第2章 电力电子技术

合集下载

电力电子技术第五版第二章答案

电力电子技术第五版第二章答案

电力电子技术第五版课后习题答案第二章 电力电子器件2. 使晶闸管导通的条件是什么?答:使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。

或:u AK >0且uGK >0。

3. 维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断? 答:维持晶闸管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。

要使晶闸管由导通变为关断,可利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下,即降到维持电流以下,便可使导通的晶闸管关断。

4. 图2-27中阴影部分为晶闸管处于通态区间的电流波形,各波形的电流最大值均为I m ,试计算各波形的电流平均值Id1、Id2、Id3与电流有效值I 1、I 2、I 3。

π4π4π25π4a)b)c)图1-43图2-27 晶闸管导电波形解:a) I d1=π21⎰ππωω4)(sin t td I m=π2m I (122+)≈0.2717 I m I 1=⎰ππωωπ42)()sin (21t d t I m =2m I π2143+≈0.4767 I m b) I d2 =π1⎰ππωω4)(sin t td I m =πm I (122+)≈0.5434 Im I 2 =⎰ππωωπ42)()sin (1t d t I m =22m I π2143+≈0.6741I m c ) I d3=π21⎰20)(πωt d I m=41I m I3 =⎰202)(21πωπt d I m =21Im5. 上题中如果不考虑安全裕量,问100A 的晶闸管能送出的平均电流I d1、I d 2、I d3各为多少?这时,相应的电流最大值Im1、I m2、I m3各为多少?解:额定电流I T(AV) =100A 的晶闸管,允许的电流有效值I =157A ,由上题计算结果知a) I m1≈4767.0I≈329.35,ﻩﻩI d 1≈0.2717 I m1≈89.48 b) I m2≈6741.0I≈232.90, I d2≈0.5434 Im2≈126.56 c) I m3=2 I = 314,ﻩﻩﻩ I d3=41Im3=78.5第三章 整流电路1. 单相半波可控整流电路对电感负载供电,L =20mH,U 2=100V ,求当α=0︒和60︒时的负载电流I d ,并画出u d与i d波形。

《电力电子技术》习题解答(高职高专第5版) 第2章习题答案

《电力电子技术》习题解答(高职高专第5版) 第2章习题答案

第2章思考题与习题2.1 什么是整流?它与逆变有何区别?答:整流就是把交流电能转换成直流电能,而将直流转换为交流电能称为逆变,它是对应于整流的逆向过程。

2.2 单相半波可控整流电路中,如果:(1)晶闸管门极不加触发脉冲;(2)晶闸管内部短路;(3)晶闸管内部断开;试分析上述三种情况负载两端电压u d和晶闸管两端电压u T的波形。

答:(1)负载两端电压为0,晶闸管上电压波形与U2相同;(2)负载两端电压为U2,晶闸管上的电压为0;(3)负载两端电压为0,晶闸管上的电压为U2。

2.3某单相全控桥式整流电路给电阻性负载和大电感负载供电,在流过负载电流平均值相同的情况下,哪一种负载的晶闸管额定电流应选择大一些?答:带大电感负载的晶闸管额定电流应选择小一些。

由于具有电感,当其电流增大时,在电感上会产生感应电动势,抑制电流增加。

电阻性负载时整流输出电流的峰值大些,在流过负载电流平均值相同的情况下,为防此时管子烧坏,应选择额定电流大一些的管子。

2.4某电阻性负载的单相半控桥式整流电路,若其中一只晶闸管的阳、阴极之间被烧断,试画出整流二极管、晶闸管两端和负载电阻两端的电压波形。

解:设α=0,T2被烧坏,如下图:2.5相控整流电路带电阻性负载时,负载电阻上的U d 与I d 的乘积是否等于负载有功功率,为什么?带大电感负载时,负载电阻R d 上的U d 与I d 的乘积是否等于负载有功功率,为什么?答:相控整流电路带电阻性负载时,负载电阻上的平均功率d d d I U P =不等于负载有功功率UI P =。

因为负载上的电压、电流是非正弦波,除了直流U d 与I d 外还有谐波分量Λ,,21U U 和Λ,,21I I ,负载上有功功率为Λ+++=22212P P P P d >d d d I U P =。

相控整流电路带大电感负载时,虽然U d 存在谐波,但电流是恒定的直流,故负载电阻R d 上的U d 与I d 的乘积等于负载有功功率。

电力电子技术第2章 电力电子器件的驱动与保护

电力电子技术第2章 电力电子器件的驱动与保护

(b) (a)
图2-1 光电耦合器的类型及接法 a) 普通型 b) 高速型 c) 高传输比型
✓磁隔离的元件通常是脉冲变压器。
(c)
R:限流电阻
电力电子技术
4
2.1 电力电子器件的驱动电路
驱动电路分类
按驱动信号性质,可分为电流驱动型和电压驱动型。 具体形式可为分立元件、集成驱动电路。 双列直插式集成电路及将光耦隔离电路也集成在内的混合 集成电路。 首选所用器件生产厂家专门开发的集成驱动电路。
2.1.1 晶闸管触发电路
VD11
~VD
14
220 V 36V
+15 V
R15
C7 + C6 B
VD 15
+Vc + 15 V
VD 7
TP VD8
R18
R14 R
13
VD9
脉冲信号
C5
R16
VD6
VT7
VT8
电力电子技术
21
2.1.1 晶闸管触发电路
同步信号为锯齿波的触发电路工作波形
u ST
ωt
R15
图2-3b)磁耦合隔离的晶闸管驱动电路
前进
电力电子技术
12
2.1.1 晶闸管触发电路
3. 同步信号为锯齿波的触发电路
该电路可分为:脉冲形成与放大、锯齿波形成及脉冲移相、同步信 号处理
三个基本环节,以及双脉冲形成、强触发等环节。
同步 信号 同步
信号 处理
uK
锯齿 波形

脉冲 移相 控制
脉冲 形成 (单稳 态)
由阻断转为导通。 ✓触发信号可以是交流形式,也可直流形式,但它们对门极-阴极来 说必须是正极性的。 ✓为了减少功率,触发信号通常采用脉冲形式。 ✓往往包括相位控制电路。

《电力电子技术(第2版)》 王立夫、金海明版 第二章 习题答案

《电力电子技术(第2版)》 王立夫、金海明版 第二章 习题答案
(2)①功率集成电路将电力电子器件与逻辑、控制、保护、传感、检测、自诊断等信息 电子电路制作在同一芯片上,同一芯片上高低压电路之间的绝缘问题以及温升和散热的有效 处理问题,是功率集成电路的主要技术难点。②集成电力电子模块则将电力电子器件与逻辑、 控制、保护、传感、检测、自诊断等所有信息电子电路通过专门设计的引线或导体连接起来 并封装在一起,有效地回避了高低压电路之间的绝缘以及温升和散热问题。
4
sin
t)2 d(t)
Im 2
3 1 4 2
0.4767Im
Kf1
I1 Id1
0.4767Im 0.2717Im
1.7545
b)
Id 2
1
4
Im
sin
td (t )
Im
(
2 2
1)
0.5434 I m
I2
1
(Im
sin
t)2 d(t)
4
2Im 2
3 1 4 2
0.6741Im
解: 对ⅠGBT、GTR、GTO 和电力 MOSFET 的优缺点的比较如下表:
器件
优点
缺点
IGBT
开关速度高,开关损耗小,具有 开关速度低于电力 MOSFET,
耐脉冲电流冲击的能力,通态 电压,电流容量不及 GTO
压降较低,输入阻抗高,为电压
驱动,驱动功率小
GTR
耐压高,电流大,开关特性好, 开关速度低,为电流驱动,所需
而普通晶闸管不能?
答:GTO 和普通晶闸管同为 PNPN 结构,由 P1N1P2 和 N1P2N2 构成两 个晶体管 V1、V2,分别具有共基极电流增益1 和2 ,由普通晶闸管的 分析可得,1 +2 =1 是器件临界导通的条件。1 +2 >1,两个等效晶 体管过饱和而导通;1 +2 <1,不能维持饱和导通而关断。

电力电子技术第二章整流电路答案

电力电子技术第二章整流电路答案

21. 单相半波可控整流电路对电感负载供电, L =20mH , U 2=100V ,求当 α=0 和 60 时的负载电流 I d ,并画出 u d 与 i d 波形。

解: α=0 时,在电源电压 u 2 的正半周期晶闸管导通时,负载电感 导通时刻,负载电流为零。

在电源电压u 2 的负半周期,负载电感导通。

因此,在电源电压 u 2 的一个周期里,以下方程均成立:L di d 2U 2 sin tdt2考虑到初始条件:当 t =0时 i d =0可解方程得:2U 2 i d(1 cos t)L1 2 2U 22(1 cos t)d( t) L2U 2=2u d 与 i d 的波形如下图:量在 u 2负半周期180 ~300 期间释放,因此在 u 2 一个周期中 60 ~300 期间以下微分方程成 立: L d d itd2U 2 sin t其平均值为此时 u d 与 i d 的波形如下图:α = 60 °时, L 储能, 电感 L 储藏的能L 储能,在晶闸管开始 L 释放能量,晶闸管继续I d考虑初始条件:当t = 60 时 i d = 0 可解方程得:i d2U 2 L 1( cos t)I d52U 2 1 33 2U L 2 (12 cos t)d( t) =2U 22L =11.25(A)2.图2-9 为具有变压器中心抽头的单相全波可控整流电路,问该变压器还有直流磁化问题吗?试说明:①晶闸管承受的最大反向电压为2 2U2 ;②当负载是电阻或电感时,其输出电压和电流的波形与单相全控桥时相同。

答:具有变压器中心抽头的单相全波可控整流电路,该变压器没有直流磁化的问题。

因为单相全波可控整流电路变压器二次测绕组中,正负半周内上下绕组内电流的方向相反,波形对称,其一个周期内的平均电流为零,故不会有直流磁化的问题。

以下分析晶闸管承受最大反向电压及输出电压和电流波形的情况。

①以晶闸管VT 2为例。

电力电子技术_洪乃刚_第二章电力电子器件

电力电子技术_洪乃刚_第二章电力电子器件

返回
2、晶闸管的电流参数 通态平均电流和额定电流 通态平均电流IAV国际规 定是在环境温度为40°C和在规定冷却条件下,稳定结 温不超过额定结温时,晶闸管允许流过的最大正弦半 波电流的平均值。晶闸管以通态平均电流标定为额定 电流。 当通过晶闸管的电流不是正弦半波时,选择额定 电流就需要将实际通过晶闸管电流的有效值IT折算为 正弦半波电流的平均值,其折算过程如下: 通过晶闸管正弦半波电流的平均值 :
晶闸管开通和关断过程
晶闸管在受反向电压关断时,反向阻断恢复时间 trr,正向电压阻断能力恢复的这段时间称为正向阻断 恢复时间tgr,晶闸管的关断时间toff=trr+tgr,约为 数百微秒。 (2)dv/dt和di/dt限制 晶闸管在断态时,如果加在阳极上的正向电压上 升率dv/dt很大会使晶闸管误导通,因此,对晶闸管正 向电压的dv/dt需要作一定的限制。 晶闸管在导通过程中,如果电流上升率di/dt很 大 会引起局部结面过热使晶闸管烧坏,因此,在晶闸 管导通过程中对di/dt也要有一定的限制。
返回
二、电力二极管的伏安特性
当施加在二极管上的正向电压大于UTO 时, 二极管导通。当二极管受反向电压时,二极管仅 有很小的反向漏电流(也称反向饱和电流)。
二极管的伏安特性
返回
三、电力二极管的主要参数
A、额定电压 B、额定电流 C、结温
电力二极管实物图
返回
A、电力二极管的额定电压 反向重复峰值电压和额定电压: 额定电压即是能够反复施加在二极管上,二极 管不会被击穿的最高反向重复峰值电压URRM,该电压 一般是击穿电压UB的2/3。在使用中额定电压一般取 二极管在电路中可能承受的最高反向电压(在交流 电路中是交流电压峰值),并增加一定的安全裕量。

第2章电力电子技术(第3版)[王云亮][电子教案(版本)]

第2章电力电子技术(第3版)[王云亮][电子教案(版本)]

单相半波整流电路阻性负载演示
带电阻负载的工作情况
➢ 变压器T起变换电压和隔离的作用 ➢ 电阻负载的特点:电压与电流成正比,两者波形相同 ➢ 几个概念的解释:
✓ ud为脉动直流,波形只在u2正半周内出现,故称“半波”整流 ✓ 采用了可控器件晶闸管,且交流输入为单相,故该电路为单相半
波可控整流电路 ✓ ud波形在一个电源周期中只脉动1次,故该电路为单脉波整流电路
cos P UI2 1 sin 2 π
S U2I2 4π

式中 P—变压器二次侧有功功率
S—变压器二次侧视在功率
〖例2-1〗 如图所示单相半波可控整流器,电阻性负载,电源电压U2为 220V,要求的直流输出电压为50 V,直流输出平均电流为20A 试计算:
(1) 晶闸管的控制角。 (2) 电路功率因数。 (3) 晶闸管的额定电压和额定电流。
解 (1) 则α=90º
cos 2Ud 1 2 50 1 0
0.45U d
0.45 220
(2)
R Ud 50 2.5
Id 20
当 α=90º时,输出电流有效值
I U U2 1 sin 2 π 44.4 A
R R 4π

cos P UI2
U
44.4 50
20 0.505
UTN (2 ~ 3)Um (2 ~ 3)311 622 ~ 933 V
根据计算结果可以选取满足要求的晶闸管。
2. 电感性负载
(1)工作原理 电感性负载通常是电机的励磁线圈和负载串联电抗器等。 当流过电感的电流变化时,电感两端产生感应电势,感应电势对负载电
流的变化有阻止作用,使得负载电流不能突变。当电流增大时,电感吸 收能量储能,电感的感应电势阻止电流增大;当电流减小时,电感释放 出能量,感应电势阻止电流的减小,输出电压、电流有相位差。

电力电子技术第二章答案南航

电力电子技术第二章答案南航

2-1题图2-1为带有续流二极管的单相半波可控整流电路,大电感负载保证电流连续。

试证明输出整流电压平均值2cos 122απ+=U U d ,并画出控制角为α时的输出整流电压u d 、晶闸管承受电压u T 的波形。

解: 当U 2>0,当U g =0时,T 不导通。

U T =U 2,U d =0当有U g ,T 被导通时,续流二极管承受正向压降导通U d =U 2,U T =0 由波形知,输出整流电压平均值为[]2cos 12cos 221d sin 221222απωπωωππαπα+•=-==⎰U t U t t U U d2-2上题中,U 2=220V ,R=10Ω,要求输出整流电压平均值0~30V 连续可调。

试求控制角α,导通角θ的变化范围,选择晶闸管定额并计算变压器次级容量。

TL u 1 u 2DRu 2α π 2π ωtu α π 2π ωtu T α π2π ωt解:[]2cos 12cos 221d sin 221222απωπωωππαπα+•=-==⎰U t U t t U U dmax 20α对应时,U =2cos 122020maxαπ+⨯=1cos max -=α ︒=180max αmin 230α对应时,V U =2cos 1220230minαπ+⨯=39.0cos min -=α ︒=2.113min α︒=︒=-︒=︒︒0180180180~2.113min max θααθα,,取的变化范围︒=︒=8.662.113max min θα,取RU Id I U d T παππαπ2222-=-=晶闸管流过电流有效值最大值为晶闸管承受正反间电压的情况只考虑min αA 2923.110303602.113180=⨯︒︒-︒=)(31.2842923.122022VA I U S =⨯==电源容量选择晶闸管时留出裕量VU A I V V U :UA ,A :IRRM Tav RRMTav1000,21000),(4.933~3.6222)3~2(2)(65.1~23.157.12923.1)2~5.1(2==∴====选晶闸管定额取整得电压取整得电流2-3具有变压器中心抽头的单相双半流可控整流电路如图所示u1ud(1) 说明该变压器是否存在直流磁化问题?(2)试绘出α=45°时电阻性负载及大电感负载下,输出整流电压U d、晶闸管承受的电压U T的波形。

第2章 电力电子技术中的数学方法

第2章 电力电子技术中的数学方法

2.1.1 连续傅里叶级数与傅里叶变换
2.1.1 连续傅里叶级数与傅里叶变换
2.1.1 连续傅里叶级数与傅里叶变换
图2-1
幅频谱图
2.1.1 连续傅里叶级数与傅里叶变换
2.1.1 连续傅里叶级数与傅里叶变换
2.1.1 连续傅里叶级数与傅里叶变换
2.1.1 连续傅里叶级数与傅里叶变换
2.1.1 连续傅里叶级数与傅2.4.1 正序分量
2.4.2 负序分量
负序分量的特点是A、B、C三相对称,三相电流相量相序为 逆时针方向。设有三相对称正弦电流相量I· A2、 I· B2、 I· C2, 如图2-8所示。
图2-8
负序分量
2.4.2 负序分量
2.4.3 零序分量 零序分量的特点是A、B、C三相完全相等。设有三相电流相量 I· A0、 I· B0、 I· C0,如图2-9所示。
2.3.2 Akagi瞬时无功功率理论
2.3.3 基于电流分解的瞬时无功功率理论 2.3.4 通用瞬时无功功率理论
2.3.1 瞬时无功功率理论基础及其发展 在单相正弦电路或三相对称正弦电路中,利用基于平均值的概
念定义的有有功功率、无功功率、有功电流、无功电流、视在
功率和功率因数等概念。但当电压电流中含有谐波分量或三相 电路不对称时,功率现象十分复杂,传统概念已无法对其进行 有效的解释和描述。为了建立能包含畸变和不平衡现象的完善 的功率理论,对谐波和无功功率进行有效的补偿,许多学者对 此展开广泛的研究。20世纪80年代,赤木泰文等人提出的瞬时 无功功率理论,对谐波和无功补偿装置的研究和开发起到了推
法,简化了高性能电力电子变流装置中控制参数的分析和设计
的基础。介绍了瞬时无功理论。最后针对电网中的三相电压和 电流会出现的不平衡现象,介绍了三相电量的对称分量分解法, 该方法可用于在三相电网电压和电流不平衡时进行分析和设计 合适的控制回路。

电力电子技术(第二版)第2章答案

电力电子技术(第二版)第2章答案

电力电子技术(第二版)第2章答案第2章 可控整流器与有源逆变器习题解答2-1 具有续流二极管的单相半波可控整流电路,电感性负载,电阻为5Ω,电感为0.2H ,电源电压2U 为220V ,直流平均电流为10A ,试计算晶闸管和续流二极管的电流有效值,并指出其电压定额。

解:由直流输出电压平均值d U 的关系式:2cos 145.02α+=U U d 已知直流平均电流d I 为10A ,故得:A R I U d d 50510=⨯==可以求得控制角α为:0122045.0502145.02cos 2≈-⨯⨯=-=U U d α 则α=90°。

所以,晶闸管的电流有效值求得, ()A I I I t d I I d d d d VT 521222212==-=-==⎰ππππαπωππα 续流二极管的电流有效值为:A I I d VD R 66.82=+=παπ 晶闸管承受的最大正、反向电压均为电源电压的峰值22U U M =,考虑2~3倍安全裕量,晶闸管的额定电压为()()V U U M TN 933~6223113~23~2=⨯==续流二极管承受的最大反向电压为电源电压的峰值22U U M =,考虑2~3倍安全裕量,续流二极管的额定电压为()()V U U M TN 933~6223113~23~2=⨯==2-2 具有变压器中心抽头的单相双半波可控整流电路如图2-44所示,问该变压器是否存在直流磁化问题。

试说明晶闸管承受的最大反向电压是多少?当负载是电阻或者电感时,其输出电压和电流的波形与单相全控桥时是否相同。

解:因为单相双半波可控整流电路变压器二次测绕组中,正负半周内上下绕组内电流的方向相反,波形对称,其一个周期内的平均电流为零,故不会有直流磁化的问题。

分析晶闸管承受最大反向电压及输出电压和电流波形的情况:(1) 以晶闸管 2VT 为例。

当1VT 导通时,晶闸管2VT 通过1VT 与2个变压器二次绕组并联,所以2VT 承受的最大电压为222U 。

电力电子技术 第2至第8章作业 答案

电力电子技术 第2至第8章作业 答案

第2至第8章作业第2章电力电子器件1、使晶闸管导通得条件就是什么?答:使晶闸管导通得条件就是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。

或:U AK>0且U GK>0。

2、维持晶闸管导通得条件就是什么?答:维持晶闸管导通得条件就是使晶闸管得电流大于能保持晶闸管导通得最小电流,即维持电流。

3、怎样才能使晶闸管由导通变为关断?答:要使晶闸管由导通变为关断,可利用外加电压与外电路得作用使流过晶闸管得电流降到接近于零得某一数值以下,即降到维持电流以下,便可使导通得晶闸管关断。

4、图1中阴影部分为晶闸管处于通态区间得电流波形,各波形得电流最大值均为I m,试计算各波形得电流平均值I d1、I d2、I d3与电流有效值I1、I2、I3。

πππ4π4π25π4a)b)c)图1-43图1 晶闸管导电波形7、晶闸管得触发脉冲需要满足哪些条件?答:(1)触发信号应有足够得功率。

(2)触发脉冲应有一定得宽度,脉冲前沿尽可能陡,使元件在触发导通后,阳极电流能迅速上升超过掣住电流而维持导通。

第3章整流电路1、单相半波可控整流电路对电感负载供电,L=20mH,U2=100V,求当α=0°与60°时得负载电流I d,并画出u d与i d波形。

2.单相桥式全控整流电路,U2=100V,负载中R=2Ω,L值极大,当α=30°时,要求:①作出u d、i d、与i2得波形;②求整流输出平均电压U d、电流I d,变压器二次电流有效值I2;③考虑安全裕量,确定晶闸管得额定电压与额定电流。

3.单相桥式全控整流电路,U2=100V,负载中R=2Ω,L值极大,反电势E=60V,当a=30°时,要求:①作出u d、i d与i2得波形;②求整流输出平均电压U d、电流I d,变压器二次侧电流有效值I2;③考虑安全裕量,确定晶闸管得额定电压与额定电流。

4.单相桥式半控整流电路,电阻性负载,画出整流二极管在一周内承受得电压波形。

电力电子技术第2章答案

电力电子技术第2章答案

第2章 可控整流器与有源逆变器习题解答2-1 具有续流二极管的单相半波可控整流电路,电感性负载,电阻为5Ω,电感为,电源电压2U 为220V ,直流平均电流为10A ,试计算晶闸管和续流二极管的电流有效值,并指出其电压定额。

解:由直流输出电压平均值d U 的关系式:2cos 145.02α+=U U d 已知直流平均电流d I 为10A ,故得:A R I U d d 50510=⨯==可以求得控制角α为:0122045.0502145.02cos 2≈-⨯⨯=-=U U d α 则α=90°。

所以,晶闸管的电流有效值求得, ()A I I I t d I I d d d d VT 521222212==-=-==⎰ππππαπωππα 续流二极管的电流有效值为:A I I d VD R 66.82=+=παπ 晶闸管承受的最大正、反向电压均为电源电压的峰值22U U M =,考虑2~3倍安全裕量,晶闸管的额定电压为()()V U U M TN 933~6223113~23~2=⨯==续流二极管承受的最大反向电压为电源电压的峰值22U U M =,考虑2~3倍安全裕量,续流二极管的额定电压为()()V U U M TN 933~6223113~23~2=⨯==2-2 具有变压器中心抽头的单相双半波可控整流电路如图2-44所示,问该变压器是否存在直流磁化问题。

试说明晶闸管承受的最大反向电压是多少当负载是电阻或者电感时,其输出电压和电流的波形与单相全控桥时是否相同。

解:因为单相双半波可控整流电路变压器二次测绕组中,正负半周内上下绕组内电流的方向相反,波形对称,其一个周期内的平均电流为零,故不会有直流磁化的问题。

分析晶闸管承受最大反向电压及输出电压和电流波形的情况:(1) 以晶闸管 2VT 为例。

当1VT 导通时,晶闸管2VT 通过1VT 与2个变压器二次绕组并联,所以2VT 承受的最大电压为222U 。

电力电子技术第2章 三相相控整流电路

电力电子技术第2章  三相相控整流电路
第2章 三相相控整流电路
1
第2章 三相相控整流电路
2.1 三相半波相控整流电路 2.2 三相全控桥式整流电路 2.3 三相半控桥式整流电路 2.4 变压器漏电抗对整流电路的影响 2.5 三相整流电路应用实例分析
第2章 三相相控整流电路
2
2.1 三相半波相控整流电路
三相半波相控整流电路是最基本的三相可控整流形式, 其余的三相可控整流电路都可看做是由三相半波相控整流电 路以不同方式串联或并联组成的。
(2-2)
第2章 三相相控整流电路
(3) 负载电流的平均值为
流过每个晶闸管的平均电流为
12 (2-3) (2-4)
第2章 三相相控整流电路
流过每个晶闸管电流的有效值为
13 (2-5)
(2-6)
第2章 三相相控整流电路
14
(4) 从图2-1(f)可看出,晶闸管所承受的最大反向电压为
电源线电压的峰值,即
第2章 三相相控整流电路
3
2.1.1 电阻性负载的整流过程
三相半波(又称三相零式)可控整流电路如图2-1(a)所示。 图中T是整流变压器,也可直接由三相四线电源供电。 三只晶闸管的阴极连在一起,称为共阴极接法。共阴极接法
在触发电路中有公共线时,连接比较方便,所以得到了广泛
应用。
第2章 三相相控整流电路
30
图2-7 三相全控桥式整流电路
第2章 三相相控整流电路
31
2.2.1 控制角α=0°时的整流过程
1. 电路整流过程
图2-8所示是控制角α=0°时三相全控桥式整流电路中的 主要波形。为分析方便,把一个周期分为六段(即图2-8(a)中 (1)~(6)段),每段相隔60°。
第2章 三相相控整流电路

第2章 单相可控整流电路

第2章 单相可控整流电路
(2-9)
向负载输出的平均电流值为:
Id U d 2 2U 2 1 cos a U 1 cos a 0.9 2 R pR 2 R 2
b) u VT c) 0 i2 d) 0 ud id 0 a
1,4
d d
(2-11)
流过晶闸管的电流平均值只有 输出直流平均值的一半,即: 1 U 1 cos a I dVT I d 0.45 2 2 R 2
d)
0 i2 0
wt
wt
到触发脉冲即导通,当 u2 过
零时关断。
单相全控桥式带电阻 负载时的电路及波形
2.2 单相桥式全控整流电路
数量关系
1 p 2 2U 2 1 cos a 1 cos a U d 2U 2 sin wtd(wt ) 0.9U 2 p a p 2 2 a 角的移相范围为180。
VT
R
R
2.1 单相半波可控整流电路
单相半波可控整流电路的特点
VT的a 移相范围为180。 简单,但输出脉动大,变压器二次侧电流中含直流分 量,造成变压器铁芯直流磁化。 实际上很少应用此种电路。 分析该电路的主要目的建立起整流电路的基本概念。
1.exe
1.exe
2.2 单相桥式全控整流电路
单相桥式全控整流电路(Single Phase
ud E O i
d
α
q

wt
I
电流连 续
d
O
电流断续
wt
b)
单相桥式全控整流电路接反电动势—电阻负载时的波形
当α < 时,触发脉冲到来时,晶闸管承受负电压,不可能导通。 触发脉冲有足够的宽度,保证当wt=时刻有晶闸管开始承受正电 压时,触发脉冲仍然存在。这样,相当于触发角被推迟为。

第2章 电力电子技术课件(完整)

第2章 电力电子技术课件(完整)

学习要点:
最重要的是掌握其基本特性。 掌握电力电子器件的型号命名法,以及其参数和特性 曲线的使用方法。 了解电力电子器件的半导体物理结构和基本工作原理 了解某些主电路中对其它电路元件的特殊要求。
1-10
2.2
不可控器件—电力二极管· 引言
自20世纪50年代初期就获得应用,但其结构和原理简 单,工作可靠,直到现在电力二极管仍然大量应用于 许多电气设备当中。 在采用全控型器件的电路中电力二极管往往是不可缺 少的,特别是开通和关断速度很快的快恢复二极管和 肖特基二极管,具有不可替代的地位。
1)概念:
电力电子器件(Power Electronic Device)
——可直接用于主电路中,实现电能的变换或控制的电 子器件。
主电路(Main Power Circuit)
——电气设备或电力系统中,直接承担电能的变换或控 制任务的电路。
2)分类:
电真空器件 半导体器件 (汞弧整流器、闸流管) (采用的主要材料硅)
1-26
2.3.1 晶闸管的结构与工作原理
常用晶闸管的结构
螺栓型晶闸管
晶闸管模块
平板型晶闸管外形及结构
1-27
2.3.1 晶闸管的结构与工作原理
按晶体管的工作原理 ,得:
I c1 1I A I CBO1
I c 2 2 I K I CBO2
(2-1)
(2-2)
(2-3) (2-4)
——通过从控制端注入或者抽出电流来实现导通或者 关断的控制。
电压驱动型
——仅通过在控制端和公共端之间施加一定的电压信 号就可实现导通或者关断的控制。
1-9
2.1.4
本章内容:
本章学习内容与学习要点

《电气工程概论》第二章 电力电子技术(第1节)课堂笔记及练习题2

《电气工程概论》第二章 电力电子技术(第1节)课堂笔记及练习题2

《电气工程概论》第二章电力电子技术(第1节)课堂笔记及练习题主题:第二章电力电子技术(第1节)学习时间: 2015年11月23日--11月29日内容:我们这周主要学习电力电子技术第1节中的晶闸管的驱动、功率场效应管、绝缘栅型双极性晶体管、功率半导体器件的保护,通过学习我们要了解掌握晶闸管的驱动,掌握功率场效应管的结构、工作原理、特性、主要参数、安全工作区,掌握绝缘栅型双极性晶体管的结构、工作原理、特性、擎住效应和安全工作区,掌握功率半导体器件的过压、过流保护。

第一节功率半导体器件2.1.6 晶闸管的驱动1.晶闸管触发电路的基本要求:1)触发脉冲信号应有一定的功率和宽度。

2)为使并联晶闸管元件能同时导通,触发电路应能产生强触发脉冲。

3)触发脉冲的同步及移相范围。

4)隔离输出方式及抗干扰能力。

2.常见的触发电路图3-12为常见的触发电路。

它由2个晶体管构成放大环节、脉冲变压器以及附属电路构成脉冲输出环节组成。

当2个晶体管导通时,脉冲变压器副边向晶闸管的门极和阴极之间输出脉冲。

脉冲变压器实现了触发电路和主电路之间的电气隔离。

脉冲变压器原边并接的电阻和二极管是为了脉冲变压器释放能量而设的。

2.1.7 功率场效应晶体管功率场效应晶体管是一种单极型电压控制半导体元件,其特点是控制极静态内阻极高、驱动功率小、开关速度快、无二次击穿、安全工作区宽,开关频率可高达500kHZ,特别适合高频化的电力电子装置。

但由于电流容量小、耐压低,一般只适用小功率的电力电子装置。

1.结构与工作原理(1)结构功率场效应晶体管按导电沟道可分为P沟道和N沟道;根据栅源极电压与导电沟道出现的关系可分为耗尽型和增强型。

功率场效应晶体管一般为N沟道增强型。

从结构上看,功率场效应晶体管与小功率的MOS管有比较大的差别。

图3-13给出了具有垂直导电双扩散MOS结构的VD-MOSFET单元的结构图及电路符号。

(2)工作原理如图3-13 所示,功率场效应晶体管的三个极分别为栅极G、漏极D和源极S。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I o 2.34 U 2 1 cos RL 2
IT
D6
电阻性 负载
1 Io 3
节首页 上一页 下一页
流过晶闸管和二极管的电流平均值为:
整流元件承受的最高正、反向电压为:
UFRM URRM 3 2U2 2.45 2 U
《电工电子应用技术(电工学Ⅱ)》
章目录
普通高等教育“十一五”国家级规划教材
iL
R e L
u2 a T1 T2 b D L
续流 二极管
uo
D1
D2
电感性负载的特点:电流的变化滞后于电压的变化,在电源电压正半 周过零时电流还未过零,有可能会使晶闸管的阳极电流IA仍大于维持 电流IH ,晶闸管不能及时自行关断。 该电路加续流二极管后电路工作情况以及负载上的电流、电压和电 阻性负载类似。
章目录
节首页
上一页
下一页
《电工电子应用技术(电工学Ⅱ)》
普通高等教育“十一五”国家级规划教材
第2章
电力电子技术
u
O
工 作 波 形
uG uO
O


2
t
t
t
uT1
O
t
:控制角 :导通角
章目录 节首页 上一页 下一页
《电工电子应用技术(电工学Ⅱ)》
普通高等教育“十一五”国家级规划教材
iG
G
iB 2
β 2 iG + T2 EA
+
_
_
EG K
EA > 0、EG > 0
章目录
节首页
上一页
下一页
《电工电子应用技术(电工学Ⅱ)》
普通高等教育“十一五”国家级规划教材
第2章
电力电子技术
A
形成正反馈过程
β 1β 2 iG
T1 G
R
iC 2 2 iG iB1
i B 2 iG
iG
章目录
节首页
上一页
下一页
《电工电子应用技术(电工学Ⅱ)》
普通高等教育“十一五”国家级规划教材
第2章
电力电子技术
晶闸管相当于PNP和NPN型两个晶体管的组合
A P1 N1 G P2 N2 K G
A P
+ IA
P1
A
N
P
N
P N K
章目录
P2 G
N1 T1
P2 N2 N1
IG
T2
IK
_K
节首页 上一页 下一页
晶闸管导通的条件:
① 阳极A(阳极与阴极之间) 加正向电压。 ② 控制极G(控制极与阴极之间)加正向触发电压。 晶闸管导通后,控制极便失去作用。 晶闸管关断的条件: ①必须使可控硅阳极电流减小,直到正反馈效应不能维持。 ②将阳极电源断开或者在晶闸管的阳极和阴极间加反向电压。
章目录
节首页
上一页
下一页
《电工电子应用技术(电工学Ⅱ)》
第2章
电力电子技术
教 学 目 标

基本器件
主要应用
发展与展望
《电工电子应用技术(电工学Ⅱ)》
普通高等教育“十一五”国家级规划教材
第2章 电力电子技术
第一节 晶闸管可控整流电路 第二节 晶闸管逆变技术
第三节 晶闸管集成触发电路
第四节 晶闸管的其他应用电路
第五节 电力电子技术发展
直流电动势源
数值应稍大于变流器直流侧的平均电压。
控制角α> 2
0<α<
以上两个条件必须同时具备,缺一不可。
同一变流器既可进行整流,又可进行逆变:
注意:
,中间状态 α= 2 <α<π ,逆变状态 2
第2章
电力电子技术
例1:桥式可控整流电路中,
U2=220V,RL=3,可控硅控制角 =15~180,求输出电压平均 值Uo的调节范围,以及可控硅 (包括二极管)的最大电流平均 值和承受的最大反向电压。
io a
+

T1
T2

b
u
RL
D1
解:
1 cos Uo 0.9U 2 2
D2
+ + uO – –
门极触发电压UG和触发电流IG
在规定的环境温度下,晶闸管的阳极和阴极间加6V正向直流电压, 使晶闸管由阻断状态转入导通状态所需的门极最小直流电压和电流。
此外,还有开通时间ton、关断时间toff、电流上升率di/dt及 电压上升率du/dt等。
章目录
节首页
上一页
下一页
《电工电子应用技术(电工学Ⅱ)》
第2章
电力电子技术
α和θ的关系为:
α+θ=180o
π
1 cosα 1 1 U ο u d(t ) 2U sin t d(t ) 0.9U πα πα 2 U U 1 cosα IO 0.9 Rο RL 2:
=191V, =15
=0V, =180
Uo 191 / 6 31.83 A Io 2RL
二极管承受的最高反向电压: UDRM= 《电工电子应用技术(电工学Ⅱ)》
2U 2 =311V
节首页 上一页 下一页
章目录
普通高等教育“十一五”国家级规划教材
第2章
电力电子技术
②电感性负载桥式可控整流电路
普通高等教育“十一五”国家级规划教材
第2章
电力电子技术
二、可控整流电路 (1) 单相桥式半控整流电路 ① 接电阻性负载路 u > 0 时,
io a
+
T1和D2承受正向电压。 在T1控制极加触发电压时, T1和D2导通,电流的通路为
T1
T2


b
u
RL
D1 D2
+ + uO – –
a
T1
RL
D2
b
此时,T2和D1均承受反向电压而截止。
额定电压UD 通常UFRM和URRM中较小的那个。 选元件时, UD应为实际工作峰值电压的2~3倍。 正向平均电压UF UF又称管压降,当通过额定通态平均电流时,晶闸管的阳极和阴极间电 压降的平均值。一般在0.6~1.2V范围内。 正向平均电流IF IF简称正向电流,指环境温度为40°C及标准散热条件下,全导通时可以 连续通过的工频正弦半波电流的平均值。
普通高等教育“十一五”国家级规划教材
第2章
电力电子技术
(3)晶闸管的伏安特性
I f (U )曲线
正向平均电流
I
IF
+ _
IG2 > IG1 > IG0 IG2 IG1 IG0 U UFRM UBO U 正向转折电压 正向特性
章目录 节首页 上一页 下一页
维持电流
UBR URRM
IH
O
反向转折电压
《电工电子应用技术(电工学Ⅱ)》 普通高等教育“十一五”国家级规划教材
第2章
电力电子技术
电力电子技术: 是电子技术的另一分支,是一门应用于 电力领域的电子技术。 电力电子技术研究内容: 使用电力电子器件对电能进行变换和控制。 通常又分两个分支:

电力电子器件制造技术
普通高等教育“十一五”国家级规划教材
第2章
电力电子技术
(2)单相桥式全控整流电路
a
+

T1
T2
RL

b
u
T4
2 4 1 3 1 3
T3
+ + uO – –
u>0:T 和T 反偏而截止,而T 和T 正偏,此时若在T 和T 的门极 加触发脉冲,则T 和T 立即导通, 直至u开始进入负半周过
1 3
零值时才截止; u<0:T1和T3反偏而截止,而T2和T4正偏,此时若在T2和T4的门极加 触发脉冲,则T2和T4立即导通, 直至u2开始进入正半周过零 值时才截止。 各处波形类似单相半控桥式整流电路。
电力电子器件的应用技术
电力电子技术始于晶闸管的出现。
章目录
节首页
上一页
下一页
《电工电子应用技术(电工学Ⅱ)》
普通高等教育“十一五”国家级规划教材
第2章
电力电子技术
2.1 晶闸管可控整流电路
一、晶闸管(Thyristor) 旧称:可控硅(SCR)(Silicon Controlled Rectifier)
章目录 节首页 上一页 下一页
《电工电子应用技术(电工学Ⅱ)》
普通高等教育“十一五”国家级规划教材
第2章
π
电力电子技术
1 Im IF I m sin td (t ) π 2π 0
普通晶闸管IF为1A 。 维持电流 IH 在规定的环境和门极开路时,晶闸管维持导通状态所必须的最小电流。 一般为几~十几百毫安。
iB 2
β 2 iG
+
_
EG
+ EA T2 _
1 2 iG iB 2
iC1 β1iC2
晶闸管导通后,去掉
EG , 依靠正反馈,仍可
维持导通状态。
K
EA > 0、EG > 0
章目录 节首页 上一页 下一页
《电工电子应用技术(电工学Ⅱ)》
普通高等教育“十一五”国家级规划教材
第2章
电力电子技术
第2章
电力电子技术
α 与 波 形 的 关 系
章目录
节首页
上一页
下一页
《电工电子应用技术(电工学Ⅱ)》
普通高等教育“十一五”国家级规划教材
第2章
电力电子技术
2.2
一、逆变的概念
相关文档
最新文档