a n d a r d s 1222TM IEEE Standard for All-Dielectric Self-Supporting Fiber Optic Cable 3 Park Avenue, New York, NY 10016-5997, USA IEEE Power Engineering Society Sponsored by the Power System Communications Committee30 July 2004Print: SH95192PDF: SS95192Recognized as anAmerican National Standard (ANSI)The Institute of Electrical and Electronics Engineers, Inc.3 Park Avenue, New York, NY 10016-5997, USACopyright © 2004 by the Institute of Electrical and Electronics Engineers, Inc.All rights reserved. Published 30 July 2004. Printed in the United States of America.IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by the Institute of Electrical and Electronics Engineers, Incorporated.Print: ISBN 0-7381-3887-8SH95192PDF: ISBN 0-7381-3888-6SS95192No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.IEEE Std 1222™-2003IEEE Standard for All-Dielectric Self-Supporting Fiber Optic CableSponsorPower System Communications Committeeof theIEEE Power Engineering SocietyApproved 31 March 2004American National Standards InstituteApproved 10 December 2003IEEE-SA Standards BoardAbstract: Construction, mechanical, electrical, and optical performance, installation guidelines, ac-ceptance criteria, test requirements, environmental considerations, and accessories for an all-dielectric, nonmetallic, self-supporting fiber optic (ADSS) cable are covered in this standard. The ADSS cable is designed to be located primarily on overhead utility facilities. This standard provides both construction and performance requirements that ensure within the guidelines of the standard that the dielectric capabilities of the cable components and maintenance of optical fiber integrity and optical transmissions are proper. This standard may involve hazardous materials, operations, and equipment. It does not purport to address all of the safety issues associated with its use, and it is the responsibility of the user to establish appropriate safety and health practices and to determine the applicability of regulatory limitations prior to use.Keywords: aeolian vibration, aerial cables, all-dielectric self-supporting (ADSS), buffer, cable reels, cable safety, cable thermal aging, dielectric, distribution lines, electric fields, electrical stress,fiber optic cable, galloping, grounding, hardware, high voltage, optical ground wire (OPGW), plastic cable, sag and tension, self-supporting, sheave test, span length, string procedures, temperature cycle test, tracking, transmission lines, ultraviolet (UV) deteriorationIEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus development process, approved by the American National Standards Institute, which brings together volunteers representing varied view-points and interests to achieve the final product. Volunteers are not necessarily members of the Institute and serve without compensation. While the IEEE administers the process and establishes rules to promote fairness in the consensus develop-ment process, the IEEE does not independently evaluate, test, or verify the accuracy of any of the information contained in its standards.Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property or other dam-age, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance upon this, or any other IEEE Standard document.The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims any express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or that the use of the material contained herein is free from patent infringement. IEEE Standards documents are supplied “AS IS .”The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market,or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard. Every IEEE Standard is subjected to review at least every five years for revi-sion or reaffirmation. When a document is more than five years old and has not been reaffirmed, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.In publishing and making this document available, the IEEE is not suggesting or rendering professional or other services for, or on behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any other person or entity to another. Any person utilizing this, and any other IEEE Standards document, should rely upon the advice of a com-petent professional in determining the exercise of reasonable care in any given circumstances.Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason, IEEE and the members of its soci-eties and Standards Coordinating Committees are not able to provide an instant response to interpretation requests except in those cases where the matter has previously received formal consideration. At lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall make it clear that his or her views should be considered the personal views of that individual rather than the formal position, explanation, or interpretation of the IEEE.Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Comments on standards and requests for interpretations should be addressed to:Secretary, IEEE-SA Standards Board445 Hoes LaneP.O. Box 1331Piscataway, NJ 08855-1331USAAuthorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive,Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center.NOTE −Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken with respect to the exist-ence or validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying patents for which a license may be required by an IEEE standard or for conducting inquiries into the legal valid-ity or scope of those patents that are brought to its attention.Introduction(This introduction is not a part of IEEE Std 1222-2003, IEEE Standard for All-Dielectric Self-Supporting Fiber Optic Cable.)All-dielectric self-supporting (ADSS) fiber optic cables are being installed throughout the power utility industry. Because of the unique service environment and design of these cables, many new requirements are necessary to ensure proper design and application of these cables. In order to develop an industry-wide set of requirements and tests, the Fiber Optic Standards Working Group, under the direction of the Fiber Optic Subcommittee of the Communications Committee, brought together the expertise of key representatives from throughout the industry. These key people are from each manufacturer of ADSS cables and a cross sec-tion of the end users. All manufacturers and all known users were invited to participate in preparing this standard.The preparation of this standard occurred over a period of several years, and participation changed through-out that time as companies and individuals changed interests and positions. Effort was always made to include key individuals from each and every manufacturing concern, major user groups, and consulting firms. Membership and participation was open to everyone who had an interest in the standard, and all involvement was encouraged. This worldwide representation helps to ensure that this standard reflects the entire industry.As ADSS fiber optic cables are a new and changing technology, the working group is continuing to work on new revisions to this standard as the need arises.Notice to usersErrataErrata, if any, for this and all other standards can be accessed at the following URL: http:// /reading/ieee/updates/errata/index.html. Users are encouraged to check this URL for errata periodically.InterpretationsCurrent interpretations can be accessed at the following URL: /reading/ieee/interp/ index.html.PatentsAttention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying patents or patent applications for which a license may be required to implement an IEEE standard or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention. Copyright © 2004 IEEE. All rights reserved.iiiiv Copyright © 2004 IEEE. All rights reserved.ParticipantsDuring the preparation of this standard, the Fiber Optic Standards Working Group had the following membership:William A. Byrd, ChairRobert E. Bratton, Co-ChairThe following members of the individual balloting committee voted on this standard. Balloters may have voted for approval, disapproval, or abstention.When the IEEE-SA Standards Board approved this standard on 10 December 2003, it had the following membership:Don Wright, ChairHoward M. Frazier, Vice ChairJudith Gorman, Secretary*Member EmeritusAlso included are the following nonvoting IEEE-SA Standards Board liaisons:Satish K. Aggarwal, NRC RepresentativeRichard DeBlasio, DOE RepresentativeAlan Cookson, NIST RepresentativeSavoula AmanatidisIEEE Standards Managing EditorPhilip AdelizziHiroji AkasakaTom AldertonDave BouchardMark BoxerTerrence BurnsKurt DallasPaul DanielsWilliam DeWittGary DitroiaRobert EmersonTrey Fleck Denise Frey Henry Grad Jim Hartpence Claire Hatfield John Jones Tommy King Konrad Loebl John MacNair Andrew McDowell Tom Newhart Serge Pichot Craig Pon Jim Puzan Joe Renowden William Rich Tewfik Schehade John Smith Matt Soltis Dave Sunkel Alexander Torres Monty Tuominen Jan Wang Tim West Eric WhithamWole AkposeThomas BlairAl BonnymanStuart BoucheyMark BoxerRobert Bratton Terrence Burns William A. Byrd Manish Chaturvedi Ernest Duckworth Amir El-Sheikh Robert Emerson Denise Frey Jerry Goerz Brian G. Herbst Edward Horgan Mihai Ioan David JacksonPi-Cheng LawH. Stephen BergerJoe BruderBob DavisRichard DeBlasioJulian Forster*Toshio FukudaArnold M. GreenspanRaymond Hapeman Donald M. Heirman Laura Hitchcock Richard H. Hulett Anant Jain Lowell G. Johnson Joseph L. Koepfinger*Tom McGean Steve Mills Daleep C. Mohla William J. Moylan Paul Nikolich Gary Robinson Malcolm V. Thaden Geoffrey O. Thompson Doug Topping Howard L. WolfmanContents1.Overview (1)1.1Scope (1)2.ADSS cable and components (1)2.1Description (1)2.2Support systems (1)2.3Fiber optic cable core (2)2.4Optical fibers (3)2.5Buffer construction (3)2.6Color coding (3)2.7Jackets (3)3.Test requirements (4)3.1Cable tests (4)3.2Fiber tests (7)4.Test methods (10)4.1Cable tests (10)4.2Fiber tests (14)5.Sag and tension list (16)6.Field acceptance testing (16)6.1Fiber continuity (17)6.2Attenuation (17)6.3Fiber length (17)7.Installation recommendations (17)7.1Installation procedure for ADSS (17)7.2Electric field strength (17)7.3Span lengths (17)7.4Sag and tension (18)7.5Stringing sheaves (18)7.6Maximum stringing tension (18)7.7Handling (18)7.8Hardware and accessories (18)7.9Electrical stress (18)Copyright © 2004 IEEE. All rights reserved.v8.Cable marking and packaging requirements (19)8.1Reels (19)8.2Cable end requirements (19)8.3Cable length tolerance (19)8.4Certified test data (19)8.5Reel tag (20)8.6Cable marking (20)8.7Cable remarking (20)8.8Identification marking (20)8.9SOCC (21)Annex A (informative) Electrical test (24)Annex B (informative) Aeolian vibration test (26)Annex C (informative) Galloping test (28)Annex D (informative) Sheave test (ADSS) (30)Annex E (informative) Temperature cycle test (32)Annex F (informative) Cable thermal aging test (33)Annex G (informative) Bibliography (34)vi Copyright © 2004 IEEE. All rights reserved.IEEE Standard for All-DielectricSelf-Supporting Fiber Optic Cable1. Overview1.1 ScopeThis standard covers the construction, mechanical, electrical, and optical performance, installation guidelines, acceptance criteria, test requirements, environmental considerations, and accessories for an all-dielectric, nonmetallic, self-supporting fiber optic (ADSS) cable. The ADSS cable is designed to be located primarily on overhead utility facilities.The standard provides both construction and performance requirements that ensure within the guidelines of the standard that the dielectric capabilities of the cable components and maintenance of optical fiber integ-rity and optical transmissions are proper.This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety issues associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and to determine the applicability of regulatory limitations prior to use.2. ADSS cable and components2.1 DescriptionThe ADSS cable shall consist of coated glass optical fibers contained in a protective dielectric fiber optic unit surrounded by or attached to suitable dielectric strength members and jackets. The cable shall not con-tain metallic components. The cable shall be designed to meet the design requirements of the optical cable under all installation conditions, operating temperatures, and environmental loading.2.2 Support systemsa)ADSS cable shall contain support systems that are integral to the cable. The purpose of the supportsystem is to ensure that the cable meets the optical requirements under all specified installation con-ditions, operating temperatures, and environmental loading for its design life. This standard excludes any “lashed” type of cables.Copyright © 2004 IEEE. All rights reserved.1IEEEStd 1222-2003IEEE STANDARD FOR ALL-DIELECTRICb)The basic annular construction may have aramid or other dielectric strands or a channeled dielectricrod as a support structure. In addition, other cable elements, such as central members, may be load bearing.c)Figure-8 constructions may have a dielectric messenger and a fiber optic unit, both of which share acommon outer jacket. In addition, other cable elements, such as central members, may be load bearing.d)Helically stranded cable systems may consist of a dielectric optical cable prestranded around adielectric messenger.e)The design load of the cable shall be specified so that support hardware can be manufactured to per-form under all environmental loading conditions. For zero fiber strain cable designs, the design load is defined as the load at which the optical fibers begin to elongate. For other cable designs, the design load is defined as the load at which the measured fiber strain reaches a predetermined level.f)Other designs previously not described are not excluded from this specification.2.3 Fiber optic cable coreThe fiber optic cable core shall be made up of coated glass optical fibers housed to protect the fibers from mechanical, environmental, and electrical stresses. Materials used within the core shall be compatible with one another, shall not degrade under the electrical stresses to which they may be exposed, and shall not evolve hydrogen sufficient to degrade optical performance of fibers within the cable.2.3.1 Fiber strain allowanceThe cable core shall be designed such that fiber strain does not exceed the limit allowed by the cable manu-facturer under the operational design limits of the cable. Maximum allowable fiber strain will generally be a function of the proof test level and strength and fatigue parameters of the coated glass fiber.2.3.2 Central structural elementIf a central structural element is necessary, it shall be of reinforced plastic, epoxiglass, or other dielectric material. If required, this element shall provide the necessary tensile strength to limit axial stress on the fibers and minimize fiber buckling due to cable contraction at low temperatures.2.3.3 Buffer tube filling compoundLoose buffer tubes shall be filled with a suitable compound compatible with the tubing material, fiber coat-ing, and coloring to protect the optical fibers and prevent moisture ingress.2.3.4 Cable core filling/flooding compoundThe design of the cable may include a suitable filling/flooding compound in the interstices to prohibit water migration along the fiber optic cable core. The filling compound shall be compatible with all components with which it may come in contact.2.3.5 Binder/tapeA binder yarn(s) and/or a layer(s) of overlapping nonhygroscopic tape(s) may be used to hold the cable core elements in place during application of the jacket.2Copyright © 2004 IEEE. All rights reserved.IEEE SELF-SUPPORTING FIBER OPTIC CABLE Std 1222-20032.3.6 Inner jacketA protective inner jacket or jackets of a suitable material may be applied over the fiber optic cable core, iso-lating the cable core from any external strength elements and the cable outer jacket.2.4 Optical fibersSingle-mode fibers, dispersion-unshifted, dispersion-shifted, or nonzero dispersion-shifted, and multimode fibers with 50/125 mm or 62.5/125 mm core/clad diameters are considered in this standard. The core and the cladding shall consist of glass that is predominantly silica (SiO2). The coating, usually made from one or more plastic materials or compositions, shall be provided to protect the fiber during manufacture, handling, and use.2.5 Buffer constructionThe individually coated optical fiber(s) or fiber ribbon(s) may be surrounded by a buffer for protection from physical damage during fabrication, installation, and performance of the ADSS. Loose buffer or tight buffer construction are two types of protection that may be used to isolate the fibers. The fiber coating and buffer shall be strippable for splicing and termination.2.5.1 Loose bufferLoose buffer construction shall consist of a tube or channel that surrounds each fiber or fiber group. The inside of the tube or channel shall be filled with a filling compound.2.5.2 Tight buffer constructionTight buffer construction shall consist of a suitable material that comes in contact with the coated fiber. 2.6 Color codingColor coding is essential for identifying individual optical fibers and groups of optical fibers. The colors shall be in accordance with TIA/EIA 598-A-1995 [B43].12.6.1 Color performanceThe original color coding system shall be discernible and permanent, in accordance with EIA359-A-1985[B3], throughout the design life of the cable, when cleaned and prepared per manufacturer’s recommendations.2.7 JacketsThe outer jacket shall be designed to house and protect the inner elements of the cable from damage due to moisture, sunlight, environmental, thermal, mechanical, and electrical stresses.a)The jacket material shall be dielectric, non-nutrient to fungus, and meet the requirements of3.1.1.13. The jacket material may consist of a polyethylene that shall contain carbon black and anantioxidant.b)The jacket shall be extruded over the underlying element and shall be of uniform diameter to prop-erly fit support hardware. The extruded surface shall be smooth for minimal ice buildup.1The numbers in brackets correspond to those of the bibliography in Annex G.Copyright © 2004 IEEE. All rights reserved.3Std 1222-2003IEEE STANDARD FOR ALL-DIELECTRICc)The cable jacket shall be suitable for application in electrical fields as defined in this clause anddemonstrated in 3.1.1.3.Class A: Where the level of electrical stress on the jacket does not exceed 12 kV spacepotential.Class B: Where the level of electrical stress on the jacket may exceed 12 kV space potential. NOTE—See 7.9 for additional deployment details.23. Test requirementsEach requirement in this clause is complementary to the corresponding paragraph in Clause4 that describesa performance verification or test procedure.3.1 Cable tests3.1.1 Design testsAn ADSS cable shall successfully pass the following design tests. However, design tests may be waived at the option of the user if an ADSS cable of identical design has been previously tested to demonstrate the capability of the manufacturer to furnish cable with the desired performance characteristics.3.1.1.1 Water blocking testA water block test for cable shall be performed in accordance with 4.1.1.1. No water shall leak through the open end of the 1 m sample. If the first sample fails, one additional 1 m sample, taken from a section of cable adjacent to the first sample, may be tested for acceptance.3.1.1.2 Seepage of filling/flooding compoundFor filled/flooded fiber optic cable, a seepage of filling/flooding compound test shall be performed in accor-dance with 4.1.1.2. The filling and flooding compound shall not flow (drip or leak) at 65 o C.3.1.1.3 Electrical testsElectrical tests shall be performed for Class B cables in accordance with 4.1.1.3. Tracking on the outside of the sheath resulting in erosion at any point that exceeds more than 50% of the wall thickness shall constitutea failure.3.1.1.4 Aeolian vibration testAn aeolian vibration test shall be carried out in accordance with 4.1.1.4. Any damage that will affect the mechanical performance of the cable or causes permanent or temporary increase in optical attenuation greater than 1.0 dB/km of the tested fibers at 1550 nm for single-mode fibers and at 1300 nm for multimode fibers shall constitute failure.2Notes in text, tables, and figures are given for information only and do not contain requirements needed to implement the standard.3.1.1.5 Galloping testA galloping test shall be carried out in accordance with 4.1.1.5. Any damage that will affect the mechanical performance of the cable or causes permanent or temporary increase in optical attenuation greater than 1.0dB/km of the tested fibers at 1550 nm for single-mode fibers and at 1300 nm for multimode fibers shall constitute failure.3.1.1.6 Sheave testA sheave test shall be carried out in accordance with 4.1.1.6. Any significant damage to the ADSS cable shall constitute failure. A permanent increase in optical attenuation greater than 1.0 dB/km of the tested fibers at 1550nm for single-mode fibers and at 1300 nm for multimode fibers shall constitute failure.Or successful completion of the following three tests may be a substitute for the sheave test:a)Tensile strength of a cable: The maximum increase in attenuation shall not be greater than 0.10 dBfor single-mode and 0.20 dB for multimode fibers when the cable is subjected to the maximum cable rated tensile load.b)Cable twist: The cable shall be capable of withstanding mechanical twisting without experiencingan average increase in attenuation greater than 0.10 dB for single-mode and 0.20 dB for multimode fibers.c)Cable cyclic flexing: The cable sample shall be capable of withstanding mechanical flexing withoutexperiencing an average increase in attenuation greater than 0.10 dB for single-mode and 0.20 dB for multimode fibers.3.1.1.7 Crush test and impact test3.1.1.7.1 Crush testA crush test shall be performed in accordance with 4.1.1.7.1. A permanent or temporary increase in optical attenuation value greater than 0.2 dB change in sample at 1550 nm for single-mode fibers and 0.4 dB at 1300nm for multimode fibers shall constitute failure.3.1.1.7.2 Impact testAn impact test shall be performed in accordance with 4.1.1.7.2. A permanent increase in optical attenuation value greater than 0.2 dB change in sample at 1550 nm for single-mode and 0.4 dB at 1300 nm for multi-mode fibers shall constitute failure.3.1.1.8 Creep testA creep test shall be carried out in accordance with 4.1.1.8. Values shall correspond with the manufacturer’s recommendations.3.1.1.9 Stress/strain testA stress/strain test shall be carried out in accordance with 4.1.1.9. The maximum rated cable load (MRCL), maximum rated cable strain (MRCS), and maximum axial fiber strain specified by the manufacturer for their cable design shall be verified. Any visual damage to the cable or permanent or temporary increase in optical attenuation greater than 0.10 dB at 1550 nm for single-mode fiber and 0.20 dB at 1300 nm for multimode fibers shall constitute failure.Std 1222-2003IEEE STANDARD FOR ALL-DIELECTRIC 3.1.1.10 Cable cutoff wavelength (single-mode fiber)The cutoff wavelength of the cabled fiber, λcc, shall be less than 1260 nm.3.1.1.11 Temperature cycle testOptical cables shall maintain mechanical and optical integrity when exposed to the following temperature extremes: –40 o C to +65 o C.The change in attenuation at extreme operational temperatures for single-mode fibers shall not be greater than 0.20 dB/km, with 80% of the measured values no greater than 0.10 dB/km. For single-mode fibers, the attenuation change measurements shall be made at 1550 nm.For multimode fibers, the change shall not be greater than 0.50 dB/km, with 80% of the measured values no greater than 0.25 dB/km. The multimode fiber measurements shall be made at 1300 nm unless otherwise specified.A temperature cycle test shall be performed in accordance with 4.1.1.11.3.1.1.12 Cable aging testThe cable aging test shall be a continuation of the temperature cycle test.The change in attenuation from the original values observed before the start of the temperature cycle test shall not be greater than 0.40 dB/km, with 80% of the measured values no greater than 0.20 dB/km for sin-gle-mode fibers.For multimode fibers, the change in attenuation shall not be greater than 1.00 dB/km, with 80% of the mea-sured values no greater than 0.50 dB/km.There shall be no discernible difference between the jacket identification and length marking colors of the aged sample relative to those of an unaged sample of the same cable. The fiber coating color(s) and unit/bun-dle identifier color(s) shall be in accordance with TIA/EIA 598-A-1992 [B43].A cable aging test shall be performed in accordance with 4.1.1.12.3.1.1.13 Ultraviolet (UV) resistance testThe cable and jacket system is expected to perform satisfactorily in the user-specified environment into which the cable is being placed into service. Because of the numerous possible environmental locations available, it is the user’s and supplier’s joint responsibility to provide the particular performance requirements of each installation location. These performance criteria are for nonsevere environments. The IEC 60068-2-1[B12] performance standards should be used to define particular environmental testing requirements for each unique location.The cable jacket shall meet the following requirements:Where carbon black is used as a UV damage inhibitor, the cable shall have a minimum absorption coeffi-cient of 0.32 per meter.Where the other cable UV blocking systems are being employed, the cable shalla)Meet the equivalent UV performance of carbon black at 0.32 per meterb)Meet the performance requirements as stated in 4.1.1.13 for IEC 60068-2-1 [B12] testing。
核磁共振扫描仪寿命
核磁共振扫描仪寿命密级:保密期限:硕士研究生学位论文题目:核磁共振扫描仪寿命检测系统的设计和实现学号:076664姓名:寇羽欣专业:检测技术与自动化装置导师:周慧玲学院:自动化2020 年1 月10 日独创性(或创新性)声明本人声明所呈交的论文是本人在导师指导下进行的研究工作及取得的研究成果。
尽我所知,除了文中特别加以标注和致谢中所罗列的内容以外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得北京邮电大学或其他教育机构的学位或证书而使用过的材料。
与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
申请学位论文与资料若有不实之处,本人承担一切相关责任。
本人签名:日期:关于论文使用授权的说明学位论文完全了解北京邮电大学有关保留和使用学位论文的规定,即:研究生在校攻读学位期间论文工作的知识产权单位属北京邮电大学。
学校有权保留并向国家有关部门或机构送交论文的复印件和磁盘,允许学位论文被查阅和借阅;学校可以公布学位论文的全部或部分内容,可以允许采用影印、缩印或其它复制手段保存、汇编学位论文。
(保密的学位论文在解密后遵守此规定)保密论文注释:本学位论文属于保密在年解密后适用本授权书。
非保密论文注释:本学位论文不属于保密范围,适用本授权书。
本人签名:日期:导师签名:日期:核磁共振扫描仪寿命检测系统的设计和实现摘要本课题以某医疗集团的核磁共振扫描仪床体为研究对象,设计并实现了核磁共振扫描仪床体运动控制与寿命检测系统。
论文根据系统的设计要求,详细阐述了如何设计软硬件以实现寿命检测系统的具体功能。
本寿命检测系统以核磁共振扫描仪的床体为控制对象,多模式控制床体运动并检测床体寿命。
系统选用直流伺服电机驱动床体纵向运动,而选用直流步进电机驱动床体横向运动,结合光电编码盘等硬件设备,精确控制床体的纵向横向运动,并可实时反馈床体的精确位移。
而在床体控制方式的设置上,设置了现场手动控制和主机远程控制两种方式。
IEEE变压器标准(IEEE Transformer standards)
油浸电力变压器局部放电所发出声音探测的试用指南
(Trial-use guide for the detection of acoustic emissions from partial discharges in oil-immersed power transformers)
IEEE C 57.12.80-2002
电力和配电变压器的术语
(Terminology for power and distribution transformers)
IEEE C 57.12.90-1999
油浸式配电、电力和调压变压器的试验规程
(Test code for liquid-immersed distribution, power, and regula来自ing transformers)
IEEE C 57.129-1999
油浸HVDC转向变压器试验用标准一般要求和试验规程
(Trial-use standard general requirements and test code for oil-immersed HVDC converter transformers)
IEEE C 57.13-1993
IEEE 1388-2000
变压器试验数据的电子报告
(Electronic reporting of transformer test data)
IEEE 1538-2000
液体填充变压器的最大绕组温度升高的测定指南
(Guide for determination of maximum winding temperature rise in liquid-filled transformers)
IEEE 112-2004-chs
112TM IEEE Std 112™-2004(Revision of IEEE Std 112-1996)IEEE Standard Test Procedure for Polyphase Induction Motors and GeneratorsIEEE Power Engineering SocietySponsored by theElectric Machinery Committee3 Park Avenue, New York, NY 10016-5997, USA4 November 2004 Print: SH95211PDF: SS95211目录1. 概要 (1)1.1 范围 (1)1.2 目的 (1)2. 参考文件 (1)3. 通用 (1)3.1 试验电源 (1)3.2 测试类型....... (2)3.3 标准温度....................... .. (3)3.4 本标准的用途 (3)3.5 注意 (4)4. 测量............... . (4)4.1 电测 (4)4.2 电阻 (5)4.3 机械 (5)4.4 温度 (6)4.5 程序 (7)4.6 安全 (7)5. 电机损耗和损耗的测试............... (7)5.1 损耗类型 (7)5.2 定子铜耗 (7)5.3 转子铜耗 (8)5.4 冷态绕阻电阻 (9)5.5 空载试验 (9)5.6 负载试验 (10)5.7 杂散损耗 (12)5.8 热试验 (15)5.9 等效电路 (19)5.10 电刷接触损耗 (25)5.11 功率因素 (25)6. 效率决定 (26)6.1 一般性说明 (26)6.2 效率测试方法 (27)6.3 Efficiency Test Method A—Input-output (27)6.4 Test Method B—Input-output with loss segregation (28)6.5 Test Method B1—Input-output with loss segregation and assumed temperature (31)6.6 Test Method C–Duplicate machines (33)6.7 Test Method E or E1—Electrical power measurement with loss segregation (37)6.8 Test Method F or F1—Equivalent circuit (39)6.9 Test Method C/F, E/F, or E1/F1—Equivalent circuit calibrated with one load point (40)7. 其它性能试验 (41)7.1 转子电压 (41)7.2 堵转试验 (41)7.3 速度-转矩和速度-电流曲线试验 (42)8. 其它试验 (44)8.1 绝缘电阻 ................................................................................................................. . (44)8.2 耐压试验 (45)8.3 轴电流和电压 (45)8.4 轴承绝缘电阻 (46)8.5 噪音 (47)8.6 平衡与振动 (47)8.7 超速 (47)9. 表格 (47)9.1 Test forms and support information (47)9.2 Form A–Method A (59)9.3 Form A2–Method A calculations (60)9.4 Form B–Method B (61)9.5 Form B2–Method B calculations (62)9.6 Form B1–Method B1 (63)9.7 Form B1-2–Method B1 calculations (64)9.8 Form C–Method C (65)9.9 Form C2–Method C Calculations (67)9.10 Form E–Method E-E1 (69)9.11 Form E2–Method E-E1 calculations (70)9.12 Form F–Methods F, F1, C/F, E/F, and E1/F1 (71)9.13 Form F2–Methods F, F1, C/F, E/F, and E1/F1 calculations (72)9.14 Test and equivalent circuit results (73)Annex A (informative) Bibliography (74)Annex B (informative) Typical report of test form for routine tests (75)Annex C (informative) Typical report of test form (76)Annex D (informative) Units of measure (77)IEEE 测试程序标准:多相感应电动机和发电机1. 概要1.1 范围多相感应电动机和发电机的测试逐渐被普遍应用和广泛接受, 本标准为这些测试的执行和描述提供了指导。
中国电磁兼容认证标准目录体系-与非网
家用电器和工具的抗扰度要求
Immunity requirements tor household
appliances and tools
EN5513一4,1995
警报系统的抗扰度要求
Immunity requirements Ior alarm systems
[77(See)28]
中国电磁兼容认证标准目录体系
基础类
序号
标准号
标准名
1
GB/T 4365-1995
电磁兼容术语
2
GB/T 6113—1995
无线电干扰和抗扰度测量设备规范
3
GB 3907-83*
工业无线电干扰基本测量方法
4
GB 4859—84*
电气设备的抗干扰特性基本测量方法
5
GB/T 15658-1995
城市无线电噪声测量方法
GB 13616一92
微波接力站电磁环境保护要求
11
GB 13617—92
短波无线电收信台(站)电磁环境要求
12
GB 13618-92
对空情报雷达站电磁环境防护要求
13
GB/T 1362O-92
卫星通信地球站与地面微波站之间协调区的确定和干扰计算方法
14
GB/T13619—1992
微波接力通信系统干扰计算方法
5
GB 6833.3-87*
电子测量仪器电磁兼容性试验规范 静电放电敏感度试验
6
GB 6833.4—87*
电子测量仪器电磁兼容性试验规范 电源瞬态敏感度试验
7
GB 6833.5-87*
电子测量仪器电磁兼容性试验规范 辐射敏感度试验
8
IEEE 软件工程标准
IEEE/EIA 12207.2-1997 (Apr 1998)
IEEE Std 14143.1-2000 (Jan 30)
IEEE Standard - Adoption of International Standard ISO/IEC 14102: 1995 - Information Technology - Guideline for the evaluation and selection o IEEE Standard - Adoption of International Standard ISO/IEC 12119: 1994(E) Information Technology - Software packages - Quality requiremen IEEE Recommended Practice for Architectural Description of Software Intensive Systems IEEE Guide - Adoption of PMI Standard - A Guide to the Project Management Body of Knowledge EIA/IEEE Interim Standard for Information Technology -- Software Life Cycle Processes -- Software Development: Acquirer-Supplier Agreement IEEE Standard for Information Technology—Software Life Cycle Processes—Reuse Processes IEEE Standard for Software Life Cycle Processes- Risk Management IEEE Recommended Practice for Software Nomenclature - Software Naming Conventions for Application Software IEEE Recommended Practice for Establishing and Managing Software Development Efforts Using Agile Methods IEEE Recommended Practice for Internet Practices -- Web Page Engineering -Intranet/Extranet Applications Industry Implementation of International Standard ISO/IEC 12207:1995 Standard for Information Technology-Software life cycle processes – So Industry Implementation of International Standard ISO/IEC 12207:1995 Standard for Information Technology-Software life cycle processes – So Industry Implementation of International Standard ISO/IEC 12207:1995 Standard for Information Technology-Software life cycle processes – So Implementation Note for IEEE Adoption of
线路国外标准初步筛选清单及初步分工(待协调)-中国电力规划设计协会
序号
标准名称
标准文号
20
架空输电线路覆冰观测技术要求
新编
附件 4: 变电电气、土建、通信部分
序号 标准国别 标准文号 标准名称(英文) 标准名称(中文) 专业分类
1 2 3
美国标准 美国标准
IEEE 998-1996 IEEE Std. 80-2000
IEEE Guide for Direct Lightning Stroke Shielding of Substation Guide for safety in AC substation grounding Recommended Practice for Earthing of Industrial and Commercial Power Systems Guide For Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System Neutral Grounding Devices IEEE Guide for Cable Connections for Gas-Insulated Substations IEEE Guide for the Application of Neutral Grounding in Electrical Utility Systems,Part I-Introduction IEEE Guide for the Application of Neutral Grounding in Electrical Utility
Physical and Electronic Security Guide for design of substation rigid-bus structures :Corrections Guide for design of substation rigid-bus structures Guide for Design of Substation Rigid-Bus Guide for bus design in air insulated substations Recommended Practice for Seismic Design of Substations Specifications for gas-insulated, electric power substation equipment Guide to Specifications for Gas-Insulated Substation Equipment Power Systems – Preferred Voltage Ratings for Alternating-Current Electrical Systems and Equipment Operating at Voltages above 230 kV Nominal Standard for interrupter switches for alternating current, rated above 1000 V AC high-voltage circuit switchers rated 15.5 kV through Series capacitor banks in power system IEEE Standard for Calculatingthe Current-Temperature of Bare Overhead
国内外现行电磁辐射防护标准介绍与比较_刘宝华
-
-
10
150 /fG
-
10
25.24 /fG0.476
-
(90fG -7000)/200
5048 /[ (9fG -700)fG0.476 ]
注 :fM 表示频率 f的单位为 MHz, fG表示频率 f的单位为 GHz。
2.2 ICNIRP导则 ICNIRP导则将被辐射群体划分为职业群
体和公众群体 。 职业群体是指工作在可控制的 辐射区内 , 且已经受过训练能采取相应的措施 去防止潜在的辐射危害的群体 , 这种群体受辐 射的持续 时间可以通过限制其每天的工作时 间 、变换工种和限制连续操作时间来控制 ;公众 群体是指具有不同年龄和健康状况的人 , 公众 群体的大部分成员不能意识到辐射的发生 , 也 没有受过避免辐射的训练 。 ICNIRP导则采用
(2, 9400 000/fM3.336)
fM2 /0.3 30 30
6
6 0.0636 fM1.337
100 ~ 400
27.5
0.729
2
30
30
400 ~ 2000
-
-
fM /200
30
2000 ~ 5000
-
-
10
30
5000 ~ 30 000
-
30 000 ~ 100 000
-
100 000 ~ 300 000
61.4
16.3/fM
(10, 100 000/fM2)
6
100 ~ 300
61.4
0.163
10
6
300 ~ 3000
-
-
fM /30
6
3000 ~ 30 000