《反比例函数的图象和性质》教学设计

合集下载

人教版九年级数学下册:26.1.2《反比例函数的图象和性质》教案2

人教版九年级数学下册:26.1.2《反比例函数的图象和性质》教案2

人教版九年级数学下册:26.1.2《反比例函数的图象和性质》教案2一. 教材分析《反比例函数的图象和性质》是人教版九年级数学下册第26章第1节的内容。

本节课主要介绍了反比例函数的图象和性质,是学生在学习了正比例函数和一次函数的基础上进行学习的。

通过本节课的学习,使学生能理解反比例函数的概念,会绘制反比例函数的图象,掌握反比例函数的性质,并能应用于实际问题中。

二. 学情分析学生在学习本节课之前,已经学习了正比例函数和一次函数的相关知识,对函数的概念、图象和性质有一定的了解。

但反比例函数的概念和性质与前两者存在较大差异,需要学生在已有的知识基础上进行迁移和拓展。

同时,学生需要理解反比例函数图象的特点,如双曲线、渐近线等,这对学生的空间想象能力有一定要求。

三. 教学目标1.了解反比例函数的概念,掌握反比例函数的性质。

2.学会绘制反比例函数的图象,并能分析反比例函数图象的特点。

3.能将反比例函数应用于实际问题中,提高解决问题的能力。

4.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.反比例函数的概念和性质。

2.反比例函数图象的绘制和分析。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法。

通过设置问题引导学生思考,分析案例使学生理解反比例函数的应用,小组合作讨论促进学生交流和拓展思维。

六. 教学准备1.准备反比例函数的相关案例和问题。

2.准备多媒体教学设备,如投影仪、电脑等。

3.准备反比例函数图象的素材,如图片、图表等。

七. 教学过程导入(5分钟)教师通过展示一些实际问题,如购物时商品的单价和数量的关系,引出反比例函数的概念。

让学生思考并讨论这些问题,引导学生发现其中的规律。

呈现(10分钟)教师通过多媒体展示反比例函数的图象和性质,引导学生观察和分析。

同时,教师给出反比例函数的定义,并解释反比例函数的性质。

操练(10分钟)教师提出一些有关反比例函数的问题,让学生独立解答。

教师选取部分学生的解答进行讲解和分析,引导学生掌握反比例函数的性质。

反比例函数的图像和性质教案

反比例函数的图像和性质教案

17.1.2反比例函数的图象和性质新课标人教版八年级下册第十七章《反比例函数》第一节第二课时。

教学过程说明六评价与反思:本节课主要通过活动引路,提出问题,让学生经历画图、观察、猜想、思考等数学活动,向学生渗透数形结合的思想方法,让学生初步认识具体的反比例函数图象的特征,体会事物是有规律地变化着的观点。

用科学的方法解决问题,培养学生科学的态度与精神。

本节课的教学设计力求在每一个环节上都能以学生为主体,以围绕着增加学生学习的兴趣,降低思维难度,减少学生对函数学习的畏惧心理,强化主动的学习动机,为学生自信的心理品质的发展和学习的主动性培养提供良好的心理环境为出发点,让学生自己完成知识的探索,体会他们的探索是有意义、有科学性、有创造性的。

本设计有以下几个突出特点:1、.敢于使用知识的负迁移。

在教学中普遍认为,知识的负迁移对学生起到负面的作用,因此,在教学中都想方设法避开这些错误的负面,一旦出现也是围追堵截,消灭在萌芽状态。

而实际上,巧妙地利用负面资源,变废为宝,不失良策,甚至能起到事半功倍的效果。

2、提供足够的感性材料,为理性认识蓄足底蕴。

为了更好地发现反比例函数的性质,组织了三次画图活动,在画图、评析、纠正、调整等活动中反复历练了画图的方法,学生有了丰富的感性素材,可谓“厚积薄发”。

3、教师、学生的合理定位。

教师始终把自己放在了策划者、引导者、促进者的位置,注重了学法的指导,“授人以鱼,不如授人以渔”,方法是高于知识的,它能驾驭知识。

同时把学生推向前台,使学生以研究者和探索者的身份穿梭于课堂,充分突出了主体的地位,角色的更新提升了学生的参与意识,在成功中获得自信,可谓德智双赢。

板书设计:17.1.2反比例函数的图象和性质画图象画y=6x-1的图象(1)列表(2)描点(3)连线性质:1、形状2、位置3、增减性体会练习。

初中数学《反比例函数的图象和性质》教学设计

初中数学《反比例函数的图象和性质》教学设计

初中数学《反比例函数的图象和性质》教学设计一. 教材分析《反比例函数的图象和性质》是初中数学的重要内容,主要让学生了解反比例函数的图象和性质,理解反比例函数在实际生活中的应用。

通过学习,学生能够掌握反比例函数的定义,了解反比例函数的图象特点,理解反比例函数的性质,并能运用反比例函数解决实际问题。

二. 学情分析学生在学习《反比例函数的图象和性质》之前,已经学习了函数的概念,比例函数和一次函数的图象和性质。

但学生在学习过程中可能对反比例函数的概念和性质理解不深,对反比例函数的图象特点把握不准。

因此,在教学过程中,教师要注重引导学生理解反比例函数的概念,通过实际例子让学生感受反比例函数的图象和性质。

三. 教学目标1.了解反比例函数的定义,理解反比例函数的图象和性质。

2.能够运用反比例函数解决实际问题。

3.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.反比例函数的定义2.反比例函数的图象和性质3.反比例函数在实际生活中的应用五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等,引导学生通过自主学习、合作探讨,理解反比例函数的图象和性质,提高学生的数学思维能力和解决问题的能力。

六. 教学准备1.PPT课件2.教学案例和实际问题3.反比例函数的图象和性质的相关资料七. 教学过程1.导入(5分钟)通过一个实际问题引入反比例函数的概念,如“一辆汽车以60km/h的速度行驶,行驶1小时,行驶的路程是多少?”让学生思考并回答问题,引导学生认识到反比例函数在实际生活中的应用。

2.呈现(15分钟)利用PPT课件,展示反比例函数的图象和性质,让学生直观地感受反比例函数的特点。

同时,教师讲解反比例函数的定义,解释反比例函数的图象和性质。

3.操练(15分钟)让学生通过自主学习,理解并掌握反比例函数的定义,然后进行一些相关的练习题,让学生在实际操作中加深对反比例函数的理解。

4.巩固(10分钟)通过一些实际问题,让学生运用反比例函数解决问题,巩固学生对反比例函数的理解。

反比例函数的图像及性质

反比例函数的图像及性质

反比例函数的图像及性质人教版数学九年级下册《反比例函数的图象和性质》教学设计一.内容和内容解析1.内容反比例函数的图象和性质2.内容解析本节课是人教版数学九年级下册第二十六章第一节反比例函数的内容,本节分为三课时,这是第二课时的新授课.是在学生已经经历了一次函数、二次函数的研究过程的基础上,在得到反比例函数的概念之后,进一步研究反比例函数的图象,并通过图象的研究和分析,来确定反比例函数的性质.教学过程中首先引导学生用“描点法”画出反比例函数的图象,使反比例函数的解析式表示的函数关系直观化;然后分类观察图象,体现“分类”的思想,首先研究k>0的情况,从特殊k=4,k=6,k=8,k=12的图象观察,进而推广到一般,得出k>0时的反比例函数的图象的特征及反比例函数的特性,体现“从特殊到一般”的思想,然后教师再引导学生从解析式的角度分析图象特征,在整个教学过程中始终贯穿由“数”到“形”再由“形”到“数”的相互转化,让学生体会“数形结合”的数学思想和反比例函数的本质属性所在,对于k<0的研究,完全类比k>0的研究过程,体现“类比”的思想.反比例函数是初中阶段要求学习的三种函数中的最后一种,是继一次函数学习之后,知识的一次扩展,图象由“一条”到“两支”,形态由“直”到“曲”,由“连续”到“间断”,由与坐标轴“相交”到“渐近”,是学习函数的一般方法和规律的再次强化,也是后续构建反比例函数模型的基础,起着承上启下的作用.本节课学生的学习重点是:用描点法画反比例函数的图象,并根据图象理解反比例函数的性质.学习难点是:对x≠0的理解及图象特征的分析.二.目标和目标解析1.目标(1)能画出反比例函数的图象,探索并理解图象的变化情况.(2)在画出反比例函数的图象,并探究其性质的过程中,体会“类比”、“分类讨论”、“从特殊到一般”以及“数形结合”的数学思想.(3)通过观察反比例函数的图象、探究反比例函数的性质,发展探究、归纳及概括的能力.2.目标解析(1)首先运用描点法画出反比例函数的图象,然后根据图象,通过观察、分析、归纳得出反比例函数的性质,因此正确画出反比例函数图象是前提条件,虽然学生之前用描点法经历过画一次函数、二次函数图象的经验,但是由于反比例函数图象结构复杂,具有自身的特殊性,因此,能用“描点法”画出反比例函数图象并根据图象探究其性质仍是本节课的目标.(2)类比正比例函数的研究方法,通过分类讨论的方式首先研究k>0的情况,在研究过程中从图象和解析式两个角度分析,体现了数形结合的思想,通过类比研究k<0的情况,同样体现从特殊到一般的数学思想.(3)在探究反比例函数的性质的过程中,教师利用几何画板给出一系列函数图象,通过对图象的观察、分析,利用数形结合的数学思想,归纳概括反比例函数的图像和性质,所以整个性质的探索过程发展了分析概括的能力.三.教学问题诊断分析学生已经学习了一次函数、二次函数的图象和性质,反比例函数的解析式,已具有描点法画函数图象的初步经验,但是由于反比例函数的图象结构复杂,具有自身的特殊性,因此在画反比函数的图象这个环节,可能遇到的问题有:1.在列表时没注意到自变量的取值范围是x≠0,或者对自变量x的取值只取正或只取负.2.由于列表时只取了有限的几个点,因此在连线时学生容易只把这几点连线,只画出图象的一部分,有明显端点,没有画出双曲线的延伸趋势.3.学生在画双曲线的延伸趋势时可能出现错误,这是因为学生仅仅是通过描点得出图象,并没有深入从解析式的角度分析问题,教师可以引导学生尝试分析理解.在学习一次函数、二次函数的时候,学生已经历过观察、分析图象的特征,概括函数性质的过程,对研究函数性质所用的探究方法也有一定的了解,因此,通过类比,结合反比例函数的图象和表达式探索性质,从使用的方法上不会存在障碍,但是双曲线的特殊性使学生在探究反比例函数增减性时可能会出现问题,教学中教师应该强调从“数”、“形”两方面统一分析.四.教学支持条件分析根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,利用几何画板,快速、准确的绘制反比例函数图象,另外通过动态的演示,观察相关数值的变化,研究图象的变化趋势,进而探索反比例函数的性质.五.教学过程分析(一)创设情境多媒体课件展示华罗庚先生的关于“数形结合”的一首词.设计意图:采用名人名言欣赏的方式进行情景引入,不仅调动了学生的积极性,同时又紧扣主题,为本节课的学习进行了方法上的准备.(二)知识链接1.已经学习了哪些函数?2.正比例函数y=kx(k≠0)的图象和性质是什么?3.反比例函数的定义是什么?4.描点法画图象的步骤是什么?师:了解了反比例函数的解析式,也就是从“数”的角度了解了反比例函数,那么对应的反比例函数的“形”的方面,也就是图象是什么呢?函数性质又是怎样的呢?设计意图:通过复习正比例函数的知识,为学习画反比例函数的图象奠定基础,同时提出问题,明确本节课的学习任务.(三)探究图象分以下5个环节完成.1.试一试:学生独立画出6y=的图象.x2.议一议:小组讨论所画作品,选出他们认为画的最好的作品.3.看一看:展示学生选出的作品,进行问题分析.然后教师示范正确画图过程.4.说一说:同桌互说一遍画图像时的注意事项,并修订已画图象.5.练一练:画出反比例函数6y=-的图象.x设计意图:首先让学生独立画图,充分暴露学生存在问题,关注画图的基本步骤及每个细节的处理,培养学生画图象的能力,通过再次画图,使学生及时巩固已获得的作图经验,并且为后面归纳性质增加感性认识.(四)探究性质探究1. 探究反比例函数6y x =和6y x=-的图象有什么共同特征以及不同点?学生活动:主要由学生观察发现,教师适时引导.共同特征:(1 )它们都由两条曲线组成.反比例函数的图象属于双曲线.(2)随着x 的不断增大(或减小),曲线越来越接近坐标轴.不同特点:(1)位置不同(2)增减性不同教师追问:这些不同特点是由什么因素决定的?生:k 的正负.设计意图:培养学生的观察能力,让学生体会分类的必要性.探究2.利用几何画板再准确作出k =4, k =8, k =12时的三个反比例函数图象.观察这一系列函数图象,思考下列问题:(1)图象形状是什么?(2)图象位于哪几个象限?(3)在每个象限内,y 随x 的变化如何变化?学生活动:先由学生独立思考,然后小组讨论交流,小组代表发言,其他同学补充或质疑.教师板书:形状:双曲线位置:一三象限增减性:在每个象限内,y随x的增大而减小教师追问(1):哪位同学能从解析式的角度解释第二个和第三个问题?教师设问(2):第三个问题,如果去掉在每个象限内这个条件,y 随x的变化情况还一致吗?为什么?学生活动:学生尝试解释,教师及时点拨,并利用几何画板直观演示.师:把刚才所研究的问题推广到一般,就得到了k >0时的函数图象和性质.设计意图:使学生经历由特殊到一般的过程,体验知识的产生形成过程;教师的追问引导学生从“数”、“形”两方面解决问题,让学生体会数形结合的思想.探究3.观察下列函数图象特征,归纳k=(k<0)性质.yx学生活动:学生发言,教师板书.形状:双曲线位置:二四象限增减性:在每个象限内,y随x的增大而增大设计意图:让学生自己去观察、类比、发现的方式获得知识,培养学生积极参与的意识和自主探索的能力.归纳: 反比例函数y =k x(k 为常数,k ≠0)的图象和性质.(1)反比例函数y=k x (k 为常数,k ≠0)的图象是双曲线.(2)当k >0时,双曲线的两支分别位于第一、三象限,在每个象限内,y ?值随x 值的增大而减小.(3)当k <0时,双曲线的两支分别位于第二、四象限,在每个象限内,y ?值随x 值的增大而增大.设计意图:培养学生的分类讨论意识和归纳概括能力.探究4.在同一坐标系中反比例函数6y x =与6y x =-的图象之间在位置上有什么对称关系?学生活动:学生观察发现,教师动画演示.师:同学们能再从解析式上分析一下它的对称关系吗?结论:当k 互为相反数时,对应的反比例函数图象既关于x 轴对称,也关于y 轴对称.设计意图:培养学生的观察能力及让学生感知反比例函数图象的对称性和数学美.(五)目标检测1.下列图象中,可以是反比例函数的图象的().2.若反比例函数的图象经过(-3,4)则此函数的图象应在().A .第一、三象限B .第一、二象限C .第二、四象限D .第三、四象限3.已知点A (-2,a )、B (-1,b ) 、C (3,c )都在反比例函数y =1x图象上,试比较a 、b 、c 的大小.解:把点A (-2,a )、B (-1,b )、C (3,c )分别带入1y x =中得:1a=-2,b =-1,13c = 所以b另解:因为k =1>0所以在每个象限内,y 随x 的增大而减小由图知,因为-2<-1<0,所以b 0所以b学生活动:前两题由学生讲解、第三题由学生板书展示.设计意图:通过三个题目巩固反比例函数图像和性质,渗透数形结合的思想方法.(六)课堂小结这节课你有什么收获?有什么疑惑?学生活动:学生发言交流自己的收获,其他同学补充.师:回顾反比例函数的学习过程,我们首先学习了反比例函数的解析式,以解析式为基础,运用数形结合的思想,画出了函数图象,进而研究函数的性质,体现了分类讨论的方法,这其实就是我们研究函数的一般方法.师:同学们,有关反比例函数的知识,经过我们的整理,形成了一颗知识树,像这样让知识体系化,是我们学习数学的一种很好的方法,如果对已每一个知识点,同学们都能进行这样的梳理,那么你就会收获一片知识的森林.设计意图:通过本环节,培养学生分类讨论的思想及归纳概括的能力,通过美丽的知识树,对学生进行了学习方法上的指导,给学生留下深刻印象. (七)分层作业A、习题26.1 第3题B、习题26.1 第8题课外延伸:探究反比例函数k=(k≠0)的图象关于直线y=x与y=-x的对yx称性.设计意图:根据分层教学和因材施教的原则,将作业分成A,B两类,让不同能力的学生在数学上都得到发展.课外延伸让学生带着问题走进课堂,再带着新的问题走出课堂.六、板书设计。

《反比例函数的图象和性质》教学设计

《反比例函数的图象和性质》教学设计

《反比例函数的图象和性质》教学设计反比例函数的图象和性质一、背景分析1.对教材的分析本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。

本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。

本节课前一课时是在具体情境中领会反比例函数的意义和概念。

函数的性质蕴涵于概念之中,对反比例函数性质的探索是对其内在规定性的的认识,也是对函数的概念的深化。

同时,本节课也是下一节课《反比例函数的应用》的基础,有了本节课的知识储备,便于学生利用函数的观点来处理问题和解释问题。

传统教材在内容和编写意图的比较:传统教材里反比例函数的内容仅有一节,新教材里反比例函数的内容增加至一章。

本节课中的作函数图象的要求在新旧教材中并不一样,旧教材对画图只是一带而过,而新教材中让学生反复作反比例函数的图象,为下一步性质的探索打下良好的基础。

因为在学生进行函数的列表、描点作图是活动中,就已经开始了对反比例函数性质的探索,而且通过对函数的三种表示方式的整和,逐步形成对函数概念的整体性认识。

在旧教材中对反比例函数性质只是简单观察以后,由老师讲解得到,但是在新教材中注重从操作、观察、概括和交流这些数学活动中得到性质结论,从而逐步提高从函数图象中获取信息的能力。

这也充分体现了重视获取知识过程体验的新课标的精神。

(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。

(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。

(3)难点:探索并掌握反比例函数的主要性质。

2、对学情的分析九年级学生在前面学习了一次函数之后,对函数有了一定的认识,虽然他们在小学已经接触了反比例,但都处于浅显的、肤浅的知识表面,这对于他们理解反比例函数的图象与性质没有多大的帮助,但由于本节课采用Z+Z智能教育平台进行教学,比较形象,便于学生接受。

反比例函数的图象和性质教案(完美版)

反比例函数的图象和性质教案(完美版)

在线分享文档:麦群超反比例函数的图象和性质【知识与技能】1. 会用描点法画反比例函数的图象;2. 理解反比例函数的性质.【过程与方法】 经历实验操作、探索思考、观察分析的过程中,培养学生探究、归纳及概括的能力.【情感态度】在通过画图探究反比例函数图象及其性质过程中,发展学生的合作交流意识,增强求知欲望.【教学重点】画反比例函数图象,理解反比例函数的简单性质【教学难点】 理解反比例函数性质,能用性质解决简单的问题.一、情境导入,初步认识问题 我们知道,一次函数y = 6x 的图象是一条直线,那么反比例函数y =6x 的图象是什么形状呢?你能用“描点”的方法画出函数的图象?【教学说明】教师提出问题,学生思考、交流,尝试着解决问题,教师巡视,关注学生的画图,及时纠正个别同学在画图中的不足和失误之处,帮助学生尽可能得到其合适的图象.二、思考探究,获取新知问题1 在同一坐标系中画出反比例函数y =6x 和y =12x的图象; 【教学说明】将全班同学分成两大组,分别完成问题y =6x 、y =12x的画图,在学生探索画反比例函数的图象过程中,教师应给予恰当点拨:如学生列表时,由于自变量x ≠0,故在x <0和x >0时,应各取三个以上的数据,以便使描点画图更精确些;在连线上,x <0和x >0 的两个分支应根据变化趋势用平滑曲线连接,但它们是不能相交的;列表中数据,描点时点的位置等不能出错,以保证图象更能反映出反比例函数的性质.在线分享文档让每个人平等地提升自我:麦群超 问题2 反比例函数y =-6x 和y =-12x的图象有什么共同特点?它们之间有什么关系?反比例函数y = 6x 和y =-6x的图象呢?同学间相互交流. 【教学说明】让两组同学分别交流,找出图象的特征,教师可分别参与讨论,帮助学生获取正确认知. 【归纳结论】由图象可发现:(1)它们都是由两条曲线组成,并且随|x|的不断增大(或减 小),曲线越来越接近x 轴(或y 轴),但这两条曲线永不相交;(2) y = 6x 和y =-6x 及y =12x 和y =-12x 的图象分别关于x 轴对称,也关于y 轴对称. 思考 观察函数y = 6x 和y =-6x 以及y =12x 和y =-12x 的图象. (1)你能发现它们的共同特征以及不同点吗?(2)每个函数的图象分别位于哪几个象限? (3)在每个象限内y 随x 的变化如何变化? 【归纳结论】反比例函数y =k x 的图象及其性质: (1)反比例函数y=k x (k 为常数,且k 0)的图象是双曲线; (2)当k >0时,双曲线的两个分支分别位于第一、三象限,在每个象限内,y 随x 值的增大而减小;(3)当k <0时,双曲线的两个分支分别位于第二、四象限,在每个象限内y 随x 值的增大而增大.三、典例精析,掌握新知例 如图,一次函数y = kx 十b 的图象与反比例函数y =m x 的图象相交于A 、B 两点.(1)根据图象,分别写出A 、B 的坐标;(2)求出两函数的解析式;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值. 【分析】(1)观察图象,可直接写出A 、B 两点的坐标;(2)利用A 、B 两点的坐标,用待定系数法建立方程组求解,可确定两函数的解析式;(3 )通过两函数的交点A 、B 的坐标得出答案.解:(1)观察图象可知A ( -6,-2),B (4,3)在线分享文档地提升自我By :麦群超(2)由点B 在反比例函数y =m x 的图象上,所以把B (4,3)代入y =m x 得3 =4m ,故m =12,所以y=12x.由点A 、B 在一次函数y =kx 十b 的图象上,所以把A 、B 两点坐标代入y = kx 十b 得14326+2,1k b k k b b ⎧+==⎧⎪⎨⎨-=-⎩⎪=⎩解得 . 所以一次函数解析式为y = 12x+1.(3)由图象可知,当一6<x <0或x >4时,一次函数的函数值大于反比例函数的函数值.【教学说明】本例有一定难度,教师可将题目展开,分步讲解,辅导学生克服对大题的恐惧.本题考查了从图象获取信息,应用待定系数法确定反比例函数与一次函数的关系式,以及利用图象比较函数值的大小等知识点. 四、运用新知,深化理解 1 .若反比例函数 y =21m x -的图象的一个分支在第三象限,则m 的取值范围是 . 2.如图是某一函数的一部分,则这个函数的表达式可能是( )A.y=5xB.y=-x+3C.y=-6xD.y=4x 【教学说明】学生独立完成,然后相互交流,谈谈自己的看法,教师应参与学生的讨论, 加深学生对反比例函数的图象及其性质的认识和理解,从而更好地掌握本节知识.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分. 【答案】1.m >122. C 五、师生互动,课堂小结 本节课学习了哪些知识?在知识应用过程中需要注意什么?你有哪些收获?1.布置作业:从教材“习题”中选取.在线分享文档让每个人平等2.完成创优作业中本课时的“课时作业”部分.“反比例函数的图象和性质”是反比例函数的教学重点,学生需要在理解的基础上熟练运用.在学习反比例函数图象和性质时k >0时,双曲线的两个分支在一、三象限;k <0时,双曲线的两个分支在二、四象限),学生可由画法观察图象得知.而增减性由解析式y =k x (k 0)可得到,学生也容易理解.但从图象观察增减性较难,借助计算机的动态演示就容易多了,所以本课教学最好用多媒体,因为运用多媒体比较函数图象,可以使学生更直观、更清楚地看清函数的变化,从而使学生加深对函数性质的理解.通过本课的教学,教师可深刻地体会到运用信息技术可加强数学课堂教学中的灵活性、直观性. 虽然制作起来比较麻烦,但能使课堂教学达到预想不到的效果,使课堂教学效率也明显提高.。

反比例函数的图象与性质教案教学设计

反比例函数的图象与性质教案教学设计

一、教案基本信息反比例函数的图象与性质教案教学设计课时安排:2课时教学对象:高中数学一年级学生教学目标:1. 让学生理解反比例函数的定义和表达式;2. 让学生掌握反比例函数的图象特征;3. 让学生了解反比例函数的性质;4. 培养学生运用数学知识解决实际问题的能力。

教学重点:1. 反比例函数的定义和表达式;2. 反比例函数的图象特征;3. 反比例函数的性质。

教学难点:1. 反比例函数图象的理解;2. 反比例函数性质的推导。

二、教学准备教学工具:黑板、粉笔、多媒体教学设备教学素材:反比例函数图象和性质的PPT课件、例题、练习题三、教学过程第一课时1. 导入新课教师通过展示实际问题,引导学生回顾正比例函数的图象和性质,为新课的学习做好铺垫。

2. 反比例函数的定义与表达式(1)教师引导学生观察实际问题,引出反比例函数的概念;(2)教师给出反比例函数的表达式;(3)学生跟随教师一起总结反比例函数的定义和表达式。

3. 反比例函数的图象特征(1)教师利用PPT课件展示反比例函数的图象;(2)教师引导学生观察反比例函数的图象特征,总结规律;(3)学生跟随教师一起归纳反比例函数的图象特征。

4. 反比例函数的性质(1)教师引导学生从图象特征出发,推导反比例函数的性质;(2)教师给出反比例函数的性质表述;(3)学生跟随教师一起总结反比例函数的性质。

第二课时5. 应用拓展(1)教师出示应用题,引导学生运用反比例函数的知识解决问题;(2)学生独立解答问题,教师进行指导;(3)教师总结解题方法,强调反比例函数在实际问题中的应用。

6. 课堂小结教师带领学生回顾本节课所学内容,总结反比例函数的定义、表达式、图象特征和性质。

7. 布置作业教师出示课后练习题,要求学生巩固反比例函数的知识。

四、教学反思教师在课后对教学效果进行反思,针对学生的掌握情况调整教学策略,为后续课程的教学做好准备。

五、教学评价通过课堂表现、作业完成情况和课后练习的成绩,对学生在本次课程中的学习效果进行评价。

17.1.2反比例函数的图象和性质教学设计

17.1.2反比例函数的图象和性质教学设计
回顾: 反比例函数的定义 新课教授: 画函数 y 3x 1 的图象 (列表、描点、连线) 强调反比函数图像作图时要注意的问题 总结反比例函数图像的性质
反比例函数的图像和性质
例题讲解: 例1 例2 随堂练习: 堂课总结: 反比例函数图象的性质 布置作业:
七、课后作业
1.函数 y= 的图象是_______,当 x>0 时,该图象在第_______ 象限. 2.函数 y= 的图象经过点 A(-4,3) ,则 k=________. 3.已知 y 是 x 的反 比例函数,根据表格所给的信息完成下列问 题: x - 3[ 来 源 :Z 。 xx 。 ] 1 - 1 2 3
5 2 x
a 2 6
,当 x 0 时,y 随 x 的增大而增
(五)教学小结
你对本节知识有哪些认识? 教师可由学生随意说出一个反比例函数, 然后由一个学生说出它 的性质。 在活动中,教师应重点关注 : 1.不同层次学生对本节课知识的认识程度; 2.学生独立面对困难和克服困难的能力。
六、板书设计 17、1、2
y
6 6 y x 的图象。 x与
1、学生能否顺利进行三种表示方法的相互转换; 2、 是否熟悉作出函数图象的主要步骤, 会作反比例函数的图象; 3、在动手作图的过程中,能否勤于动手,乐于探索。 反比例函数是我们第一次遇到的非直线函数图象, 而且反比例函 数的图象是由断开的两支曲线组成的, 我们从描出的点的变化趋势可 看出,切记不能用直线连接。 师生共析: 用平滑的曲线按自变量从小到大的顺序把描出的点连 接起来,就可得到下图。
这个过程由学生独立思考、操作、交流、回答;教师可与学生平 等交流,提问学生。 问:1、什么叫做反比例函数? 学生:如果两个变量 x 、 y 之间的关系可以表示成

反比例函数的图象与性质教案

反比例函数的图象与性质教案

反比例函数的图象与性质教案2.反比例函数的图象与性质(一)任店镇中学王花垒刘越洋一、学生知识状况分析学生在学习本节课之前差不多学习过一次函数,具备了研究函数的差不多技能,了解了研究函数的一样过程。

一次函数的图象是线性的,同时是无间断连续的,学生在本节课将遇到作非线性函数的图象,而且反比例函数的图象是由断开的两支曲线组成,需要考虑自变量的取值范畴,在明白得上有一定的困难。

二、教学任务分析本节课的内容是反比例函数的图象与性质,旨在进一步熟悉作函数图象需要注意的问题。

明白得函数的三种表示方法及相互转换,逐步明确研究函数的一样要求,反比例函数的图象具体展现了反比例函数的整体直观形象,为学生探究反比例函数的性质提供了思维活动的直观工具,通过对反比例函数图象的全面观看和比较,发觉函数自身的规律,在相互交流中锤炼从图象中猎取信息的能力,同时能够使学生更牢固地把握由他们自己发觉的反比例函数的要紧性质.(一)知识目标:1.进一步熟悉作函数图象的要紧步骤,会作反比例函数的图象.2.体会函数的三种表示方法的互相转换.对函数进行认识上的整合.3.逐步提高从函数图象中猎取信息的能力,探究并把握反比例函数的要紧性质.(二)能力训练目标通过学生自己动手列表、描点、连线,提高学生的作图能力;通过观看图象,概括反比例函数的有关性质,训练学生的概括、总结能力.(三)情感与价值观目标让学生积极参与到数学学习活动中,增强他们对数学学习的好奇心与求知欲.教学重点:画反比例函数的图象;并从函数图象中猎取信息,探究并研究反比例函数的要紧性质.教学难点:反比例函数的图象特点及性质的探究.教学方法:引导发觉法、讨论法.教具预备:多媒体课件、幻灯片三、教学过程分析本节课设计了八个教学环节:第一环节:设疑激思复习引入;第二环节:合作探究发觉问题;第三环节:巩固新知夯实基础;第四环节:观看摸索再探新知;第五环节活学活用巩固提高;第六环节挑战自我能力提升;第七环节分层达标课后延伸;第八环节归纳总结纳入系统.第一环节:设疑激思复习引入教师幻灯片展现下列问题:1.起初我们从哪些方面研究了一次函数?2.画一次函数图象的步骤是什么?3.借助图象我们研究了一次函数的哪些性质?目的:通过对上面问题的回答,使学生回忆研究一次函数的过程,类比研究一次函数的思路,来研究反比例函数.成效:通过对问题的回答,激起学生对函数研究的爱好.第二环节:合作探究发觉问题教师引导学生类比着画一次函数图象的过程来尝试画出反比例函数4yx的图象.教学策略:小组内交流:教师在巡视过程中,当发觉大部分学生完成时,让同学们先在小组内进行互查、互批,让小组长汇总各小组显现的问题或不足;全班交流:小组代表发言,谈一下各小组内在画图过程中存在哪些问题,教师组织、指导学生对各组情形和问题进行汇总。

《反比例函数的图象与性质》教学设计

《反比例函数的图象与性质》教学设计
infty, 0) cup (0, +infty)$。
当 $k < 0$ 时,反比例函数 $y = frac{k}{x}$ 的值域同样为 $y in (-infty, 0) cup (0, +infty)$。
无论 $k$ 的正负如何,反比例函 数的值域都排除了 $y = 0$ 这一
点。
04
反比例函数在实际问题中 应用举例
探究图象的变化规律
学生分组讨论,探究当 $k$ 取不同值时,反比例函数图象 的变化规律。特别关注 $k$ 的正负对图象的影响。
总结规律
学生总结归纳出反比例函数图象的变化规律,即当 $k > 0$ 时,图象位于第一、三象限;当 $k < 0$ 时,图象位 于第二、四象限。
利用计算机软件进行模拟实验
选择合适的计算机软件
培养学生对数学的兴趣和好奇心,鼓 励学生积极思考和探索数学问题。
通过观察、比较、分析等方法,培养 学生的数学思维和解决问题的能力。
课程安排与时间
课程安排
本课程包括反比例函数的定义、 图象、性质等内容,通过讲解、 示范、练习等方式进行教学。
时间安排
本课程计划用时2课时,其中第一 课时讲解反比例函数的定义和图 象,第二课时讲解反比例函数的 性质和应用。
02
反比例函数图象绘制方法
列表法绘制反比例函数图象
选定自变量的取值范 围,并确定合适的步 长。
在坐标系中描出各点 ,并用平滑的曲线连 接各点。
根据反比例函数的解 析式,计算对应的函 数值,列出表格。
描点法绘制反比例函数图象
在坐标系中任意选取几个自变量的值 。
在坐标系中描出各点,并用平滑的曲 线连接各点。
当 $k > 0$ 时,反比例函数 $y = frac{k}{x}$ 在 $x < 0$ 和 $< 0$ 时,反比例函数 $y = frac{k}{x}$ 在 $x < 0$ 和 $x

《反比例函数的图象和性质》教案

《反比例函数的图象和性质》教案

《反比例函数的图象和性质》教案
一、教学目标
【知识与技能】
会画反比例函数图象,并能从图象中得到反比例函数的相关性质。

【过程与方法】
经历观察反比例函数图象探索性质的研究过程,进一步体会数形
结合思想。

【情感态度价值观】
在动手操作,观察图象的过程中,提高数学学习的兴趣。

二、教学重难点
【教学重点】
画反比例函数图形,并抽象出性质。

【教学难点】
(三)课堂练习
习题。

师生活动:学生独立完成,教师进行纠正。

(四)小结作业
教师与学生共同回顾本节课的主要内容,并同桌交流以下问题:
(1)反比例函数的图象有什么特征?
(2)从图象中可以得到哪些性质?
作业
课下思考课本例3,同桌互相交流并完成,体会待定系数法求函数解析式,下节课一起探究。

四、板书设计。

反比例函数的图象和性质教案设计

反比例函数的图象和性质教案设计

反比例函数的图象和性质教案设计第一章:反比例函数的定义与表达式1.1 反比例函数的定义引导学生回顾正比例函数的定义,提出反比例函数的概念。

通过实际例子,让学生理解反比例函数的定义:当两个变量x和y满足y=k/x (其中k为常数,k≠0)时,称y是x的反比例函数。

1.2 反比例函数的表达式介绍反比例函数的一般表达式y=k/x,解释k的含义。

强调反比例函数中x不能等于0的条件。

第二章:反比例函数的图象2.1 反比例函数图象的特点引导学生绘制反比例函数的图象,观察图象的特点。

总结反比例函数图象是一条经过原点的曲线,且在每个象限内,随着x的增大,y的值减小。

2.2 反比例函数图象的渐近线解释反比例函数图象在x趋近于正无穷和负无穷时,y趋近于0的性质。

引导学生理解反比例函数图象在x轴和y轴上分别有两条渐近线。

第三章:反比例函数的性质3.1 反比例函数的单调性分析反比例函数在不同区间上的单调性。

引导学生得出结论:反比例函数在每一个象限内是单调递减的。

3.2 反比例函数的奇偶性探讨反比例函数的奇偶性,证明反比例函数是奇函数。

引导学生理解反比例函数的奇偶性与x的奇偶性有关。

第四章:反比例函数的应用4.1 反比例函数在实际问题中的应用提供实际问题,让学生运用反比例函数解决问题。

强调反比例函数在实际问题中的应用,如比例尺计算、速度与时间的关系等。

4.2 反比例函数的综合应用引导学生综合运用反比例函数解决复杂问题。

通过案例分析,让学生学会将实际问题转化为反比例函数问题,并求解。

第五章:反比例函数的性质总结与拓展5.1 反比例函数的性质总结回顾本章所学的内容,总结反比例函数的定义、表达式、图象和性质。

强调反比例函数的重要性和在实际问题中的应用。

5.2 反比例函数的拓展引导学生思考反比例函数与其他函数的关系,探讨反比例函数的图象与性质的拓展。

提供一些反比例函数的拓展问题,激发学生的学习兴趣。

第六章:反比例函数的变换6.1 反比例函数的平移解释反比例函数图象如何通过平移进行变换。

反比例函数的图象与性质教案优秀3篇

反比例函数的图象与性质教案优秀3篇

反比例函数的图象与性质教案优秀3篇反比例函数的图象与性质教案篇一教学目标1. 经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力。

2. 理解反比例函数的概念,会列出实际问题的反比例函数关系式。

3. 使学生会画出反比例函数的图象。

4. 经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质。

教学重点1、使学生了解反比例函数的表达式,会画反比例函数图象2、使学生掌握反比例函数的图象性质3、利用反比例函数解题教学难点1、列函数表达式2、反比例函数图象解题教学过程教师活动一、作业检查与讲评二、复习导入1.什么是正比例函数?我们知道当(1) 当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2) 当矩形面积一定时,长a和宽b成反比例,即ab=s(s是常数)创设问题情境问题1:小华的爸爸早晨骑自行车带小华到15千米外的镇上去赶集,回来时让小华乘坐公共汽车,用的时间少了。

假设自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系。

分析和其他实际问题一样,要探求两个变量之间的关系,就应先选用适当的符号表示变量,再根据题意列出相应的函数关系式。

设小华乘坐交通工具的速度是v千米/时,从家里到镇上的时间是t小时。

因为在匀速运动中,时间=路程÷速度,所以从这个关系式中发现:1.路程一定时,时间t就是速度v的反比例函数。

即速度增大了,时间变小;速度减小了,时间增大。

2.自变量v的取值是v0.问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场。

设它的一边长为x(米),求另一边的长y(米)与x的函数关系式。

分析根据矩形面积可知xy=24,即从这个关系中发现:1.当矩形的面积一定时,矩形的一边是另一边的反比例函数。

即矩形的一边长增大了,则另一边减小;若一边减小了,则另一边增大;2.自变量的取值是x0.三、新课讲解上述两个函数都具有的形式,一般地,形如(k是常数,k≠0)的函数叫做反比例函数(proportional function).说明1.反比例函数与正比例函数定义相比较,本质上,正比例y=kx,即,k是常数,且k≠0;反比例函数,则xy=k,k是常数,且k≠0.可利用定义判断两个量x和y满足哪一种比例关系。

人教版数学九年级下册26.1.2《反比例函数的图象和性质》教学设计

人教版数学九年级下册26.1.2《反比例函数的图象和性质》教学设计

人教版数学九年级下册26.1.2《反比例函数的图象和性质》教学设计一. 教材分析人教版数学九年级下册26.1.2《反比例函数的图象和性质》是反比例函数部分的重要内容。

本节内容是在学生已经掌握了比例函数的知识基础上进行学习的,通过本节课的学习,使学生理解反比例函数的概念,会画反比例函数的图象,了解反比例函数的性质,并能运用反比例函数解决一些实际问题。

二. 学情分析九年级的学生已经具备了一定的函数知识,对于比例函数有一定的了解,但反比例函数作为一种新的函数形式,对学生来说还比较陌生。

因此,在教学过程中,需要引导学生通过观察、分析、归纳等方法,自主探究反比例函数的图象和性质,提高学生的动手操作能力和思维能力。

三. 教学目标1.知识与技能:使学生理解反比例函数的概念,会画反比例函数的图象,了解反比例函数的性质。

2.过程与方法:通过观察、分析、归纳等方法,培养学生自主探究的能力。

3.情感态度与价值观:激发学生学习函数的兴趣,培养学生的团队协作精神。

四. 教学重难点1.反比例函数的概念及其图象的画法。

2.反比例函数的性质及其运用。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究,培养学生的动手操作能力和思维能力。

六. 教学准备1.教学课件:制作反比例函数的图象和性质的课件,用于辅助教学。

2.学生活动材料:反比例函数图象和性质的练习题,用于巩固所学知识。

3.教学设备:投影仪、计算机等。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾比例函数的知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过课件展示反比例函数的图象和性质,引导学生观察、分析,并总结反比例函数的特点。

3.操练(10分钟)教师布置练习题,学生独立完成,巩固所学知识。

教师选取部分学生的作业进行讲解和点评。

4.巩固(5分钟)教师通过提问方式检查学生对反比例函数图象和性质的掌握情况,并对学生的回答进行指导和纠正。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《反比例函数的图象和性质》教学设计
一、教材分析
反比例函数图像和性质是反比例函数的教学重点,学生需要在理解的基础上熟练运用,本节课是全章的核心,学习的主要内容是画反比例函数的图象,让学生结合实例,通过列表、描点、连线等手段经历画图、观察、猜想、思考等数学活动,初步认识具体的反比例函数图象的特征,逐步明确反比例函数的整体直观形象,为学生探索反比例函数的图象的性质提高了思维的空间。

反比例函数的图象也与众不同———双曲线,给教学带来了困难。

反比例函数是九年义务教育阶段的第二种具体函数,它的研究方法更具有一般性和代表性,可为以后的二次函数以及其他函数的学习奠定坚实的基础。

画出图象是一大难点,归纳性质是第二难点。

由于图象的复杂性,外加正比例函数的图象的负迁移,对我们的数学教学是一个大冲击。

可实施以下突破方法:
1、扎牢认知基础的“篱笆”。

画图象前,应先借助实例让学生回忆画函数图象的基本步骤,
即:列表、描点、连线,其中列表取值很关键。

反比例函数(k≠0)自变量的取值范
围是x≠0,所以取值时应对称地选择正数和负数各一半,并且互为相反数,通常取的数值越多,画出的图象越精确。

连线时要用平滑的曲线,不能用折线连接。

2、适时交流,纠错。

教学时,要让学生先试画,暴露认识偏差,而后老师组织广泛的交流,获取经验后再画,注意引导,力争让学生自行纠错。

3、顺势利导,用好负迁移。

学生试画,出现问题非常正常,作为教师切忌“见火就着”,沉不住气,过早地将结论和盘拖出,要发挥好错例的补正功能。

4、数形结合,深化对性质的理解。

在研究反比例函数的性质时,除了对正比例函数实施迁移外,还要让学生明确反比例函数的图象位置和增减性是由其系数k的符号决定的;反之,双曲线的位置和函数性质也能推出k的符号,让学生体会数形结合的思想方法。

二、教学目标
1、知识与技能
(1)体会并了解反比例函数的图象的意义
(2)能描点画出反比例函数的图象
(3)通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质。

2、过程与方法
结合正比例函数y=kx(k≠0)的图象和性质,来帮助学生观察、分析及归纳,通过对比,能使学生更好地理解和掌握所学的内容注意让学生体会数形结合的思想方法。

3、情感态度与价值观
以积极探索的思想,逐步提高从函数图象中获取信息的能力,探索并掌握反比例函数的主要性质。

三、教学重点会作反比例函数的图象;探索并掌握反比例函数的主要性质。

四、教学难点图象的对称性选点,归纳反比例函数的性质。

五、教具准备
反比例函数与的图象.
y=
y=-
y
x
x
y=的图象 y=-的图象
探索活动2 反比例函数与的图象有什么共同特征?
反比例函数图象的特征及性质:
反比例函数(k≠0)的图象是由两个分支组成的曲线,叫做双曲线。

当时,图象在一、三象限,在每一象限内,y随x的增大而减
小;
当时,图象在二、四象限,在每一象限内,y随x 的增大而增大。

反比例函数(k≠0)的图象关于直角坐标系的原点成中心对称。

(三)、应用举例:
例1.(补充)已知反比例函数的图象在第二、四象限,求m值,并指出在每个象限内y随x的变化情况?
分析:此题要考虑两个方面,一是反比例函数的定义,即(k≠0)自变量x的指数
是-1,二是根据反比例函数的性质:当图象位于第二、四象限时,k<0,则m-1<0,不要忽视这个条件
略解:∵是反比例函数∴m2-3=-1,且m-1≠0
又∵图象在第二、四象限∴m-1<0
解得且m<1 则
例2.(补充)如图,过反比例函数(x>0)的图象上任意两点A、B分别作x轴的
垂线,垂足分别为C、D,连接OA、OB,设△AOC和△BOD的面积分别是S1、S2,比较它们的大小,可得()
(A)S1>S2(B)S1=S2 (C)S1<S2(D)大小关系不能确定
分析:从反比例函数(k≠0)的图象上任一点P(x,y)向x轴、y轴作垂线段,与x
轴、y轴所围成的矩形面积,由此可得S1=S2 =,故选B
(四)、随堂练习
1.已知反比例函数,其图象位于第一、三象限,
(1)求出字母k的取值范围
(2)给(1)中的K取一个值,并画出函数的图象。

2.函数y=-ax+a与(a≠0)在同一坐标系中的图象可能是()
3.在平面直角坐标系内,过反比例函数(k>0)的图象上的一点分别作x轴、y轴的
垂线段,与x轴、y轴所围成的矩形面积是6,则函数解析式为
(五)、课后练习
1.若函数与的图象交于第一、三象限,则m的取值范围是
.反比例函数,当
、已知反比例函数,当时,

反比例函数
、若反比例函数((
、在函数的图象上有三点(-,),(-,)则函数值,,的大
灭在萌芽状态,甚至强行使其窒息而死。

当往往是“屡禁不止”时怎么办?想法利用这些错误的负资源,变废为宝,不是良策,甚至能起到事半功倍的效果。

2、提供足够的感性材料,为理性认识打好基础。

为了更好地发现反比例函数的性质,组织了三次画图活动,在画图、评析、纠正、调整等活动中反复历练了画图的方法,学生有了丰富的感性素材,可谓“厚积薄发”。

3、教师、学生合理定位。

教师始终把自己放在了策划者、引导者、促进者得位置,注重了学法的指导,“授人与鱼,不如授之以渔”,方法是高于知识的,它能驾驭知识。

同时把学生推向前台,使学生以研究者和探索者得身份穿梭于课堂,充分突出了主体的地位,角色的更新提升了学生的参与意识,在成功中获得了自信,可谓德智双赢。

相关文档
最新文档