高等数学极限例题
(完整版)高等数学函数与极限试题
高等数学第一章函数与极限试题一. 选择题1.设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(A ) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C ) F(x)是周期函数⇔f(x)是周期函数. (D ) F(x)是单调函数⇔f(x)是单调函数 2.设函数,11)(1-=-x x ex f 则 (A ) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点(C ) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D ) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点.3.设f (x)=xx 1-,x ≠0,1,则f [)(1x f ]= ( )A ) 1-xB ) x-11C ) X1 D ) x4.下列各式正确的是 ( )A )lim 0+→x )x1+1(x=1 B )lim 0+→x )x1+1(x=eC )lim ∞→x )x11-(x=-e D )lim ∞→x )x1+1(x-=e5.已知9)(lim =-+∞→xx ax a x ,则=a ( )。
A.1;B.∞;C.3ln ;D.3ln 2。
6.极限:=+-∞→xx x x )11(lim ( )A.1;B.∞;C.2-e ; D.2e7.极限:∞→x lim 332x x +=( ) A.1; B.∞; C.0; D.2.8.极限:xx x 11lim-+→=( ) A.0; B.∞; C 21; D.2.9. 极限:)(lim 2x x x x -+∞+→=( )A.0;B.∞;C.2;D. 21.10.极限: xxx x 2sin sin tan lim30-→=( )A.0;B.∞;C. 161; D.16.二. 填空题 11.极限12sinlim 2+∞→x xx x = . 12.lim→x xarctanx =_______________.13. 若)(x f y =在点0x 连续,则)]()([lim 0→-0x f x f x x =_______________;14. =→xxx x 5sin lim0___________;15. =-∞→nn n)21(lim _________________;16. 若函数23122+--=x x x y ,则它的间断点是___________________17. 绝对值函数 ==x x f )(⎪⎩⎪⎨⎧<-=>.0,;0,0;0,x x x x x x 其定义域是 ,值域是18. 符号函数 ==x x f sgn )(⎪⎩⎪⎨⎧<-=>.0,1;0,0;0,1x x x其定义域是 ,值域是三个点的集合19. 无穷小量是20. 函数)(x f y =在点x0 连续,要求函数y f (x) 满足的三个条件是 三. 计算题 21.求).111(lim 0x ex xx --+-→ 22.设f(e1-x )=3x-2,求f(x)(其中x>0);23.求lim 2x →(3-x)25--x x ;()()x x x x f 25lg 12-+-+=24.求lim ∞→x (11-+x x )x; 25.求lim 0x →)3(2tan sin 22x x x x + 26. 已知9)(lim =-+∞→xx ax a x ,求a 的值; 27. 计算极限nnnn 1)321(lim ++∞→28.求它的定义域。
高等数学极限习题100道
设,求证:.lim ()lim ()x x x x f x A f x A →→==0)sin 1(sin lim n n n -+∞→求数列的极限[]Ax f Au f u x u x x x u u x x =ϕ=≠ϕ=ϕ→→→)(lim )(lim )()(lim 000试证:,又,且设设试确定实数,之值,使得:当时,为无穷小;当时,为无穷大。
f x x xa b x a f x x b f x ()ln ()()=-→→1设,问:当趋于何值时,为无穷小。
f x xx x f x ()tan ()=2.该邻域内 的某去心邻域,使得在证明:存在点,且,若)()()(lim )(lim 00x f x g x AB B x g A x f x x x x >>==→→设,试证明:对任意给定的,必存在正数,使得对适含不等式;的一切、,都有成立。
lim ()()()x x f x A x x x x x x f x f x →=><-<<-<-<000010201221εδδδε.,试用极限定义证明:已知:A x f A x f x x x x =>=→→)(lim0)(lim 0{}{}{}是否也必发散?同发散,试问数列与若数列n n n n y x y x +设 其中、为常数,,求的表达式;确定,之值,使,.f x x x a bx x a b a f x a b f x f f x f n n n x x ()limsincos()()()()()lim ()()lim ()()=+++<<==-→∞-→→-2121121021211ππ求的表达式f x x n n ()lim (ln )=+→∞+11221 的表达式.求n n n n n xx x x x f ---+∞→++=12lim )( .,求,设)(lim )()()()(1)(33)(22x f x f x x x x f x x x n n n n ∞→=ϕ++ϕ+ϕ+=+-=ϕ 求的表达式.f x x x x x x xx n n ()lim ()()=+++++++⎡⎣⎢⎤⎦⎥→∞-11122221 .,求,其中设n n k nk k n S k b b kS ∞→=+==∑lim )!1(1求的表达式。
高等数学(函数与极限)习题及解答
练习1-1
练习1-2
练习1-3
练习1-4
练习1-5
练习1-6
练习1-7
练习1-8
练习1-9练ຫໍສະໝຸດ 1-10高等数学习题高等数学函数高等数学习题集高等数学习题详解蔡高厅高等数学习题高等数学函数公式高等数学习题答案高等数学极限高等数学极限试题高等数学求极限
本资料为word版本,可以直接编辑和打印,感谢您的下载
高等数学(函数与极限)习题及解答
地点:__________________
时间:__________________
高等数学第一章-习题
x x0
x
无穷大: 绝对值无限增大的变量称为无穷大.
记作 lim f ( x) (或 lim f ( x) ).
x x0
x
无穷小与无穷大的关系
在同一过程中,无穷大的倒数为无穷小;恒不为 零的无穷小的倒数为无穷大.
无穷小的运算性质
定理1 在同一过程中,有限个无穷小的代数和 仍是无穷小. 定理2 有界函数与无穷小的乘积是无穷小. 推论1 在同一过程中,有极限的变量与无穷小的 乘积是无穷小. 推论2 常数与无穷小的乘积是无穷小. 推论3 有限个无穷小的乘积也是无穷小.
解
原式
lim[1
tan
x
sin
x
1
]x3
x0
1 sin x
lim x0
tan x sin 1 sin x
x
1 x3
sin x(1 cos x) lim x0 (1 sin x)cos x
1 x3
lim
x0
sin x
x
1
cos x2
x
1
(1 sin x)cos
x
1 2
1
原式 e2 .
例3
(2)可去间断点 如果f ( x)在点x0处的极限存在,
但 lim x x0
f (x)
A
f ( x0 ),或f ( x)在点x0处无定
义则称点x0为函数f ( x)的可去间断点.
跳跃间断点与可去间断点统称为第一类间断点. 特点: 函数在点x0处的左, 右极限都存在.
第
y
y
一
可去型
跳跃型
类
间
断
点
0 x0
9、闭区间上连续函数的性质
大一高数极限练习题
大一高数极限练习题大一高数极限练习题大学的数学课程对于许多学生来说是一项挑战。
尤其是大一的高等数学,其中的极限概念常常让人头痛。
然而,通过不断的练习和理解,我们可以逐渐掌握这一概念,并将其应用于解决各种数学问题。
在大一高数的极限章节中,练习题是非常重要的一部分。
通过解决练习题,我们可以巩固所学的知识,并培养我们的数学思维能力。
下面,我将分享几个有趣的极限练习题,希望能够帮助大家更好地理解和掌握这一概念。
1. 计算极限:lim(x→0) (sinx/x)这是一个经典的极限问题,也是我们在学习极限概念时经常遇到的。
要解决这个问题,我们可以使用泰勒级数展开式来逼近sinx和x的关系。
通过展开sinx,我们可以得到一个无穷级数,其中包含了x的各次幂。
当我们将x趋近于0时,只保留一阶项,则可以得到极限为1。
这个问题展示了使用级数展开来解决极限问题的方法。
2. 计算极限:lim(n→∞) (1+1/2+1/3+...+1/n)这个问题是一个无穷级数的求和问题。
我们可以将这个无穷级数转化为一个极限问题,通过不断增加n的值来逼近无穷。
当n趋近于无穷时,求和式也会趋近于无穷。
然而,通过数值计算和数学推导,我们可以得到这个无穷级数的极限为ln(n)。
这个问题展示了将无穷级数转化为极限问题,并通过数学推导求解的方法。
3. 计算极限:lim(x→∞) (x^2 - √(x^4 + 1))/(x^2 + 1)这个问题涉及到分子分母同时含有x的高次幂的情况。
要解决这个问题,我们可以使用洛必达法则。
通过对分子和分母同时求导,然后再次计算极限,我们可以得到极限为1/2。
这个问题展示了使用洛必达法则来解决复杂的极限问题的方法。
通过解决这些极限练习题,我们可以锻炼我们的数学思维能力,并加深对极限概念的理解。
在解决这些问题的过程中,我们需要灵活运用各种数学方法,如级数展开、洛必达法则等。
同时,我们还需要注意数学符号的运用和计算的准确性,以避免出现错误的结果。
高等数学极限练习题
1、求函数21arcsin )2lg(1-+-=x x y 的定义域。
2、已知函数)(x f 的定义域是)0,(-∞,求函数)(ln x f 的定义域。
3、已知函数)(x f 的定义域是]1,0[,求)2(),2(x f x f +的定义域。
4、设函数)(x f 的定义域是]2,1[,则函数)ln 1(x f -的定义域是什么?5、设b ax x x f ++=2)(,其中b a ,为待定常数。
① 已知0)2()3(==-f f ,求这个函数。
② 求)()(),1(),(00x f h x f xf x f -+- 6、已知1)1(3-=-x x f ,求)(x f 。
7、设⎪⎩⎪⎨⎧>-=<=111011)(x x x x f x e x g =)( 求)]([)],([x f g x g f ,并画出两函数的图像。
8、设函数⎩⎨⎧>≤=0100)(x x x f ⎩⎨⎧≥-<-=1111)(x x x x x g证明:)]([)(1x f g x f =-9、设函数)(x f y =的图像关于原点对称,且当0<x 时,2cos )(3+-=x x x f 求当0>x 时)(x f 的表达式。
10、已知)(x f 在]2,2[-上是偶函数,且当]0,2[-∈x 时,x x x f +=22)(,则当]2,0[∈x 求函数)(x f 的表达式。
11、设函数)(x f 在区间),(a a -上有定义,求证:)()(x f x f -+是偶函数。
)()(x f x f --是奇函数。
12、设)(x f 为奇函数,,)1(a f =且)2()()2(f x f x f =-+① 试用a 表示)5(),2(f f 。
② 问a 取何值时,)(x f 以2为周期。
13、设)(x f 是定义在),(+∞-∞上的奇函数,)()2(x f x f -=+,当]1,0[∈x 时x x f =)(,求)5.7(f 。
高等数学第一章函数与极限试题
第一章 函数与极限§1 函数一、是非判断题1、)(x f 在X 上有界,)(x g 在X 上无界,则)()(x g x f +在X 上无界。
[ ]2、)(x f 在X 上有界的充分必要条件是存在数A 与B ,使得对任一X x ∈都有B x f A ≤≤)( [ ] 3、)(),(x g x f 都在区间I 上单调增加,则)(·)(x g x f 也在I 上单调增加。
[ ] 4、定义在(∞+∞-,)上的常函数是周期函数。
[ ] 5、任一周期函数必有最小正周期。
[ ] 6、)(x f 为(∞+∞-,)上的任意函数,则)(3x f 必是奇函数。
[ ] 7、设)(x f 是定义在[]a a ,-上的函数,则)()(x f x f -+必是偶函数。
[ ] 8、f(x)=1+x+ 2x 是初等函数。
[ ] 二.单项选择题1、下面四个函数中,与y=|x|不同的是 (A )||ln xey = (B )2x y = (C )44x y = (D )x x y sgn =2、下列函数中 既是奇函数,又是单调增加的。
(A )sin 3x (B )x 3+1 (C )x 3+x (D )x 3-x 3、设[])(,2)(,)(22x x f x x f x ϕϕ则函数==是(A )x 2log (B )x 2 (C )22log x (D )2x4、若)(x f 为奇函数,则 也为奇函数。
(A));0(,)(≠+c c x f (B) )0(,)(≠+-c c x f (C) );()(x f x f + (D) )].([x f f - 三.下列函数是由那些简单初等函数复合而成。
1、 y=)1arctan(+x e2、 y=x x x ++3、 y=xln ln ln四.设f(x)的定义域D=[0,1],求下列函数的定义域。
(1) f()2x(2) f(sinx)(3) f(x+a) (a>0)(3) f(x+a)+f(x-a) (a>0)五.设⎩⎨⎧=,,2)(x x x f 00≥<x x ,⎩⎨⎧-=,3,5)(x x x g 00≥<x x ,求)]([x g f 及)]([x f g 。
高等数学习题及解答(极限,连续与导数)
高等数学习题库淮南联合大学基础部2008年10月第一章 映射,极限,连续习题一 集合与实数集基本能力层次:1: 已知:A ={x|1≤x ≤2}∪{x|5≤x ≤6}∪{3},B={y|2≤y ≤3} 求:在直角坐标系内画出 A ×B解:如图所示A ×B ={(x,y )| ,x A y B ∈∈ }.2:证明:∵ P 为正整数,∴p =2n 或p =2n+1,当p =2n+1时,p 2=4n 2+4n+1,不能被2整除,故p =2n 。
即结论成立。
基本理论层次:习题二 函数、数列与函数极限基本能力层次1:解:2:证明:由得cxy ay ax b -=+即 ay bx cy a+=-,所以 ()x f y = 所以命题成立3:(1)22x y -= (2)lg(sin )y x = (3 []y x = (4)0,01,0x y x ≥⎧⎫=⎨⎬<⎩⎭解:4:用极限定义证明: 1lim1n n n →∞-=(不作要求)证明:因为 ω∀ 有11|1|n n n ω--=<成立,只要1n ω>取N =[1ω],则当n>N 时,就有11|1|n n nω--=<有定义变知1lim 1n n n →∞-=成立5:求下列数列的极限(1)lim 3n n n →∞ (2)222312limn n n →∞+++(3)(4)n 解:(1) 233nn n n <,又2lim 03nn x →∞=,所以 0lim 03n n n →∞≤≤ , 故:lim 3n n n →∞=0(2)由于2223312(1)(21)111(1)(2)6n n n n n n n n n+++++==++又因为:1111lim (1)(2)63n n n n →∞++=,所以:2223121lim3n n n →∞+++ (3)因为:所以:(4) 因为:111n n≤≤+,并且1lim(1)1n n →∞+=, 故由夹逼原理得1n =6:解:由于7:解:8:9:习题三无穷小与无穷大、极限运算法则及两个重要极限基本理论层次1:解:同理:(3),(4)习题四无穷小的比较、函数的连续及性质基本理论层次1:(1)(2)2:第二章一元微分学及应用习题一导数及求导法则、反函数及复合函数的导数.基本理论层次21,1,,,,1()(1)(1)lim lim 1x a b x bx x f x f bx x ⎧+≥⎪⎨-+<⎪⎩-+-==-2222-ax 1.设f(x)=试求常数使f(x)在x=1处可导。
高等数学测试题一(极限、连续)答案
高等数学测试题(一)极限、连续部分(答案)一、选择题(每小题4分,共20分) 1、 当0x →+时,(A )无穷小量。
A 1sin x xB 1x e C ln x D 1sin x x2、点1x =是函数311()1131x x f x x x x -<⎧⎪==⎨⎪->⎩的(C )。
A 连续点B 第一类非可去间断点C 可去间断点D 第二类间断点 3、函数()f x 在点0x 处有定义是其在0x 处极限存在的(D )。
A 充分非必要条件B 必要非充分条件C 充要条件D 无关条件4、已知极限22lim()0x x ax x→∞++=,则常数a 等于(A )。
A -1B 0C 1D 25、极限201lim cos 1x x e x →--等于(D )。
A ∞B 2C 0D -2二、填空题(每小题4分,共20分)1、21lim(1)xx x→∞-=2e -2、 当0x →+时,无穷小ln(1)Ax α=+与无穷小sin 3x β=等价,则常数A=33、 已知函数()f x 在点0x =处连续,且当0x ≠时,函数21()2x f x -=,则函数值(0)f =04、 111lim[]1223(1)n n n →∞+++∙∙+=15、 若lim ()x f x π→存在,且sin ()2lim ()x xf x f x x ππ→=+-,则lim ()x f x π→=1二、解答题1、(7分)计算极限 222111lim(1)(1)(1)23n n→∞--- 解:原式=132411111lim()()()lim 223322n n n n n n n n →∞→∞-++∙∙∙=∙= 2、(7分)计算极限 30tan sin lim x x xx →-解:原式=2322000sin 1sin 1cos 1cos 2lim lim lim cos cos 2x x x x x xx x x x x x x →→→--=== 3、(7分)计算极限 123lim()21x x x x +→∞++ 解:原式= 11122112221lim(1)lim(1)121211lim(1)lim(1)22x x x x x x x xx e x x +++→∞→∞+→∞→∞+=+++=+∙+=++4、(7分)计算极限 01x x e →-解:原式=201sin 12lim 2x x xx →=5、(7分)设3214lim 1x x ax x x →---++ 具有极限l ,求,a l 的值解:因为1lim(1)0x x →-+=,所以 321lim(4)0x x ax x →---+=,因此 4a = 并将其代入原式321144(1)(1)(4)lim lim 1011x x x x x x x x l x x →-→---++--===++6、(8分)设3()32,()(1)n x x x x c x αβ=-+=-,试确定常数,c n ,使得()()x x αβ解:32221()32(1)(2)(1)(2)3lim ,3,2(1)x x x x x x x x c n c x cα→=-+=-+-+=∴==- 此时,()()x x αβ7、(7分)试确定常数a ,使得函数21sin 0()0x x f x xa xx ⎧>⎪=⎨⎪+≤⎩在(,)-∞+∞内连续解:当0x >时,()f x 连续,当0x <时,()f x 连续。
高等数学 极限与连续(习题)
第二章 极限与连续习题2-11、观察下列数列的变化趋势,判别哪些数列有极限,如有极限,写出它们的极限. (1)nn a x 1= )1(>a ; 有. 0lim =∞→n n x .(2) nx n n 1)1(1--=; 有. 0lim =∞→n n x .(3) n x n n 1)1(--=; 无.(4) 2sin πn x n =; 无.(5) 11+-=n n x n; 有. 1lim =∞→n n x .(6) nn x )1(2-=; 无. (7) nx n 1cos =; 有. 1lim =∞→n n x .(8) nx n 1ln=. 无.2、设9.01=u ,99.02=u ,个n n u 999.0,=,问 (1) ?lim =∞→n n u(2) n 应为何值时,才能使n u 与其极限之差的绝对值小于0001.0? 解:(1) 显然,n n u 1011-=,可见1lim =∞→n n u ; (2) 欲使41010001.0101|1|=<=-n n u ,只需5≥n 即可.3、对于数列⎭⎬⎫⎩⎨⎧+=1}{n n x n ,),2,1( =n ,给定(1)1.0=ε;(2)01.0=ε; (3)001.0=ε时,分别取怎样的N ,才能使当N n >时,不等式ε<-|1|n x 成立,并利用极限定义证明此数列的极限为1.解:欲使ε=<+=-+=-k n n n n x 1011111|1|,只需110->k n .(1)若给定1.0=ε,此时1=k ,取91101=-=N 即可; (2)若给定01.0=ε,此时2=k ,取991102=-=N 即可; (3)若给定001.0=ε,此时3=k ,取9991103=-=N 即可;下面证明1lim =∞→n n x . 欲使ε<<+=-n n x n 111|1|,只需ε1>n . 0>∀ε,取+∈+=N 1]1[εN ,当ε1≥>N n 时,恒有ε<-|1|n x ,所以 1lim 1lim==+∞→∞→n n n x n n.4、用极限定义考查下列结论是否正确,为什么?(1)设数列}{n x ,当n 越来越大时,||a x n -越来越小,则a x n n =∞→lim .解:结论错误.例如取nx n 11+=,0=a ,显然n a x n 11||+=-越来越小,但a x n n =≠=∞→01lim .(2)设数列}{n x ,当n 越来越大时,||a x n -越来越接近于0,则a x n n =∞→lim .解:结论错误.例如取nx n 11+=,0=a ,显然n a x n 11||+=-越来越接近于0,但a x n n =≠=∞→01lim .(3)设数列}{n x ,0>∀ε,N ∃,当N n >时,有无穷多个n x 满足ε<-||a x n ,则a x n n =∞→lim .解:结论错误.例如取n n x )1(-=,1=a ,显然0||2=-a x k ,),2,1( =k ,那么0>∀ε,1=∃N ,当N n >时,有无穷多个n x ,满足ε<-||a x n , 但显然n n x ∞→lim 不存在.(4)设数列}{n x ,若对0>∀ε,}{n x 中仅有有限个n x 不满足ε<-||a x n ,则a x n n =∞→lim .解:结论正确.0>∀ε,假设仅有k n n n x x x ,,,21 不满足ε<-||a x n ,于是取+∈=N },,,max{21k n n n N ,那么当N n >时,ε<-||a x n , 所以a x n n =∞→lim .5、用极限性质判别下列结论是否正确,为什么? (1)若}{n x 收敛,则k n n n n x x +∞→∞→=lim lim (k 为正整数);解:结论正确.显然}{k n x +是}{n x 的子数列,故n n k n n x x ∞→+∞→=lim lim .(2)有界数列}{n x 必收敛;解:结论错误.例如取n n x )1(-=,虽然}{n x 有界,但显然}{n x 发散.(3)无界数列}{n x 必发散;解:结论正确. 因收敛数列必有界,那么无界数列必发散.(4)发散数列}{n x 必无界.解:结论错误.例如取n n x )1(-=,虽然}{n x 发散,但显然}{n x 有界.6、利用数列的“N -ε”分析定义证明下列极限: (1) 01lim2=∞→n n ;分析:0>∀ε,欲使ε<≤=-nn x n 11|0|2,只需ε1>n 或1]1[+>εn 即可. 证明:0>∀ε,取+∈+=N 1]1[εN ,当ε1≥>N n 时,恒有ε<≤=-nn x n 11|0|2, 所以 0lim 1lim 2==∞→∞→n n n x n .(2) 321312l i m =++∞→n n n ;分析:0>∀ε,欲使ε<<+=-++=-n n n n x n 1)13(3132131232, 只需ε1>n 或1]1[+>εn 即可.证明:0>∀ε,取+∈+=N 1]1[εN ,当ε1≥>N n 时,恒有ε<<+=-n n x n 1)13(3132,所以 32lim 1312lim==++∞→∞→n n n x n n .(3) 1)311(lim =-∞→nn ; 分析:0>∀ε,欲使ε<≤=-nn x n 131|1|,只需ε1>n 或1]1[+>εn 即可.证明:0>∀ε,取+∈+=N 1]1[εN ,当ε1≥>N n 时,恒有ε<≤=-nn x n 131|1|,所以 1lim )311(lim ==-∞→∞→n n n x n.(4) 0sin lim=∞→nnn .分析:0>∀ε,欲使ε<≤=-nn n x n 1sin |0|,只需ε1>n 或1]1[+>εn 即可.证明:0>∀ε,取+∈+=N1]1[εN ,当ε1≥>N n 时,恒有ε<≤=-nn n x n 1s i n |0|, 所以 0lim sin lim==∞→∞→n n n x n n.7、若0lim =∞→n n u ,证明0||lim =∞→n n u ,并举例说明,如果数列|}{|n u 有极限,但数列}{n u 未必有极限.证明:因0lim =∞→n n u ,有0>∀ε,+∈∃N N ..t s N n >时,ε<-|0|n u ,于是 ε<-=-|0|0||n n u u , 所以0||lim =∞→n n u .而若取n n u )1(-=,显然1||lim =∞→n n u ,但显然}{n u 没有极限.8、对于数列}{n x ,若a x k →-12,)(∞→k ,a x k →2,)(∞→k ,证明a x n →,)(∞→n .证明:因0lim 12=-∞→k k x ,有0>∀ε,+∈∃N 1N ..t s 1N k >时,ε<--||12a x k ,又因0lim 2=∞→k k x ,对0>ε,+∈∃N 2N ..t s 2N k >时,ε<-||2a x k ,取+∈=N }2,2max{21N N N ,当N n >时,若12-=k n ,有1122221N N N n k =≥>+=,ε<-=--||||12a x a x k n , 若k n 2=,有222222N N N n k =≥>=,ε<-=-||||2a x a x k n , 总之,当N n >时,ε<-||a x n ,所以a x n →,)(∞→n .习题2-21、用极限定义证明: (1) 12)25(lim 2=+→x x ;分析:0>∀ε,欲使ε<-=-|2|5|12)(|x x f ,只需5|2|ε<-x 即可.证明:0>∀ε,取05>=εδ,当δ<-<|2|0x 时,恒有ε<-=-|2|5|12)(|x x f ,所以 12)(lim )25(lim 22==+→→x f x x x .(2) 424lim 22-=+--→x x x ;分析:0>∀ε,欲使ε<+=--|2||)4()(|x x f ,只需ε<+<|2|0x 即可. 证明:0>∀ε,取0>=εδ,当δ<--<|)2(|0x 时,恒有ε<+=+-=--+-=--|2||4)2(|)4(24|)4()(|2x x x x x f ,所以 4)(lim 24lim 222-==+--→-→x f x x x x .(3) 8)13(lim 3=-→x x .分析:0>∀ε,欲使ε<-=-|3|3|8)(|x x f ,只需3|3|ε<-x 即可.证明:0>∀ε,取03>=εδ,当δ<-<|3|0x 时,恒有ε<-=-|3|3|12)(|x x f ,所以 8)(lim )13(lim 33==-→→x f x x x .2、用极限定义证明: (1) 656lim=+∞→xx x ;分析:0>∀ε,欲使ε<=-xx f 5|6)(|,只需ε5||>x 即可.证明:0>∀ε,取05>=εK ,当ε5||>x 时,恒有ε<=-x x f 5|6)(|,所以 6)(lim 56lim==+∞→∞→x f xx x x .(2) 0sin lim=+∞→xxx .分析:0>∀ε,欲使ε<≤=-xx x x f 1sin |0)(|,只需21ε>x 即可.证明:0>∀ε,取012>=εK ,当K x >时,恒有ε<≤-x x f 1|0)(|,所以 0)(lim sin lim ==∞→+∞→x f xxx x .3、当2→x 时,42→=x y ,问δ等于多少,则当δ<-<|2|0x 时,001.0|4|<-y ?(提示:因为2→x ,所以不妨设31<<x ). 解:欲使|2||4)2(||2||2||4||4|2-⋅+-=-⋅+=-=-x x x x x y3101001.0|2|5|2|)4|2(|=<-≤-+-≤x x x , 只需0002.01051|2|3=⋅<-x 即可. 因此,取0002.0=δ,当δ<-<|2|0x 时,有001.0|4|<-y .4、设⎩⎨⎧≥-<=.3 ,13,3,)(x x x x x f 作)(x f 的图形,并讨论3→x 时, )(x f 的左右极限(利用第1题(3)的结果). 解:(1) )(x f 的图形.(2) 令x x g =)(,13)(-=x x h ,已知3lim )(lim 33==→→x x g x x ,8)13(lim )(lim 33=-=→→x x h x x ,于是3)(lim 3=-→x g x ,8)(lim 3=+→x h x . 显然,当3<x 时,)()(x g x f =,于是3)(lim )(lim 33==--→→x g x f x x ; 当3>x 时,)()(x h x f =,于是8)(lim )(lim 33==++→→x h x f x x .5、证明||)(x x f =,当0→x 时的极限为零. 证明:0>∀ε,取0>=εδ,当δ<<||0x 时,恒有ε<=-=-||0|||0)(|x x x f ,所以 0)(lim ||lim 0==→→x f x x x .6、函数xx x f ||)(=,回答下列问题: (1)函数)(x f 在0=x 处的左右极限是否存在? 答:)(x f 在0=x 处的左右极限是均存在.这是因为:1)1(lim lim )(lim 000-=-=-=---→→→x x x x xx f ; 11lim lim )(lim 000===+++→→→x x x x xx f .(2)函数)(x f 在0=x 处是否有极限? 答:)(x f 在0=x 处是没有极限.这是因为:)(lim 11)(lim 0x f x f x x +-→→=≠-=.(3)函数)(x f 在1=x 处是否有极限? 答:)(x f 在1=x 处有极限.这是因为:11lim lim )(lim 111===---→→→x x x x xx f ;11lim lim )(lim 111===+++→→→x x x x xx f . 由于1)(lim )(lim 11==+-→→x f x f x x ,故1)(lim 1=→x f x .7、证明A x f x x =→)(lim 0的充要条件是A x f x f x x x x ==-+→→)(lim )(lim 00. 证明:“必要性”A x f x x =→)(lim 0⇒0>∀ε,0>∃δ..t s δ<-<||00x x 时,ε<-|)(|A x f ,从而,当 δ<-<00x x 时, ε<-|)(|A x f ; 也有,当 δ<-<x x 00时, ε<-|)(|A x f ,所以 A x f x f x x x x ==-+→→)(lim )(lim 0. “充分性” A x f x f x x x x ==-+→→)(lim )(lim 0⇒ 0>∀ε,0,21>∃δδ ..t s当 100δ<-<x x 时, ε<-|)(|A x f ; 当 200δ<-<x x 时, ε<-|)(|A x f ,取0},min{21>=δδδ,当δ<-<||00x x 时,有ε<-|)(|A x f , 所以 A x f x x =→)(lim 0.8、设)0()(lim ≠=+∞→A A x f x ,证明当x 充分大时2|||)(|A x f >. 证明:因)0()(lim ≠=+∞→A A x f x ,对于02||0>=A ε,0>∃K , 当K x >时, 2|||)(|0A A x f =<-ε. 所以2||2|||||)(||||))((||)(|A A A A x f A A x f A x f =->--≥-+=.习题2-31、根据定义证明:(1) 1-=x y 为当1→x 时的无穷小;证明:0>∀ε,取0>=εδ,当δ<-<|1|0x 时,恒有ε<-=|1|||x y , 所以1-=x y 为当1→x 时的无穷小.(2) xx y 1cos =为当0→x 时的无穷小. 证明:0>∀ε,取0>=εδ,当δ<-<|0|0x 时,恒有ε<≤||||x y ,所以xx y 1cos =为当0→x 时的无穷小.2、根据定义证明:函数x xy 21+=为当0→x 时的无穷大,问x 应满足什么条件,能使410||>y ? (1)分析:0>∀K ,欲使K x x x y >-≥+=2||121||,只需21||0+<<K x 即可.证明:0>∀K ,取021>+=K δ,当δ<<||0x 时,恒有 K x x x x y >-≥+=+=2||12121||,所以 ∞==+→→y xxx x 00lim 21lim. (2) 欲使K y =>410||,取10002121014=+=δ,则x 满足100021||0<<x 即可.3、利用有界量乘无穷小依然是无穷小求下列极限:(1) xx x 1sinlim 2→. 解:因0lim 0=→x x ,11sin≤x)0(≠x ,有)1(o x =(无穷小),)1(1sin O x=(有界), )0(→x ,则)1()1()1()1(1sin 2o O o o x x ==,)0(→x , 所以01sin lim 20=→xx x .(2) xxx arctan lim∞→.解:因01lim =∞→x x ,2arctan π≤,有)1(1o x=(无穷小),)1(arctan O x =(有界), )(∞→x , 则)1()1()1(arctan o O o x x ==,)(∞→x , 所以0arctan lim =∞→xxx .4、函数x x y sin =在区间),0(+∞内是否有界?又当+∞→x 时,这个函数是否为无穷大?为什么?解:(1)取22ππ+=k x ,则22)22sin()22(ππππππ+=++=k k k y , ,2,1=k ,可见, 函数x x y sin =在区间),0(+∞内无界.(2)取πk x =,则0)sin(==ππk k y , ,2,1=k ,可见,当+∞→x 时,函数x x y sin =不是无穷大.4’、函数xx y 1sin=在区间),0(+∞内是否有界?又当+∞→x 时,这个函数是否为无穷大?为什么? 解:(1)当0>x 时,11||1sin ||1sin=≤≤x x x x x x , 可见, 函数x x y 1sin =在区间),0(+∞内有界.(2)因函数xx y 1sin =在区间),0(+∞内有界,可见,当+∞→x 时,函数x x y sin =不是无穷大.习题2-41、填空题:(1)已知b a ,为常数,3122lim2=-++∞→n bn an n ,则=a 0 ,=b 6 ; 解:由于2122lim 1221lim 30022a n n nb a n bn an n n n =-++=-++=⨯=∞→∞→,有0=a . 而2122lim 122lim 122lim 32b nn b n bn n bn an n n n =-+=-+=-++=∞→∞→∞→,有6=b .(2)已知b a ,为常数,1)1(lim 2=--+∞→b ax xx x ,则=a 1 ,=b -1 ;解:由于a xba xb ax x x x x x x x -=--+=--+==∞→∞→∞→1)11(lim )1(1lim 1lim 022, 有1=a .而b b x b x x x b ax x x x x x -=-=--+=--+=∞→∞→∞→)1(lim )1(lim )1(lim 12 有1-=b .(3)已知b a ,为常数,21lim 1=-+→x bax x ,则=a 2 ,=b -2 .解:由于0201)1(lim )(lim 11=⋅=-+-=+=+→→x bax x b ax b a x x ,有a b -=. 而21lim 1lim11=-+=--=→→x bax x a ax a x x ,有2-=b2、求下列极限:(1) 4304031413lim 143lim 222=++=++=++∞→∞→nn n n n n n . (2) 510)2(501)52)(2(5)52(1lim )2(5)2(5lim 11=⨯-++=--+-+=-+-+∞→++∞→n nn n n n n n . (3) 340131121101311311211211lim 31313112121211lim1122=--⋅--=--⋅--=++++++++++∞→∞→n n n n n n . (4) )1221(1lim )1231(lim 222nn n n n n n n n n n -+++=-+++∞→∞→1)221(lim )121(211lim =⨯=-+⋅⋅=∞→∞→n n nn n n n .(5) ))1(1321211(lim +++⋅+⋅∞→n n n1)111(lim )]111()3121()2111[(lim =+-=+-++-+-=∞→∞→n n n n n .(6)2110111111lim1lim)1(lim =++=++=++=-+∞→∞→∞→nn n nn n n n n n . 3、求下列极限:(1) 443lim 222---→x x x x .解:由于0423242434lim 22222=-⨯--=---→x x x x ,所以∞=---→443lim 222x x x x .(2) )33(lim 33lim )(lim2203220330h xh x h h xh h x h h h x h h h ++=++=-+→→→ 22230033x x x =+⋅+=.(3) 3001003431153lim 43153lim 2222=++++=++++=++++∞→∞→xx x x x x x x x x . (4)503020503020503020532)15()23()32(lim )15()23()32(lim =++-=++-∞→∞→xx x x x x x x (5) 221)12)(11(lim 2=⋅=-+∞→xx x .(6) 0004000724132lim 724132lim 5454253=++++=++++=++++∞→∞→xx x x xx x x x x x .(7) )13)(1)(1()1()3(lim 113lim121x x x x x x x x x x x ++-+-+--=-+--→→ 42)1113)(11(2)13)(1(2lim1-=++-+-=++-+-=→x x x x .(8) 22121311211lim )131(11lim )1311(lim x x x x x x x x x x x x x ++-+⋅-=++--=---→→→ 1111)21(1)2(lim 221-=+++-=+++-=→x x x x .(9) 11lim )1/()1()1/()1(lim 11lim 2121111++++++=----=------→→→ n n m m x n m x n m x x x x x x x x x x x nm n n m m =++++++=----1111112121 .(n m ,是自然数).(10) )1)(1)(1()1)(1)(1(lim 11lim 3323323131+++-+++-=--→→x x x x x x x x x x x x321111111lim)1)(1()1)(1(lim33233213322331=+++=+++=++-+-=→→x x x x x x x x x x .(11) xx x x x x x x x x 1)651)(1(lim 1)31)(21)(1(lim 200-+++=-+++→→6060116)6116(lim 220=⨯+⨯+=++=→x x x .(12) xx x x x x x x x x x +-+--+=--++∞→+∞→)1)(2()1)(2(lim ))1)(2((lim 21)11)(21(21lim)1)(2(2lim +-+-=+-+-=+∞→+∞→xx x x x x x x x211)01)(01(01=+-+-=.4、求下列极限:(1) 223)3(3lim -+→x xx x ;解:由于0333)33(3)3(lim 22223=⨯+-=+-=→x x x x ,所以∞=-+→223)3(3lim x xx x .(2)432lim 3++∞→x x x ;解:由于001002143lim 243lim 243lim 33233=++=++=++=++∞→∞→∞→xx xx x x x x x x , 所以∞=++∞→432lim3x x x .(3))325(lim 2+-∞→x x x ;解:由于000503251lim 3251lim 222=+-=+-=+-∞→∞→xx x x x x x ,所以∞=+-∞→)325(lim 2x x x .5、设A x f x x =→)(lim 0,)(lim 0x g x x →不存在,证明)]()([lim 0x g x f x x +→不存在.证明:反证.假设B x g x f x x =+→)]()([lim 0,则)(lim )]()([lim )]()()([lim )(lim 0x f x g x f x f x g x f x g x x x x x x x x →→→→-+=-+=A B -=,可见)(lim 0x g x x →存在,这与条件)(lim 0x g x x →不存在冲突,所以)]()([lim 0x g x f x x +→不存在.习题2-51、求下列极限:(1)52151255sin 522sin 2lim 5sin 2sin lim 00=⋅⋅=⋅⋅=→→xx x xx x x x .(2)2112122sin 22cos lim2cot lim 00=⨯=⋅=→→xx x x x x x .(3)212)sin 2(lim sin sin 2lim sin 2cos 1lim0200=⨯=⋅=⋅=-→→→xxx x x x x x x x x .(4)x x txtxx x n t n nn n=⋅===∞→=∞→1)sin (lim 2sin2lim 21,(x 为不等于零的常数).(5)01111sin 1sin 1lim sin sin lim 00=+-=+-=+-→→xx x xx x x x x x . (6)xx xx xx x x x x x x x x cos 2sin 2sin lim cos )cos 1(sin lim sin tan lim3203030⋅=-=-→→→2112111122sin 21cos 1sin lim 220=⨯⨯⨯=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎭⎫⎝⎛⋅⋅=→x x x x x x .(7)tta t t a t a a x a x t t a x t a x 22cos2sin 2lim sin )(sin lim sin sin lim 00+=-+====--→→-=→ a t a t t t t cos )2cos(lim 22sinlim 00=+=→→.(8))3cos(21sin limcos 21)3sin(lim 033ππππ+-====--→-=→t t x x t x t x t t tt t t t t sin 3cos 1sin lim)3sin sin 3cos (cos 21sin lim 00+-=--=→→ππ 3313101sin 3)2(2sin 2sin lim sin 3cos 1sin lim 2200=⨯+⨯=+⋅=+-=→→tt t t t t tt t t t t .(9))22tan(lim 2)1(tanlim 2tan)1(lim 011tt t t xx t t xt x ππππ-=-====-→→-=→πππππ2sin cos 2lim cot 2lim 2cotlim 002=⋅======→→=→uu u u u tt u u tu t .2、求下列极限:(1)ee t t t xtt tt x t xx 1)01(1)1()1(lim 1)1(lim )21(lim 10110212=+=++=+===-→--→-=-∞→.(2)et t xtt t t xt xx 1)1(lim 1)1(lim )22(lim 1010220=+=+===-→-→-=→.(3)211)11()11(lim )11(lim e e e xx x x x xx x x ==+-=+-∞→∞→.(4)11])11()11[(lim )11(lim )11(lim 2=⋅=+-=-===-+∞→+∞→=+∞→e et t t xt t t t t xt xx .(5)111])11()11[(lim 1)11(1lim )1(lim 222=⋅=+-=-=-∞→∞→∞→eex x x x x x x x x x x x .(6)33103tan 3cot 2])1(lim [)1(lim )tan 31(lim 22e t t x t t t t xt xx =+=+=====+→→=→.(7)3213ln 233sin lim3)21ln(lim 233sin 3)21ln(2lim3sin )21ln(lim 02102100=⨯=+=⋅+=+→→→→e xx x xx x x x x x x xx xx x .(8)2ln 2)21ln(2lim )21ln(lim ]ln )2[ln(lim 2==+=+=-+∞→∞→∞→e nn n n n n nn n n .3、利用极限存在准则证明:(1) 1)1211(lim 222=++++++∞→πππn n n n n . 证明:由于πππππ+≤++++++≤+2222222)1211(n n n n n n n n n n ,而111lim lim 22=+=+∞→∞→n n n n n n ππ, 111lim lim 222=+=+∞→∞→nn n n n ππ, 所以1)1211(lim 222=++++++∞→πππn n n n n .(2)设},,,max{21m a a a A =,),,2,1,0(m i a i =>,则有 A a a a n nm nnn =+++∞→ 21lim .证明:由于n n n n nm n n nn m A mA a a a A A =≤+++≤=21,而A A m A m A n n n n =⋅==∞→∞→1lim lim ,所以A a a a n nm n n n =+++∞→ 21lim .(3)设21=x ,12-+=n n x x , ,3,2=n ,证明数列}{n x 存在极限并求之. 证明:①显然221<=x ,假设21<-n x ,有22221=+<+=-n n x x , 因此,20<<n x , ,3,2,1=n ;②由于11222x x x =>+=,假设1->n n x x ,有n n n n x x x x =+>+=-+1122因此,}{n x 为单调递增数列;③由①②知, 数列}{n x 必存在极限. ④假设a x n n =∞→lim ,显然有20≤≤a ,且a x x a n n n n +=+==-∞→∞→22lim lim 1,即022=--a a ,得2=a (1-=a 舍去),所以2lim =∞→n n x .(4)数列21=x ,)1(211nn n x x x +=+的极限存在. 证明:①显然121≥=x ,而11221)1(211=⋅⋅⋅≥+=+nn n n n x x x x x , ②由于0121121221)1(21221=⋅-≤-=-=-+=-+n n n n n n n n n x x x x x x x x x , 即n n x x ≤+1,因此,}{n x 为单调递减数列;③由①②知,21≤≤n x , ,3,2,1=n ,因此数列}{n x 的极限必存在.4、某企业计划发行公司债券,规定以年利率6.5%的连续复利计算利息,10年后每份债券一次偿还本息1000元,问发行时每份债券的价格应定为多少元? 解:设0A 为发行时每份债券的价格,年利率为%5.6=r ,10=k 年后每份债券一次偿还本息1000=k A 元,若以连续复利计算利息,则krk e A A 0=,即065.01001000⨯=e A ,得05.5521000065.0100==⨯-eA (元).习题2-61、当0→x 时,下列各函数都是无穷小,试确定哪些是x 观的高阶无穷小?同阶无穷小?等价无穷小? (1) x x +2;解:因为1)1(lim lim020=+=+→→x x xx x x , 所以x x x ~2+,)0(→x .(等价无穷小)(2) x x sin +; 解:因为211)sin 1(lim sin lim00=+=+=+→→xxx x x x x ,所以)(2x O x x =+,)0(→x . (同阶无穷小)(3) x x sin -; 解:因为011)sin 1(lim sin lim00=-=-=-→→x xx x x x x ,所以)(2x o x x =+,)0(→x . (高阶无穷小)(4) x 2cos 1-;解:因为0102)sin sin 2(lim sin 2lim 2cos 1lim0200=⋅⋅===-→→→x xx x x x x x x x , 所以)(2x o x x =+,)0(→x . (高阶无穷小)(5) x tan ; 解:因为111)cos 1sin (lim tan lim00=⋅=⋅=→→xx x x x x x ,所以x x ~tan ,)0(→x .(等价无穷小)(6) x 2tan . 解:因为221)2cos 222sin (lim 2tan lim00=⋅=⋅=→→xx x x x x x ,所以)(2tan x O x =,)0(→x . (同阶无穷小)2、证明当0→x 时,有: (1) x x ~arctan ;证明:因为111sin cos lim tan lim arctan lim 00arctan 0========→→=→tt t t t x x t t x t x ,所以x x ~arctan ,)0(→x .(2) 221~1sec x x -; 证明:因为1)2(2sin lim 2sin 22limcos )cos 1(2lim 211sec lim2202202020==⋅=-=-→→→→xxx x x x x xx x x x x ,所以221~1sec x x -,)0(→x .(3) 221~1sin 1x x x -+;证明:因为1101121sin 1sin 2lim 211sin 1lim 020=++⋅=++⋅=-+→→x x x xxx x x x , 所以221~1sin 1x x x -+,)0(→x .(4) 222~11x x x --+.证明:因为101012112lim 11lim2202220=-++=-++=--+→→xx x x x x x , 所以222~11x x x --+,)0(→x .3、利用等价无穷小的性质,求下列极限:(1) 11lim 2121lim cos 11sin 1lim 02200===--+→→→x x x x xx x x . 其中:221~1sin 1x x x -+,221~cos 1x x -,)0(→x .(2) 22lim 2lim tan )1(2sin lim02020==⋅=-⋅→→→x x x x x x x x e x . 其中:x x 2~2sin ,x e x ~1-,22~tan x x )0(→x .(3) 52)52(lim 52lim 5sin )21ln(lim000-=-=-=-→→→x x x x x x x .其中:x x 2~)21ln(--,x x 5~5sin ,)0(→x .(4) 21cos 21lim cos 21lim cos sin cos 1lim sin sin tan lim 02202030===-=-→→→→x x x xx x x x x x x x x x .其中:221~cos 1x x -,x x ~sin )0(→x . (5) 2121lim 21lim sin cos 1lim )tan 1sin 1(1lim 022000===-=-→→→→x x x x x xx x x x x x . 其中:221~cos 1x x -,x x ~sin )0(→x .(6) 22lim )(21lim cos 1lim 22022020m m x mx x mx x x x ===-→→→. 其中:0≠m 时,2)(21~cos 1mx mx -,)0(→x ,而0=m 时,0)(21cos 12==-mx mx .4、证明无穷小的等价关系具有下列性质: (1) αα~(自反性); 证明:因11lim lim==αα,所以αα~.(2) 若βα~,则αβ~(对称性); 证明:已知βα~,因1111lim lim===βααβ,所以αβ~.(3) 若βα~,γβ~,则γα~(传递性). 证明:已知βα~,γβ~,因111lim lim )lim(lim =⋅=⋅=⋅=γββαγββαγα, 所以γα~习题2-71、研究下列函数的连续性,并画出函数图形:(1) ⎪⎩⎪⎨⎧>≤≤--<-=.1 ,1,11 ,,1 ,1)(2x x x x x f 解:显然,函数)(x f 在)1,(--∞,)1,1(-以及),1(+∞连续.由于)(lim 11lim )(lim 1211x f x x f x x x -++-→-→-→=-≠==,则)(x f 在1-=x 间断;由于)(lim 1)1(lim )(lim 1211x f f x x f x x x +--→→→====,则)(x f 在1=x 连续.总之,函数)(x f 在)1,(--∞,),1(+∞-连续,在1-=x 间断.(2) ⎩⎨⎧≤<-≤≤=.21 ,2,10 , )(2x x x x x f解:显然,函数)(x f 在)1,0[,]2,1(连续. 由于1lim )(lim 211==--→→x x f x x ,有 )(lim )1(112)2(lim )(lim 111x f f x x f x x x -++→→→===-=-=,则)(x f 在1=x 连续.总之,函数)(x f 在]2,0[连续.2、确定常数b a ,使下列函数连续:(1) ⎩⎨⎧>+≤=.0 ,,0 , )(x a x x e x f x解:显然,函数)(x f 在)0,(-∞,),0(+∞连续.由于1lim )(lim 000===--→→e e x f x x x , a a a x x f x x =+=+=++→→0)(lim )(lim 00, 欲使)(x f 在0=x 连续,只需)0(1)(lim )(lim 0f x f x f x x ===-+→→,即1=a . 因此,仅当1=a 时,函数)(x f 在),(+∞-∞连续.(2) ⎪⎪⎩⎪⎪⎨⎧>=<-=.0 ,sin ,0,2 ,0 ,)31ln()(x xax x x bx x x f 解:显然,函数)(x f 在)0,(-∞,),0(+∞连续.由于bb bx x bx x x f x x x x 33lim 3lim )31ln(lim )(lim 0000-=-=-=-=----→→→→,)0(≠b , ⎪⎩⎪⎨⎧==≠=⋅==+++→→→.0 ,0,0 ,)sin (lim sin lim )(lim 000a a a a axax a x ax x f x x x , 欲使)(x f 在0=x 连续,只需)0(2)(lim )(lim 0f x f x f x x ===+-→→, 有 23==-a b , 即2=a , 23-=b . 因此,仅当2=a ,23-=b 时,函数)(x f 在),(+∞-∞连续.3、下列函数在指出的点处间断,说明这些间断点属于哪一类型,如果是可去间断点,则补充或改变函数的定义使它连续.(1) 65422+--=x x x y , 2=x ,3=x ;解:32)3)(2()2)(2()(-+=--+-==x x x x x x x f y , 2≠x .①由于4322232lim )(lim 22-=-+=-+=--→→x x x f x x , )(lim 4322232lim )(lim 222x f x x x f x x x -++→→→=-=-+=-+=, 可见, 2=x 是函数)(x f y =的可去间断点,属第一类间断点. 欲使)(x f 在2=x 连续,只需定义4)2(-=f 即可.②由于∞=-+=→→32lim)(lim 33x x x f x x , 可见, 3=x 是函数)(x f y =的无穷间断点,属第二类间断点.(2) xxy sin =, πk x =,),2,1,0( ±±=k ; 解:xxx f y sin )(==, πk x ≠,),2,1,0( ±±=k .①由于1sin lim )(lim 00==--→→xxx f x x , )(lim 1sin lim )(lim 000x f x xx f x x x -++→→→===, 可见, 0=x 是函数)(x f y =的可去间断点,属第一类间断点. 欲使)(x f 在0=x 连续,只需定义1)0(=f 即可.②由于∞==-→→xxx f k x k x sin lim )(lim ππ,),2,1( ±±=k 可见,πk x =,),2,1( ±±=k 是函数)(x f y =的无穷间断点,属第二类间断点.(3) xy 1cos3=, 0=x ; 解:xx f y 1cos )(3==, 0≠x .显然函数)(x f y =有界, 由于xx f x x 1cos lim )(lim 300→→=不存在,可见, 0=x 是函数)(x f y =的振荡间断点,属第二类间断点.(4) ⎩⎨⎧>-≤-=.1 ,54,1 ,12x x x x y 1=x .解:⎩⎨⎧>-≤-==.1 ,54,1 ,12)(x x x x x f y由于1)12(lim )(lim 01=-=--→→x x f x x , )(lim 13)52(lim )(lim 111x f x x f x x x -++→→→=≠-=-=, 可见,1=x 是函数)(x f y =的跳跃间断点,属第一类间断点.4、求函数633)(223-+--+=x x x x x x f 的连续区间,并求极限)(lim 0x f x →, )(lim 3x f x -→及)(lim 2x f x →.解:21)3)(2()3)(1(633)(22223--=+-+-=-+--+=x x x x x x x x x x x x f ,3-≠x . 显然,函数)(x f 在)3,(--∞,)2,3(-以及),2(+∞连续.5821lim )(lim 233-=--=-→-→x x x f x x ,∞=--=→→21lim )(lim 222x x x f x x , 2121lim )(lim 200=--=→→x x x f x x .5、求下列极限:(1) 33020)32(lim 32lim 22020=+⋅-=+-=+-→→x x x x x x .(2) 00)2(cos )]42[cos()2cos lim ()2(cos lim 3333434===⋅==→→ππππx x x x .(3) 2)1(2211111lim e e t e t t -=--=--⨯---→.(4) ππππ222sinsin lim2==→x x x .6、求下列极限:(1) 1lim lim 0011=====→=∞→e e e t t xt xx .(2) )]21cos[ln(lim )]121cos[ln(lim 2012t t xx t xt x -+===-+→=∞→ 10cos )]0021cos[ln()]}21(lim cos{ln[220==-⨯+=-+=→t t t .(3) )1ln(lim1lim )1(lim lim 010020t tx e x e e x e e t e t x x x x x x x x x+-====-=-=-→-=→→→ 1ln 1)1ln(1lim 10-=-=+-=→et tt .(4) 202022)1(cos 4lim)]1(cos 1ln[4limcos ln 4040lim )(cos lim x x x x x x x x x x x ee ex --+→→→→===2)2(lim 24lim22--⋅-===→→e e e x x x x .7、讨论函数x n xn n ee x x xf ++=∞→1lim)(2的连续性,若有间断点,判别其类型.解:①当0<x 时,x x x e e x x x f xn xn n =+⋅+=++=∞→0101lim)(22;当0>x 时,2221001lim)(x x x ex xex f xn x n n =++⋅=++=--∞→,所以⎩⎨⎧>>=.0 ,,0 ,)(2x x x x x f②显然,函数)(x f 在)0,(-∞,),0(+∞连续,在0=x 点间断点. ③由于0lim )(lim 00==--→→x x f x x ,)(lim 0lim )(lim 02x f x x f x x x -++→→→===, 可见,0=x 是函数)(x f y =的可去间断点,属第一类间断点.习题2-81、试证下列方程在指定区间内至少有一个实根: (1) 0135=--x x ,在区间)2,1(;证明:显然]2,1[13)(5C x x x f ∈--=,由于03)0(<-=f ,025)2(>=f ,由零点定理知,)2,1(∈ξ..t s 0)(=ξf ,即01325=--ξξ, 所以方程 0135=--x x 在)2,1(内至少有一个根ξ.图形> plot(x^5-3*x^2-1,x=1..2);(2) 2-=xe x ,在区间)2,0(.证明:显然]2,0[2)(C x e x f x ∈--=,由于01)0(<-=f ,03)2(2>-=e f ,由零点定理知,)2,0(∈ξ..t s 0)(=ξf ,即02=--ξξe ,所以方程 2-=xe x 在)2,0(内至少有一个根ξ.图形> plot(exp(x)-x-2,x=0..2);2、设)(x f 在],[b a 上连续,且b d c a <<<,证明在],[b a 内必存在一点ξ使)()()()(ξf n m d nf c mf +=+,其中n m ,为自然数. 证明:若n m ,全为零,则结论显然成立;若n m ,不全为零,因],[)(b a C x f ∈,知)(x f 在],[b a 上存在最小值和最大值βα,,令)()(d f n m nc f n m m +++=λ,由于 ββαα=++≤+++≤++=nm m m d f n m n c f n m m n m m m )()(即βλα≤≤,又因],[)(b a C x f ∈,则必],[b a ∈∃ξ..t s λξ=)(f ,即)()()()(ξf n m d nf c mf +=+.3、设函数)(x f 在]2,0[a 上连续,且)2()0(a f f =,证明在],0[a 内至少存在一点ξ,使)()(a f f +=ξξ.证明:若)()0(a f f =,则结论显然成立;若)()0(a f f ≠,已知]2,0[)(a C x f ∈,显然],0[)()()(a C a x f x f x F ∈+-=,由于)]2()()][()0([)()0(a f a f a f f a F F --=0)]()0([)]0()()][()0([2<--=--=a f f f a f a f f ,由零点定理知,),0(a ∈ξ..t s 0)(=ξF ,即)()(a f f +=ξξ.4、一个登山运动员从早晨7:00开始攀登某座山峰,在下午7:00到达山顶,第二天早晨7:00再从山顶沿着原路下山,下午7:00到达山脚,试利用介值定理说明,这个运动员必在这两天的某一相同时刻经过登山路线的同一地点. 证明:用)(x f 和)(x g 表示第一天和第二天运动员在时刻x )197(≤≤x 时距山脚的距离,显然]19,7[)(),(C x g x f ∈,假设山顶距山脚的距离为0>s ,那么,有0)19()7(==g f ,而s g f ==)0()19(,显然]19,7[)()()(C x g x f x F ∈-=,由于0)]19()19()][7()7([)19()7(2<-=--=s g f g f F F ,由零点定理知,)19,7(∈ξ..t s 0)(=ξF ,即)()(ξξg f =,说明运动员必在这两天的相同时刻ξ经过登山路线的同一地点,此时距山脚的距离为)(ξf .。
高等数学极限求解方法(共7篇)
高等数学极限求解方法(共7篇)以下是网友分享的关于高等数学极限求解方法的资料7篇,希望对您有所帮助,就爱阅读感谢您的支持。
高等数学求极限的方法篇1对于求解极限的方法可以归结为以下几类: (1)常用等价无穷小记住以下常用等价无穷小-例1 求极限limx →0x (1-cos x ) 【解】原式=x →0 =x →0=x →01==x →02例2 求下列极限1+cos x 2x() -1x (I)w =lim (II ) w =limx →0x →0ln(1+2x 3)4(2)等价无穷小的性质定理:有限个无穷小的代数和仍为无穷小. 定理:有界函数与无穷小的乘积是无穷小. 推论:常数与无穷小的乘积是无穷小. 推论:有限个无穷小的乘积也是无穷小.1【解】lim =0 , lim sin 为有界量,∴原式=0x →0x →0x【注】本题也可以利用常用的等价无穷小公式.(3)常用的极限sin x x sin x x lim =lim =1 lim =0 lim 极限不存在x →0x →0x →∞x →∞x sin x x sin x11x ln(1+x )lim(1+) =lim(1+x ) x =e lim =1x →∞x →0x →0x xlim =1 lim =1n →∞n →∞11例4 求w=lim(+2x ) xx →∞x(4)极限存在的两个准则(1)夹逼准则如果数列{x n },{y n }及{z n }满足下列条件:(1)y n ≤x n ≤z n (n =1, 2,3,...) ;(2)li m y n =lim z n =a , 那么数列{x n }的极限存在,且lim x n =a .n →∞n →∞n →∞(2)单调有界准则单调有界数列必有极限.(5)极限的定义(6)洛必达法则【解】(7)变量替换11方法2 w =lim(+2x ) x =e A ,而x →∞x01t1(t +2-1) x =1/t 0A =lim(+2x -1) −−−→lim −−→lim(1+2t ln 2) =1+l n 2, x →∞x t →0t →0t 故w =e 1+ln 2=2e(8)泰勒公式高等数学中极限的求解方法篇2龙源期刊网高等数学中极限的求解方法作者:曲波来源:《速读下旬》2014年第05期摘要:本文介绍了利用两个重要极限、无穷小量代换、洛比达法则、等求极限的方法,并结合具体的例子,指出了在解题过程中常遇见的一些问题。
高等数学求极限的各种方法
⾼等数学求极限的各种⽅法求极限的各种⽅法1.约去零因⼦求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x ⽆限接近,但1≠x ,所以1-x 这⼀零因⼦可以约去。
【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分⼦分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分⼦分母都以多项式给出的极限,可通过分⼦分母同除来求。
【解】3131lim 13lim 3 11323=+-=+-∞→∞→x xx x x x x 【注】(1) ⼀般分⼦分母同除x 的最⾼次⽅;(2)=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a n nm m m m n n n n x 0lim 011011ΛΛ 3.分⼦(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x【说明】分⼦或分母有理化求极限,就是通过有理化化去⽆理式。
【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1limxxx x +-+→【解】xx x xx x x x x x sin 1tan 1sin tan limsin 1tan 1lim3030+-+-=+-+→→ 41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使⽤分⼦有理化⽅法外,及时分离极限式中的⾮零因⼦...........就是解题的关键 4.应⽤两个重要极限求极限两个重要极限就是1sin lim 0=→xxx 与e x n x x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第⼀个重要极限过于简单且可通过等价⽆穷⼩来实现。
(完整版)高等数学函数的极限与连续习题精选及答案
1、函数与函数相同.()12++=x x x f ()113--=x x x g 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。
∴与函数关系相同,但定义域不同,所以与()12++=x x x f ()113--=x x x g ()x f 是不同的函数。
()x g 2、如果(为一个常数),则为无穷大.()M x f >M ()x f 错误 根据无穷大的定义,此题是错误的。
3、如果数列有界,则极限存在. 错误 如:数列是有界数列,但极限不存在()nn x 1-=4、,.a a n n =∞→lim a a n n =∞→lim 错误 如:数列,,但不存在。
()nn a 1-=1)1(lim =-∞→nn n n )1(lim -∞→5、如果,则(当时,为无穷小).()A x f x =∞→lim ()α+=A x f ∞→x α正确 根据函数、极限值、无穷小量的关系,此题是正确的。
6、如果~,则.αβ()α=β-αo 正确 ∵,是1lim=αβ∴,即是的高阶无穷小量。
01lim lim =⎪⎭⎫⎝⎛-=-αβαβαβα-α7、当时,与是同阶无穷小.0→x x cos 1-2x 正确 ∵ 2122sin 412lim 2sin 2lim cos 1lim2022020=⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅==-→→→x x x x x x x x x 8、 .01sin lim lim 1sin lim 000=⋅=→→→xx x x x x x 错误 ∵不存在,∴不可利用两个函数乘积求极限的法则计算。
xx 1sin lim 0→9、 .e x xx =⎪⎭⎫⎝⎛+→11lim 0错误 ∵ex xx =⎪⎭⎫⎝⎛+∞→11lim 10、点是函数的无穷间断点.0=x xxy =错误 ,=-→x x x 00lim1lim 00-=--→x x x =+→x x x 00lim 1lim 00=+→xx x ∴点是函数的第一类间断点.0=x xxy =11、函数必在闭区间内取得最大值、最小值.()x f x1=[]b a ,错误 ∵根据连续函数在闭区间上的性质,在处不连续()x f x1=0=x ∴函数在闭区间内不一定取得最大值、最小值()x f x1=[]b a ,二、填空题:1、设的定义域是,则()x f y =()1,0(1)的定义域是( );()xef (,0)-∞ (2)的定义域是( );()x f 2sin 1-,()2x x k x k k Z πππ⎧⎫≠≠+∈⎨⎬⎩⎭(3)的定义域是( ).()x f lg (1,10)答案:(1)∵ 10<<xe(2)∵ 1sin 102<-<x (3)∵1lg 0<<x 2、函数的定义域是( ).()⎪⎩⎪⎨⎧≤<-=<<-+=403000222x x x x x x f (]4,2-3、设,,则( ).()2sin x x f =()12+=ϕx x ()[]=ϕx f ()221sin +x 4、=( ).nxn n sinlim ∞→x ∵x x n n x n n x n x n n n n =⋅==∞→∞→∞→sinlim sin limsin lim 5、设,则( 2 ),( 0 ).()11cos 11211xx x f x x x x π-<-⎧⎪⎪=-≤≤⎨⎪->⎪⎩()10lim x f x →--=()=+→x f x 01lim ∵,()1010lim lim (1)2x x f x x →--→--=-=()()01lim lim 0101=-=+→+→x x f x x 6、设,如果在处连续,则( ).()⎪⎩⎪⎨⎧=≠-=00cos 12x ax x x x f ()x f 0=x =a 21∵,如果在处连续,则21cos 1lim 20=-→x x x ()x f 0=x ()a f x x x ===-→021cos 1lim 207、设是初等函数定义区间内的点,则( ).0x ()x f ()=→x f x x 0lim ()0x f ∵初等函数在定义区间内连续,∴()x f ()=→x f x x 0lim ()0x f 8、函数当( 1 )时为无穷大,当( )时为无穷小.()211-=x y x →x →∞ ∵,()∞=-→2111limx x ()11lim2=-∞→x x 9、若,则( 1 ),( ).()01lim2=--+-+∞→b ax x xx =a =b 21-∵()bax x xx --+-+∞→1lim2()()()bax x x bax x x b ax x x x +++-+++---+-=+∞→111lim222()()b ax x x b ax x x x +++-+-+-=+∞→11lim 222()()()b ax x x b x ab x a x +++--++--=+∞→11211lim 2222欲使上式成立,令,∴,012=-a 1a =±上式化简为∴()22112lim lim lim1x x x bab x a →+∞→+∞→+∞--+==+,,1a =021=+ab 12b =-10、函数的间断点是( ).()x x f 111+=1,0-==x x 11、的连续区间是( ).()34222+--+=x x x x x f ()()()+∞∞-,3,3,1,1,12、若,则( 2 ).2sin 2lim =+∞→x xax x =a ∴()200lim sin 2lim sin 2lim =+=+=⎪⎭⎫ ⎝⎛+=+∞→∞→∞→a a x x a x x ax x x x 2=a13、( 0 ),( 1 ),=∞→x x x sin lim=∞→xx x 1sin lim ( ),( ).()=-→xx x 11lim 1-e =⎪⎭⎫ ⎝⎛+∞→kxx x 11lim ke ∵0sin 1lim sin lim=⋅=∞→∞→x x x x x x 111sinlim 1sinlim ==∞→∞→xx x x x x()[]1)1(101)(1lim 1lim ---→→=-+=-e x x xx xx k kx x kxx e x x =⎥⎦⎤⎢⎣⎡+=⎪⎭⎫ ⎝⎛+∞→∞→)11(lim 11lim 14、(不存在 ),( 0)lim sin(arctan )x x →∞=lim sin(arc cot )x x →+∞=三、选择填空:1、如果,则数列是( b )a x n n =∞→lim n x a.单调递增数列 b .有界数列 c .发散数列2、函数是( a )()()1log 2++=x x x f a a .奇函数 b .偶函数 c .非奇非偶函数∵()()11log 1)(log 22++=+-+-=-x x x x x f aa ()()x f x x a -=++-=1log 23、当时,是的( c )0→x 1-xe x a .高阶无穷小 b .低阶无穷小 c .等价无穷小4、如果函数在点的某个邻域内恒有(是正数),则函数在该邻域内( c ()x f 0x ()M x f ≤M ()x f )a .极限存在b .连续c .有界5、函数在( c )条件下趋于.()x f x-=11∞+a . b . c .1→x 01+→x 01-→x 6、设函数,则( c )()x f xxsin =()=→x f x 0lim a .1 b .-1 c .不存在 ∵1sin lim sin limsin lim000000-=-=-=-→-→-→xx x x x xx x x 1sin lim sin lim 0000==-→+→xx x x x x 根据极限存在定理知:不存在。
高等数学-极限与连续(习题)Word版
第二章 极限与连续习题2-11、观察下列数列的变化趋势,判别哪些数列有极限,如有极限,写出它们的极限. (1)nn a x 1= )1(>a ; 有. 0lim =∞→n n x .(2) nx n n 1)1(1--=; 有. 0lim =∞→n n x .(3) n x n n 1)1(--=; 无.(4) 2sin πn x n =; 无. (5) 11+-=n n x n ; 有. 1lim =∞→n n x . (6) nn x )1(2-=; 无.(7) nx n 1cos =; 有. 1lim =∞→n n x .(8) nx n1ln =. 无.2、设9.01=u ,99.02=u ,个n n u 999.0,=,问 (1) ?lim =∞→n n u(2) n 应为何值时,才能使n u 与其极限之差的绝对值小于0001.0? 解:(1) 显然,n n u 1011-=,可见1lim =∞→n n u ;(2) 欲使41010001.0101|1|=<=-n n u ,只需5≥n 即可.3、对于数列⎭⎬⎫⎩⎨⎧+=1}{n n x n ,),2,1( =n ,给定(1)1.0=ε;(2)01.0=ε;(3)001.0=ε时,分别取怎样的N ,才能使当N n >时,不等式ε<-|1|n x 成立,并利用极限定义证明此数列的极限为1.解:欲使ε=<+=-+=-k n n n n x 1011111|1|,只需110->k n .(1)若给定1.0=ε,此时1=k ,取91101=-=N 即可;(2)若给定01.0=ε,此时2=k ,取991102=-=N 即可; (3)若给定001.0=ε,此时3=k ,取9991103=-=N 即可; 下面证明1lim =∞→n n x . 欲使ε<<+=-n n x n 111|1|,只需ε1>n .0>∀ε,取+∈+=N 1]1[εN ,当ε1≥>N n 时,恒有ε<-|1|n x ,所以 1lim 1lim==+∞→∞→n n n x n n.4、用极限定义考查下列结论是否正确,为什么?(1)设数列}{n x ,当n 越来越大时,||a x n -越来越小,则a x n n =∞→lim .解:结论错误.例如取nx n 11+=,0=a ,显然n a x n 11||+=-越来越小,但a x n n =≠=∞→01lim .(2)设数列}{n x ,当n 越来越大时,||a x n -越来越接近于0,则a x n n =∞→lim .解:结论错误.例如取nx n 11+=,0=a ,显然n a x n 11||+=-越来越接近于0,但a x n n =≠=∞→01lim .(3)设数列}{n x ,0>∀ε,N ∃,当N n >时,有无穷多个n x 满足ε<-||a x n ,则a x n n =∞→lim .解:结论错误.例如取nn x )1(-=,1=a ,显然0||2=-a x k ,),2,1( =k ,那么0>∀ε,1=∃N ,当N n >时,有无穷多个n x ,满足ε<-||a x n , 但显然n n x ∞→lim 不存在.(4)设数列}{n x ,若对0>∀ε,}{n x 中仅有有限个n x 不满足ε<-||a x n ,则a x n n =∞→lim .解:结论正确.0>∀ε,假设仅有k n n n x x x ,,,21 不满足ε<-||a x n ,于是取+∈=N },,,max {21k n n n N ,那么当N n >时,ε<-||a x n ,所以a x n n =∞→lim .5、用极限性质判别下列结论是否正确,为什么? (1)若}{n x 收敛,则k n n n n x x +∞→∞→=lim lim (k 为正整数);解:结论正确.显然}{k n x +是}{n x 的子数列,故n n k n n x x ∞→+∞→=lim lim .(2)有界数列}{n x 必收敛;解:结论错误.例如取nn x )1(-=,虽然}{n x 有界,但显然}{n x 发散.(3)无界数列}{n x 必发散;解:结论正确. 因收敛数列必有界,那么无界数列必发散.(4)发散数列}{n x 必无界.解:结论错误.例如取nn x )1(-=,虽然}{n x 发散,但显然}{n x 有界.6、利用数列的“N -ε”分析定义证明下列极限: (1) 01lim2=∞→n n ;分析:0>∀ε,欲使ε<≤=-nn x n 11|0|2,只需ε1>n 或1]1[+>εn 即可.证明:0>∀ε,取+∈+=N 1]1[εN ,当ε1≥>N n 时,恒有ε<≤=-nn x n 11|0|2,所以 0lim 1lim 2==∞→∞→n n n x n .(2) 321312lim=++∞→n n n ;分析:0>∀ε,欲使ε<<+=-++=-n n n n x n 1)13(3132131232, 只需ε1>n 或1]1[+>εn 即可.证明:0>∀ε,取+∈+=N 1]1[εN ,当ε1≥>N n 时,恒有 ε<<+=-n n x n 1)13(3132,所以 32lim 1312lim ==++∞→∞→n n n x n n .(3) 1)311(lim =-∞→nn ;分析:0>∀ε,欲使ε<≤=-nn x n 131|1|,只需ε1>n 或1]1[+>εn 即可.证明:0>∀ε,取+∈+=N 1]1[εN ,当ε1≥>N n 时,恒有ε<≤=-n n x n 131|1|,所以 1lim )311(lim ==-∞→∞→n n n x n .(4) 0sin lim=∞→nnn .分析:0>∀ε,欲使ε<≤=-n n n x n 1sin |0|,只需ε1>n 或1]1[+>εn 即可. 证明:0>∀ε,取+∈+=N 1]1[εN ,当ε1≥>N n 时,恒有ε<≤=-n n n x n 1sin |0|,所以 0lim sin lim ==∞→∞→n n n x nn.7、若0lim =∞→n n u ,证明0||lim =∞→n n u ,并举例说明,如果数列|}{|n u 有极限,但数列}{n u 未必有极限.证明:因0lim =∞→n n u ,有0>∀ε,+∈∃N N ..t s N n >时,ε<-|0|n u ,于是 ε<-=-|0|0||n n u u , 所以0||lim =∞→n n u .而若取nn u )1(-=,显然1||lim =∞→n n u ,但显然}{n u 没有极限.8、对于数列}{n x ,若a x k →-12,)(∞→k ,a x k →2,)(∞→k ,证明a x n →,)(∞→n .证明:因0lim 12=-∞→k k x ,有0>∀ε,+∈∃N1N ..t s 1N k >时,ε<--||12a x k ,又因0lim 2=∞→k k x ,对0>ε,+∈∃N 2N ..t s 2N k >时,ε<-||2a x k ,取+∈=N }2,2m ax {21N N N ,当N n >时,若12-=k n ,有1122221N N N n k =≥>+=,ε<-=--||||12a x a x k n , 若k n 2=,有222222N N N n k =≥>=,ε<-=-||||2a x a x k n ,总之,当N n >时,ε<-||a x n ,所以a x n →,)(∞→n .习题2-21、用极限定义证明: (1) 12)25(lim 2=+→x x ;分析:0>∀ε,欲使ε<-=-|2|5|12)(|x x f ,只需5|2|ε<-x 即可.证明:0>∀ε,取05>=εδ,当δ<-<|2|0x 时,恒有ε<-=-|2|5|12)(|x x f , 所以 12)(lim )25(lim 22==+→→x f x x x .(2) 424lim22-=+--→x x x ; 分析:0>∀ε,欲使ε<+=--|2||)4()(|x x f ,只需ε<+<|2|0x 即可. 证明:0>∀ε,取0>=εδ,当δ<--<|)2(|0x 时,恒有ε<+=+-=--+-=--|2||4)2(|)4(24|)4()(|2x x x x x f ,所以 4)(lim 24lim222-==+--→-→x f x x x x .(3) 8)13(lim 3=-→x x .分析:0>∀ε,欲使ε<-=-|3|3|8)(|x x f ,只需3|3|ε<-x 即可.证明:0>∀ε,取03>=εδ,当δ<-<|3|0x 时,恒有ε<-=-|3|3|12)(|x x f , 所以 8)(lim )13(lim 33==-→→x f x x x .2、用极限定义证明: (1) 656lim=+∞→xx x ;分析:0>∀ε,欲使ε<=-x x f 5|6)(|,只需ε5||>x 即可. 证明:0>∀ε,取05>=εK ,当ε5||>x 时,恒有ε<=-x x f 5|6)(|,所以 6)(lim 56lim ==+∞→∞→x f xx x x .(2) 0sin lim=+∞→xxx .分析:0>∀ε,欲使ε<≤=-xx x x f 1sin |0)(|,只需21ε>x 即可.证明:0>∀ε,取012>=εK ,当K x >时,恒有ε<≤-x x f 1|0)(|,所以 0)(lim sin lim ==∞→+∞→x f xxx x .3、当2→x 时,42→=x y ,问δ等于多少,则当δ<-<|2|0x 时,001.0|4|<-y ?(提示:因为2→x ,所以不妨设31<<x ).解:欲使|2||4)2(||2||2||4||4|2-⋅+-=-⋅+=-=-x x x x x y3101001.0|2|5|2|)4|2(|=<-≤-+-≤x x x ,只需0002.01051|2|3=⋅<-x 即可.因此,取0002.0=δ,当δ<-<|2|0x 时,有001.0|4|<-y .4、设⎩⎨⎧≥-<=.3 ,13,3,)(x x x x x f 作)(x f 的图形,并讨论3→x 时, )(x f 的左右极限(利用第1题(3)的结果).解:(1) )(x f 的图形.(2) 令x x g =)(,13)(-=x x h ,已知3lim )(lim 33==→→x x g x x ,8)13(lim )(lim 33=-=→→x x h x x ,于是3)(lim 3=-→x g x ,8)(lim 3=+→x h x .显然,当3<x 时,)()(x g x f =,于是3)(lim )(lim 33==--→→x g x f x x ;当3>x 时,)()(x h x f =,于是8)(lim )(lim 33==++→→x h x f x x .5、证明||)(x x f =,当0→x 时的极限为零. 证明:0>∀ε,取0>=εδ,当δ<<||0x 时,恒有ε<=-=-||0|||0)(|x x x f , 所以 0)(lim ||lim 0==→→x f x x x .6、函数xx x f ||)(=,回答下列问题: (1)函数)(x f 在0=x 处的左右极限是否存在? 答:)(x f 在0=x 处的左右极限是均存在.这是因为:1)1(lim lim )(lim 000-=-=-=---→→→x x x xxx f ;11lim lim )(lim 000===+++→→→x x x x xx f .(2)函数)(x f 在0=x 处是否有极限? 答:)(x f 在0=x 处是没有极限.这是因为:)(lim 11)(lim 0x f x f x x +-→→=≠-=.(3)函数)(x f 在1=x 处是否有极限? 答:)(x f 在1=x 处有极限.这是因为:11lim lim )(lim 111===---→→→x x x x xx f ;11lim lim )(lim 111===+++→→→x x x x xx f . 由于1)(lim )(lim 11==+-→→x f x f x x ,故1)(lim 1=→x f x .7、证明A x f x x =→)(lim 0的充要条件是A x f x f x x x x ==-+→→)(lim )(lim 0.证明:“必要性”A x f x x =→)(lim 0⇒0>∀ε,0>∃δ..t s δ<-<||00x x 时,ε<-|)(|A x f ,从而,当 δ<-<00x x 时, ε<-|)(|A x f ; 也有,当 δ<-<x x 00时, ε<-|)(|A x f , 所以 A x f x f x x x x ==-+→→)(lim )(lim 0.“充分性” A x f x f x x x x ==-+→→)(lim )(lim 0⇒ 0>∀ε,0,21>∃δδ ..t s当 100δ<-<x x 时, ε<-|)(|A x f ; 当 200δ<-<x x 时, ε<-|)(|A x f ,取0},m in{21>=δδδ,当δ<-<||00x x 时,有ε<-|)(|A x f , 所以 A x f x x =→)(lim 0.8、设)0()(lim ≠=+∞→A A x f x ,证明当x 充分大时2|||)(|A x f >. 证明:因)0()(lim ≠=+∞→A A x f x ,对于02||0>=A ε,0>∃K , 当K x >时, 2|||)(|0A A x f =<-ε. 所以2||2|||||)(||||))((||)(|A A A A x f A A x f A x f =->--≥-+=.习题2-31、根据定义证明:(1) 1-=x y 为当1→x 时的无穷小;证明:0>∀ε,取0>=εδ,当δ<-<|1|0x 时,恒有ε<-=|1|||x y ,所以1-=x y 为当1→x 时的无穷小.(2) xx y 1cos =为当0→x 时的无穷小. 证明:0>∀ε,取0>=εδ,当δ<-<|0|0x 时,恒有ε<≤||||x y ,所以xx y 1cos =为当0→x 时的无穷小.2、根据定义证明:函数xxy 21+=为当0→x 时的无穷大,问x 应满足什么条件,能使410||>y ?(1)分析:0>∀K ,欲使K x x x y >-≥+=2||121||,只需21||0+<<K x 即可. 证明:0>∀K ,取021>+=K δ,当δ<<||0x 时,恒有 K x x x x y >-≥+=+=2||12121||,所以 ∞==+→→y xxx x 00lim 21lim .(2) 欲使K y =>410||,取10002121014=+=δ,则x 满足100021||0<<x 即可.3、利用有界量乘无穷小依然是无穷小求下列极限: (1) xx x 1sinlim 20→. 解:因0lim 0=→x x ,11sin≤x)0(≠x ,有)1(o x =(无穷小),)1(1sin O x=(有界), )0(→x ,则)1()1()1()1(1sin 2o O o o x x ==,)0(→x , 所以01sin lim 20=→xx x .(2) xxx arctan lim∞→.解:因01lim =∞→x x ,2arctan π≤,有)1(1o x=(无穷小),)1(arctan O x =(有界), )(∞→x ,则)1()1()1(arctan o O o x x ==,)(∞→x , 所以0arctan lim =∞→xxx .4、函数x x y sin =在区间),0(+∞内是否有界?又当+∞→x 时,这个函数是否为无穷大?为什么?解:(1)取22ππ+=k x ,则22)22sin()22(ππππππ+=++=k k k y , ,2,1=k ,可见, 函数x x y sin =在区间),0(+∞内无界.(2)取πk x =,则0)sin(==ππk k y , ,2,1=k ,可见,当+∞→x 时,函数x x y sin =不是无穷大.4’、函数xx y 1sin =在区间),0(+∞内是否有界?又当+∞→x 时,这个函数是否为无穷大?为什么?解:(1)当0>x 时,11||1sin ||1sin=≤≤x x x x x x , 可见, 函数x x y 1sin =在区间),0(+∞内有界.(2)因函数xx y 1sin =在区间),0(+∞内有界,可见,当+∞→x 时,函数x x y sin =不是无穷大.习题2-41、填空题:(1)已知b a ,为常数,3122lim2=-++∞→n bn an n ,则=a 0 ,=b 6 ;解:由于2122lim 1221lim 30022a n n nb a n bn an n n n =-++=-++=⨯=∞→∞→,有0=a . 而2122lim 122lim 122lim 32b nn b n bn n bn an n n n =-+=-+=-++=∞→∞→∞→,有6=b .(2)已知b a ,为常数,1)1(lim 2=--+∞→b ax x x x ,则=a 1 ,=b -1 ; 解:由于a xba xb ax x x x x x x x -=--+=--+==∞→∞→∞→1)11(lim )1(1lim 1lim 022, 有1=a .而b b x b x x x b ax x x x x x -=-=--+=--+=∞→∞→∞→)1(lim )1(lim )1(lim 12 有1-=b .(3)已知b a ,为常数,21lim 1=-+→x bax x ,则=a 2 ,=b -2 .解:由于0201)1(lim )(lim 11=⋅=-+-=+=+→→x bax x b ax b a x x ,有a b -=.而21lim 1lim 11=-+=--=→→x bax x a ax a x x ,有2-=b2、求下列极限:(1) 4304031413lim 143lim 222=++=++=++∞→∞→nn n n n n n .(2) 510)2(501)52)(2(5)52(1lim )2(5)2(5lim 11=⨯-++=--+-+=-+-+∞→++∞→n nn n n nnn . (3) 340131121101311311211211lim 31313112121211lim1122=--⋅--=--⋅--=++++++++++∞→∞→n n n n n n . (4) )1221(1lim )1231(lim 222nn n n n n n n n n n -+++=-+++∞→∞→1)221(lim )121(211lim =⨯=-+⋅⋅=∞→∞→n n n n n n n . (5) ))1(1321211(lim +++⋅+⋅∞→n n n1)111(lim )]111()3121()2111[(lim =+-=+-++-+-=∞→∞→n n n n n .(6)2110111111lim1lim)1(lim =++=++=++=-+∞→∞→∞→nn n nn n n n n n . 3、求下列极限:(1) 443lim 222---→x x x x .解:由于0423242434lim 22222=-⨯--=---→x x x x ,所以∞=---→443lim 222x x x x .(2) )33(lim 33lim )(lim2203220330h xh x h h xh h x h h h x h h h ++=++=-+→→→ 22230033x x x =+⋅+=.(3) 3001003431153lim 43153lim 2222=++++=++++=++++∞→∞→xx x x x x x x x x . (4)503020503020503020532)15()23()32(lim )15()23()32(lim =++-=++-∞→∞→xx x x x x x x (5) 221)12)(11(lim 2=⋅=-+∞→xx x .(6) 0004000724132lim724132lim 5454253=++++=++++=++++∞→∞→xx x x x x x x x x x . (7) )13)(1)(1()1()3(lim 113lim121x x x x x x x x x x x ++-+-+--=-+--→→ 42)1113)(11(2)13)(1(2lim1-=++-+-=++-+-=→x x x x .(8) 22121311211lim )131(11lim )1311(lim x x x x x x x x x x x x x ++-+⋅-=++--=---→→→ 1111)21(1)2(lim 221-=+++-=+++-=→x x x x .(9) 11lim )1/()1()1/()1(lim 11lim 2121111++++++=----=------→→→ n n m m x n m x n m x x x x x x x x x x xnm n n m m =++++++=----1111112121 .(n m ,是自然数).(10) )1)(1)(1()1)(1)(1(lim11lim3323323131+++-+++-=--→→x x x x x x x x x x x x 321111111lim)1)(1()1)(1(lim33233213322331=+++=+++=++-+-=→→x x x x x x x x x x .(11) x x x x x x x x x x 1)651)(1(lim 1)31)(21)(1(lim 200-+++=-+++→→6060116)6116(lim 220=⨯+⨯+=++=→x x x .(12) xx x x x x x x x x x +-+--+=--++∞→+∞→)1)(2()1)(2(lim ))1)(2((lim 21)11)(21(21lim )1)(2(2lim +-+-=+-+-=+∞→+∞→xx x x x x x x x211)01)(01(01=+-+-=.4、求下列极限:(1) 223)3(3lim -+→x xx x ;解:由于0333)33(3)3(lim 22223=⨯+-=+-=→x x x x ,所以∞=-+→223)3(3lim x x x x .(2)432lim 3++∞→x x x ;解:由于001002143lim 243lim 243lim 33233=++=++=++=++∞→∞→∞→xx xx x x x x x x , 所以∞=++∞→432lim3x x x .(3))325(lim 2+-∞→x x x ;解:由于000503251lim 3251lim 222=+-=+-=+-∞→∞→xx x x x x x ,所以∞=+-∞→)325(lim 2x x x .5、设A x f x x =→)(lim 0,)(lim 0x g x x →不存在,证明)]()([lim 0x g x f x x +→不存在.证明:反证.假设B x g x f x x =+→)]()([lim 0,则)(lim )]()([lim )]()()([lim )(lim 0x f x g x f x f x g x f x g x x x x x x x x →→→→-+=-+=A B -=,可见)(lim 0x g x x →存在,这与条件)(lim 0x g x x →不存在冲突,所以)]()([lim 0x g x f x x +→不存在.习题2-51、求下列极限:(1)52151255sin 522sin 2lim 5sin 2sin lim 00=⋅⋅=⋅⋅=→→xx x xx x x x .(2)2112122sin 22cos lim2cot lim 00=⨯=⋅=→→xx x x x x x .(3)212)sin 2(lim sin sin 2lim sin 2cos 1lim0200=⨯=⋅=⋅=-→→→xxx x x x x x x x x .(4)x x txtxx x n t n nn n=⋅===∞→=∞→1)sin (lim 2sin2lim 21,(x 为不等于零的常数).(5)01111sin 1sin 1lim sin sin lim 00=+-=+-=+-→→xx x xx x x x x x . (6)xx xx xx x x x x x x x x cos 2sin 2sin limcos )cos 1(sin lim sin tan lim3203030⋅=-=-→→→2112111122sin 21cos 1sin lim 220=⨯⨯⨯=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎭⎫⎝⎛⋅⋅=→x x x x x x .(7)tta t t a t a a x a x t t ax t a x 22cos2sin 2lim sin )(sin lim sin sin lim 00+=-+====--→→-=→ a t a t t t t cos )2cos(lim 22sinlim 00=+=→→.(8))3cos(21sin limcos 21)3sin(lim 033ππππ+-====--→-=→t t x x t x t x t t tt t t t t sin 3cos 1sin lim)3sin sin 3cos (cos 21sin lim 00+-=--=→→ππ 3313101sin 3)2(2sin 2sin lim sin 3cos 1sin lim 2200=⨯+⨯=+⋅=+-=→→tt t t t t tt t t t t .(9))22tan(lim 2)1(tanlim 2tan)1(lim 0011tt t t xx t t xt x ππππ-=-====-→→-=→πππππ2sin cos 2limcot 2lim2cotlim 002=⋅======→→=→uu u u u tt u u tu t .2、求下列极限:(1)ee t t t xtt tt x t xx 1)01(1)1()1(lim 1)1(lim )21(lim 10110212=+=++=+===-→--→-=-∞→.(2)et t xtt t t xt xx 1)1(lim 1)1(lim )22(lim 1010220=+=+===-→-→-=→.(3)211)11()11(lim )11(lim e e e xx x x x xx x x ==+-=+-∞→∞→.(4)11])11()11[(lim )11(lim )11(lim 2=⋅=+-=-===-+∞→+∞→=+∞→e et t t xt t t t t xt xx .(5)111])11()11[(lim 1)11(1lim )1(lim 222=⋅=+-=-=-∞→∞→∞→eex x x x x x x x x x x x .(6)33103tan 3cot 2])1(lim [)1(lim )tan 31(lim 22e t t x t t t t xt xx =+=+=====+→→=→.(7)3213ln 233sin lim3)21ln(lim 233sin 3)21ln(2lim3sin )21ln(lim 02102100=⨯=+=⋅+=+→→→→e xx x xx x x x x x x xx xx x .(8)2ln 2)21ln(2lim )21ln(lim ]ln )2[ln(lim 2==+=+=-+∞→∞→∞→e nn n n n n nn n n .3、利用极限存在准则证明:(1) 1)1211(lim 222=++++++∞→πππn n n n n . 证明:由于πππππ+≤++++++≤+2222222)1211(n n n n n n n n n n ,而111lim lim 22=+=+∞→∞→n n n n n n ππ, 111lim lim 222=+=+∞→∞→nn n n n ππ, 所以1)1211(lim 222=++++++∞→πππn n n n n .(2)设},,,m ax {21m a a a A =,),,2,1,0(m i a i =>,则有 A a a a n nm n n n =+++∞→ 21lim.证明:由于n n n n n m n n nn m A mA a a a A A =≤+++≤=21,而A A m A m A n n n n =⋅==∞→∞→1lim lim , 所以A a a a n n m n n n =+++∞→ 21lim .(3)设21=x ,12-+=n n x x , ,3,2=n ,证明数列}{n x 存在极限并求之.证明:①显然221<=x ,假设21<-n x ,有22221=+<+=-n n x x , 因此,20<<n x , ,3,2,1=n ;②由于11222x x x =>+=,假设1->n n x x ,有n n n n x x x x =+>+=-+1122因此,}{n x 为单调递增数列;③由①②知, 数列}{n x 必存在极限. ④假设a x n n =∞→lim ,显然有20≤≤a ,且a x x a n n n n +=+==-∞→∞→22lim lim 1,即022=--a a ,得2=a (1-=a 舍去), 所以2lim =∞→n n x .(4)数列21=x ,)1(211nn n x x x +=+的极限存在. 证明:①显然121≥=x ,而11221)1(211=⋅⋅⋅≥+=+nn n n n x x x x x , ②由于0121121221)1(21221=⋅-≤-=-=-+=-+n n n n n n n n n x x x x x x x x x , 即n n x x ≤+1,因此,}{n x 为单调递减数列;③由①②知,21≤≤n x , ,3,2,1=n ,因此数列}{n x 的极限必存在.4、某企业计划发行公司债券,规定以年利率6.5%的连续复利计算利息,10年后每份债券一次偿还本息1000元,问发行时每份债券的价格应定为多少元? 解:设0A 为发行时每份债券的价格,年利率为%5.6=r ,10=k 年后每份债券一次偿还本息1000=k A 元,若以连续复利计算利息,则krk e A A 0=,即065.01001000⨯=eA ,得05.5521000065.0100==⨯-eA (元).习题2-61、当0→x 时,下列各函数都是无穷小,试确定哪些是x 观的高阶无穷小?同阶无穷小?等价无穷小? (1) x x +2;解:因为1)1(lim lim020=+=+→→x x xx x x , 所以x x x ~2+,)0(→x .(等价无穷小)(2) x x sin +; 解:因为211)sin 1(lim sin lim00=+=+=+→→x xx x x x x ,所以)(2x O x x =+,)0(→x . (同阶无穷小)(3) x x sin -; 解:因为011)sin 1(lim sin lim00=-=-=-→→x xx x x x x ,所以)(2x o x x =+,)0(→x . (高阶无穷小)(4) x 2cos 1-;解:因为0102)sin sin 2(lim sin 2lim 2cos 1lim0200=⋅⋅===-→→→x xx x x x x x x x , 所以)(2x o x x =+,)0(→x . (高阶无穷小)(5) x tan ; 解:因为111)cos 1sin (lim tan lim00=⋅=⋅=→→xx x x x x x ,所以x x ~tan ,)0(→x .(等价无穷小)(6) x 2tan . 解:因为221)2cos 222sin (lim 2tan lim00=⋅=⋅=→→xx x x x x x ,所以)(2tan x O x =,)0(→x . (同阶无穷小)2、证明当0→x 时,有: (1) x x ~arctan ;证明:因为111sin cos lim tan lim arctan lim 00arctan 0========→→=→tt t t t x x t t x t x ,所以x x ~arctan ,)0(→x .(2) 221~1sec x x -; 证明:因为1)2(2sin lim 2sin 22limcos )cos 1(2lim 211sec lim2202202020==⋅=-=-→→→→xxx x x x x xx x x x x ,所以221~1sec x x -,)0(→x .(3) 221~1sin 1x x x -+; 证明:因为1101121sin 1sin 2lim 211sin 1lim 020=++⋅=++⋅=-+→→x x x xxx x x x , 所以221~1sin 1x x x -+,)0(→x .(4) 222~11x x x --+.证明:因为101012112lim 11lim2202220=-++=-++=--+→→xx x x x x x , 所以222~11x x x --+,)0(→x .3、利用等价无穷小的性质,求下列极限:(1) 11lim 2121lim cos 11sin 1lim 02200===--+→→→x x x xxx x x . 其中:221~1sin 1x x x -+,221~cos 1x x -,)0(→x .(2) 22lim 2lim tan )1(2sin lim 02020==⋅=-⋅→→→x x x x x x x x e x . 其中:x x 2~2sin ,x e x ~1-,22~tan x x )0(→x .(3) 52)52(lim 52lim 5sin )21ln(lim000-=-=-=-→→→x x x x x x x .其中:x x 2~)21ln(--,x x 5~5sin ,)0(→x .(4) 21cos 21lim cos 21lim cos sin cos 1lim sin sin tan lim 02202030===-=-→→→→x x x xx x x x x x x x x x . 其中:221~cos 1x x -,x x ~sin )0(→x .(5) 2121lim 21lim sin cos 1lim )tan 1sin 1(1lim 022000===-=-→→→→x x x x x xx x x x x x . 其中:221~cos 1x x -,x x ~sin )0(→x .(6) 22lim )(21lim cos 1lim 22022020m m x mx x mx x x x ===-→→→. 其中:0≠m 时,2)(21~cos 1mx mx -,)0(→x ,而0=m 时,0)(21cos 12==-mx mx .4、证明无穷小的等价关系具有下列性质: (1) αα~(自反性); 证明:因11lim lim==αα,所以αα~.(2) 若βα~,则αβ~(对称性); 证明:已知βα~,因1111lim lim===βααβ,所以αβ~.(3) 若βα~,γβ~,则γα~(传递性). 证明:已知βα~,γβ~,因111lim lim )lim(lim=⋅=⋅=⋅=γββαγββαγα, 所以γα~习题2-71、研究下列函数的连续性,并画出函数图形:(1) ⎪⎩⎪⎨⎧>≤≤--<-=.1 ,1,11 ,,1 ,1)(2x x x x x f 解:显然,函数)(x f 在)1,(--∞,)1,1(-以及),1(+∞连续.由于)(lim 11lim )(lim 1211x f x x f x x x -++-→-→-→=-≠==,则)(x f 在1-=x 间断;由于)(lim 1)1(lim )(lim 1211x f f x x f x x x +--→→→====,则)(x f 在1=x 连续.总之,函数)(x f 在)1,(--∞,),1(+∞-连续,在1-=x 间断.(2) ⎩⎨⎧≤<-≤≤=.21,2,10 , )(2x x x x x f 解:显然,函数)(x f 在)1,0[,]2,1(连续. 由于1lim )(lim 211==--→→x x f x x ,有)(lim )1(112)2(lim )(lim 111x f f x x f x x x -++→→→===-=-=,则)(x f 在1=x 连续.总之,函数)(x f 在]2,0[连续.2、确定常数b a ,使下列函数连续:(1) ⎩⎨⎧>+≤=.0 ,,0 , )(x a x x e x f x解:显然,函数)(x f 在)0,(-∞,),0(+∞连续.由于1lim )(lim 00===--→→e e x f x x x ,a a a x x f x x =+=+=++→→0)(lim )(lim 00,欲使)(x f 在0=x 连续,只需)0(1)(lim )(lim 0f x f x f x x ===-+→→,即1=a . 因此,仅当1=a 时,函数)(x f 在),(+∞-∞连续.(2) ⎪⎪⎩⎪⎪⎨⎧>=<-=.0 ,sin ,0 ,2 ,0 ,)31ln()(x xax x x bxx x f 解:显然,函数)(x f 在)0,(-∞,),0(+∞连续.由于bb bx x bx x x f x x x x 33lim 3lim )31ln(lim )(lim 0000-=-=-=-=----→→→→,)0(≠b ,⎪⎩⎪⎨⎧==≠=⋅==+++→→→.0 ,0,0 ,)sin (lim sin lim )(lim 000a a a a axax a x ax x f x x x , 欲使)(x f 在0=x 连续,只需)0(2)(lim )(lim 0f x f x f x x ===+-→→,有 23==-a b , 即2=a , 23-=b . 因此,仅当2=a ,23-=b 时,函数)(x f 在),(+∞-∞连续.3、下列函数在指出的点处间断,说明这些间断点属于哪一类型,如果是可去间断点,则补充或改变函数的定义使它连续.(1) 65422+--=x x x y , 2=x ,3=x ;解:32)3)(2()2)(2()(-+=--+-==x x x x x x x f y , 2≠x .①由于4322232lim )(lim 22-=-+=-+=--→→x x x f x x ,)(lim 4322232lim )(lim 222x f x x x f x x x -++→→→=-=-+=-+=, 可见, 2=x 是函数)(x f y =的可去间断点,属第一类间断点. 欲使)(x f 在2=x 连续,只需定义4)2(-=f 即可.②由于∞=-+=→→32lim )(lim 33x x x f x x ,可见, 3=x 是函数)(x f y =的无穷间断点,属第二类间断点.(2) xxy sin =, πk x =,),2,1,0( ±±=k ; 解:xxx f y sin )(==, πk x ≠,),2,1,0( ±±=k .①由于1sin lim )(lim 00==--→→xxx f x x ,)(lim 1sin lim )(lim 000x f x xx f x x x -++→→→===, 可见, 0=x 是函数)(x f y =的可去间断点,属第一类间断点. 欲使)(x f 在0=x 连续,只需定义1)0(=f 即可.②由于∞==-→→xxx f k x k x sin lim )(lim ππ,),2,1( ±±=k可见,πk x =,),2,1( ±±=k 是函数)(x f y =的无穷间断点,属第二类间断点.(3) xy 1cos3=, 0=x ; 解:xx f y 1cos )(3==, 0≠x .显然函数)(x f y =有界, 由于xx f x x 1cos lim )(lim 300→→=不存在,可见, 0=x 是函数)(x f y =的振荡间断点,属第二类间断点.(4) ⎩⎨⎧>-≤-=.1 ,54,1 ,12x x x x y 1=x .解:⎩⎨⎧>-≤-==.1 ,54,1 ,12)(x x x x x f y由于1)12(lim )(lim 01=-=--→→x x f x x , )(lim 13)52(lim )(lim 111x f x x f x x x -++→→→=≠-=-=,可见,1=x 是函数)(x f y =的跳跃间断点,属第一类间断点.4、求函数633)(223-+--+=x x x x x x f 的连续区间,并求极限)(lim 0x f x →, )(lim 3x f x -→及)(lim 2x f x →.解:21)3)(2()3)(1(633)(22223--=+-+-=-+--+=x x x x x x x x x x x x f ,3-≠x .显然,函数)(x f 在)3,(--∞,)2,3(-以及),2(+∞连续.5821lim )(lim 233-=--=-→-→x x x f x x ,∞=--=→→21lim )(lim 222x x x f x x , 2121lim )(lim 200=--=→→x x x f x x .5、求下列极限: (1) 33020)32(lim 32lim22020=+⋅-=+-=+-→→x x x x x x . (2) 00)2(cos )]42[cos()2cos lim ()2(cos lim 3333434===⋅==→→ππππx x x x . (3) 2)1(2211111lim e e t e t t -=--=--⨯---→. (4) ππππ222sin sin lim 2==→x x x .6、求下列极限: (1) 1lim lim 0011=====→=∞→e e e t t xt x x . (2) )]21cos[ln(lim )]121cos[ln(lim 2012t t x x t x t x -+===-+→=∞→ 10cos )]0021cos[ln()]}21(lim cos{ln[220==-⨯+=-+=→t t t .(3) )1ln(lim 1lim )1(lim lim 010020t t xe x e e x e e t e t x x x x x x x x x +-====-=-=-→-=→→→ 1ln 1)1ln(1lim 10-=-=+-=→e t tt .(4) 202022)1(cos 4lim )]1(cos 1ln[4lim cos ln 4040lim )(cos lim x x x x x x x x x x x e e e x --+→→→→=== 2)2(lim 24lim 0220--⋅-===→→e e e x x x x .7、讨论函数x nx n n e ex x x f ++=∞→1lim )(2的连续性,若有间断点,判别其类型.解:①当0<x 时,x x x e ex x x f x nxnn =+⋅+=++=∞→0101lim )(22; 当0>x 时,2221001lim )(x x x ex xe x f x nxnn =++⋅=++=--∞→, 所以⎩⎨⎧>>=.0 ,,0 ,)(2x x x x x f ②显然,函数)(x f 在)0,(-∞,),0(+∞连续,在0=x 点间断点.③由于0lim )(lim 00==--→→x x f x x , )(lim 0lim )(lim 0200x f x x f x x x -++→→→===, 可见,0=x 是函数)(x f y =的可去间断点,属第一类间断点.习题2-81、试证下列方程在指定区间内至少有一个实根:(1) 0135=--x x ,在区间)2,1(;证明:显然]2,1[13)(5C x x x f ∈--=,由于03)0(<-=f ,025)2(>=f ,由零点定理知,)2,1(∈ξ..t s 0)(=ξf ,即01325=--ξξ,所以方程 0135=--x x 在)2,1(内至少有一个根ξ.图形> plot(x^5-3*x^2-1,x=1..2);(2) 2-=x e x ,在区间)2,0(.证明:显然]2,0[2)(C x e x f x∈--=,由于01)0(<-=f ,03)2(2>-=e f , 由零点定理知,)2,0(∈ξ..t s 0)(=ξf ,即02=--ξξe ,所以方程 2-=x e x 在)2,0(内至少有一个根ξ.图形> plot(exp(x)-x-2,x=0..2);2、设)(x f 在],[b a 上连续,且b d c a <<<,证明在],[b a 内必存在一点ξ使)()()()(ξf n m d nf c mf +=+,其中n m ,为自然数.证明:若n m ,全为零,则结论显然成立;若n m ,不全为零,因],[)(b a C x f ∈,知)(x f 在],[b a 上存在最小值和最大值βα,, 令)()(d f nm n c f n m m +++=λ,由于 ββαα=++≤+++≤++=nm m m d f n m n c f n m m n m m m )()( 即βλα≤≤,又因],[)(b a C x f ∈,则必],[b a ∈∃ξ..t s λξ=)(f ,即)()()()(ξf n m d nf c mf +=+.3、设函数)(x f 在]2,0[a 上连续,且)2()0(a f f =,证明在],0[a 内至少存在一点ξ,使)()(a f f +=ξξ.证明:若)()0(a f f =,则结论显然成立;若)()0(a f f ≠,已知]2,0[)(a C x f ∈,显然],0[)()()(a C a x f x f x F ∈+-=,由于)]2()()][()0([)()0(a f a f a f f a F F --=0)]()0([)]0()()][()0([2<--=--=a f f f a f a f f ,由零点定理知,),0(a ∈ξ..t s 0)(=ξF ,即)()(a f f +=ξξ.4、一个登山运动员从早晨7:00开始攀登某座山峰,在下午7:00到达山顶,第二天早晨7:00再从山顶沿着原路下山,下午7:00到达山脚,试利用介值定理说明,这个运动员必在这两天的某一相同时刻经过登山路线的同一地点.证明:用)(x f 和)(x g 表示第一天和第二天运动员在时刻x )197(≤≤x 时距山脚的距离,显然]19,7[)(),(C x g x f ∈,假设山顶距山脚的距离为0>s ,那么,有0)19()7(==g f ,而s g f ==)0()19(,显然]19,7[)()()(C x g x f x F ∈-=,由于0)]19()19()][7()7([)19()7(2<-=--=s g f g f F F ,由零点定理知,)19,7(∈ξ..t s 0)(=ξF ,即)()(ξξg f =,说明运动员必在这两天的相同时刻ξ经过登山路线的同一地点,此时距山脚的距离为)(ξf .友情提示:范文可能无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用,感谢您的下载!。
高等数学极限经典习题及解析
dv 1 v3 v C 1
1 x2
3
2
1 x2
1
2 C.
2v
3
3
2.求
I
arctan x
x dx .
解. I 2 arctan xd x 2 x arctan x 2 xd arctan x
2
x arctan
x
1
1
x
dx
2
x arctan
条件(充分,必要,充要).
3.设 f x 的一个原函数是 x sin x ,则 f x ______ .
4.反常积分 xexdx ______ .
x dx ,于是
At
1 2
t
f
t ,故 t
1 2
是
At
在0,1 上的唯一驻点,又 t 1 时 At 0 , t 1 时 At 0 ,故 t 1 是
2
2
2
At 在0,1 上的最小值点,证毕.
4
七.(1)求解初值问题
dx
dx
dx 2u
dx 2u
2u 1 u2
du
1 dx ,解得 ln 1 u2 x
ln
x
C1 x
1 u2
C ,即
x2 y2 Cx ,代入 x 1, y 0 C 1 ,因此 x2 y2 x .
(2)设 y y x 满足 y 3y 2 y 2ex ,且图形在 0,1 处与曲线 y x2 x 1
4.对于a,b 上函数的下列性质:(1)连续,(2)有界,(3)可导,(4)可积,下面
大一高数求极限的例题
大一高数求极限的例题一、引言极限是大学高等数学中的重要概念,它是分析数学和微积分的基础。
在大一的高数课程中,学生常常会遇到求取极限的例题。
通过解答这些例题,不仅可以帮助学生理解极限的概念和性质,还可以提升他们的计算能力和思维逻辑能力。
本文将给出一些典型的大一高数求取极限的例题,以帮助读者更好地理解和掌握这一知识点。
二、例题一:求极限$\\lim_{x \\rightarrow 0}\\frac{\\sin{2x}}{x}$解析:我们可以利用极限的基本性质来求解该例题。
首先,我们注意到当$x$接近于0时,$\\sin{2x}$也随之接近于0,而分母$x$始终不会取0。
因此,我们可以将该极限转换为另一个形式:$\\lim_{x \\rightarrow 0} \\frac{2\\sin{x}\\cos{x}}{x}$。
接下来,我们可以继续变形,使用三角恒等式$\\sin{2x} =2\\sin{x}\\cos{x}$,将分子中的$\\sin{2x}$化简为$2\\sin{x}\\cos{x}$。
然后,我们可以进一步将极限变为$\\lim_{x \\rightarrow 0} \\frac{2\\sin{x}\\cos{x}}{x} = 2\\lim_{x\\rightarrow 0} \\frac{\\sin{x}}{x}\\lim_{x \\rightarrow0}\\cos{x}$。
其中,$\\lim_{x \\rightarrow 0}\\cos{x}$显然等于1。
而$\\lim_{x \\rightarrow 0} \\frac{\\sin{x}}{x}$则是一个常数,它的数值为1。
因此,最终的结果为$2 \\times 1 \\times 1 = 2$。
即$\\lim_{x \\rightarrow 0} \\frac{\\sin{2x}}{x} = 2$。
三、例题二:求极限$\\lim_{x \\rightarrow +\\infty} \\left(1 +\\frac{a}{x}\\right)^x$解析:为了求解该例题,我们可以利用极限的定义和性质。