第一章 原子的核式结构
原子物理学总复习
段正路
2014年
1
第一章 原子的基本状况
重点: 1,原子的核式结构 2,α粒子散射实验的意义
2
1、卢瑟福的原子核式模型
原子中的全部正电荷和几乎全部质量都集中在原子中央一 个很小的体积内,称为原子核。原子中的电子在核的周围 绕核运动。
2. α粒子的散射实验:
α粒子被静止核的库仑场散射的角度θ由下式决定
• Z:质子数 • A: 质量数
C4 0
20
a
原子核的角动量
P 核 LnSnLpSp
P核 I(I1)h
原子核的磁矩
I g
I(I1) he 2M
38
原子核的统计性:A为奇数的原子核属于费米子;A为偶 数的原子核属于玻色子。
原子核的结合能
E [Z m p (A Z )m n m 核 ]C 2 或 E [Z m H (A Z )m n m 原 子 ]C 2
r rr 总角动量 JLS JLS,LS 1 ,......,LS
L LS耦合下的原子态符号表示:
2S 1
s=0,单重态
J s=1,三重态
能级排布规则
洪特定则 朗德间隔定则
17
j-j 耦合
rjrj21 rrll12srsr12 rr r Jj1j2
j1 l1 s 1 ,l1 s 1 1 ,....,l1 s 1 j2 l2 s 2 ,l2 s 2 1 ,....,l2 s 2 Jj1j2,j1j2 1 ,....,j1j2
% 1R (m 12n 1 2)Tm Tn
R — 里德堡常数;T(m) —光谱项。
光谱线系 m = 1,n = 2、3、4…,赖曼系(紫外) m = 2,n = 3、4、5…,巴尔末系(可见光) m = 3,n = 4、5、6…,帕邢系(红外) m = 4,n = 5、6、7…,布喇开系(远红外)
原子物理第一章知识点总结
角动量守恒:
角动量守恒:
由能量守恒和角动量守恒的表达式消`:
利用库仑公式:
代入整理得:
α粒子距原子核越近
α粒子所能达到的最小距离
两个相斥的粒子碰撞时能靠近的最小距离
可以由此估计原子核大小的数量级:
原子半径数量级为 米,原子核半径数量级为 米,相差4-5个数量级,面积相差8-10个数量级,体积相差12-15个数量级。若把原子放大到足球场地那么大,则原子核相当于场地中心的一个黄豆粒。可见原子中是非常空旷的。
2.实验结果:
绝大部分α粒子进入金箔后直穿而过(θ=0)或基本直穿而过(θ很小,约在2-3度之间);
有少数α粒子穿过金属箔时,运动轨迹发生了较大角度的偏转(45o );
个别的α粒子,其散射角>90o,有的竟沿原路完全反弹回来,θ180o。
2.汤姆逊模型的困难
近似1:α粒子散射受电子的影响忽略不计
近似2只受库仑力的作用。
2、粒子散射实验为人类开辟了一条研究微观粒子结构的新途径,以散射为手段来探测,获得微观粒子内部信息的方法,为近代物理实验奠定了基础,对近代物理有着巨大的影响。
3、粒子散射实验还为材料分析提供了一种手段。
α粒子散射理论中的几个近似:
1.薄膜中的原子核前后不互相覆盖。
2.只发生一次散射。
3.核外电子的作用可以忽略。
0.019
0.19
1.7
16.9
112
172.3
由此可以看出,要得到大角散射,正电荷必须集中在很小的范围内,α粒子必须在离正电荷很近处通过。
2.卢瑟福散射公式
通过b~b-db之间的圆环形面积的α粒子,必定散射到θ~θ+dθ之间的空心圆锥体中。
一轮复习:原子的核式结构和氢原子光谱
吸收 -E1
2hν+E1 m
3.已知氢原子的能级如图所示,现用光子能量介于10~ 12.9 eV范围内的光去照射一群处于基态的氢原子,则下 列说法中正确的是(B ) A.在照射光中可能被吸收的光子能量有无数种
B.在照射光中Байду номын сангаас能被吸收的光子能量只有3种 C.照射后可能观测到氢原子发射不同波长的光有10种 D.照射后可能观测到氢原子发射不同波长的光有3种
2.(多选)氢原子的核外电子由离原子核较远的轨道跃迁到 离原子核较近的轨道上,下列说法正确的是( BD ) A.核外电子受力变小 B.原子的能量减少 C.氢原子要吸收一定频率的光子 D.氢原子要放出一定频率的光子
2.用频率为 ν0 的光照射大量处于基态的氢原子,
在所发射的光谱中仅能观测到频率分别为 ν1、ν2、ν3
为 E1=□ 08-13.6 eV。
能级图如图所示:
4.两类能级跃迁 (1)自发跃迁:高能级→低能级,释放能量,发出光子。 光子的频率 ν=ΔhE=E高-h E低。 (2)受激跃迁:低能级→高能级,吸收能量。条件有: ①光照(吸收光子):光子的能量必须恰等于能级差,即 hν=ΔE。 ②实物粒子碰撞、加热等:只要入射的实物粒子能量大 于或等于能级差即可,E 外≥ΔE。 ③大于等于电离能(-E1)的光子被吸收,将原子从基态 电离;或大于等于-En 能量的光子被吸收,将原子从 n 能级 电离。
4.下列说法正确的是( D ) A.β 衰变现象说明电子是原子核的组成部分 B.α 粒子散射实验揭示了原子具有枣糕式结构 C.氢原子核外电子轨道半径越大,其能量越低 D.原子从 a 能级状态跃迁到 b 能级状态时发射波长为 λ1 的光子;原子从 b 能级状态跃迁到 c 能级状态时吸收波长 为 λ2 的光子,已知 λ1>λ2,那么原子从 a 能级跃迁到 c 能级 状态时将要吸收波长为λ1λ-1λ2λ2的光子
原子的核式结构范文
原子的核式结构范文原子是构成物质的最基本单位,由原子核和电子云组成。
原子核是原子的中心部分,其核式结构是指核内的粒子组织和排列方式。
下面将详细介绍原子核的结构和特点。
原子核由质子和中子组成。
质子带有正电荷,具有质量,中子不带电荷,也具有质量。
质子和中子称为核子。
质子和中子合称为核子是因为它们都存在于原子核内,与电子相比,核子具有更大的质量。
质子和中子以一种特定的方式排列在原子核内部。
质子和中子的数量决定了元素的原子核质量。
原子核的质量数等于质子数加上中子数。
不同元素的原子核可以有不同的质量数和质子数,从而形成不同的元素。
原子核的直径通常约为10^-15米,相比于整个原子的大小,原子核的体积非常小。
这也意味着原子核非常致密,其中包含了绝大部分原子的质量。
原子核的稳定性与核子的排列方式和核力有关。
核力是一种相对于电磁力和重力的短程力,它保持质子和中子在原子核内部的结合。
核力是一种非常强大的力量,能够克服质子之间的排斥力,使得原子核保持稳定。
当核子的排列方式和核力达到一定的平衡时,原子核就是稳定的。
然而,当核子的排列方式不稳定时,原子核就会发生衰变,放出粒子或辐射以保持稳定。
原子核的稳定性还与核子的质量数有关。
在相同的质子数下,中子数的增加会增加原子核的稳定性。
这是因为中子的加入会增加核力的作用范围,从而增加质子之间的吸引力。
然而,在质子数超过一定范围后,增加中子数将不再增加原子核的稳定性,甚至会减弱稳定性。
这将导致核子之间的斥力增加,使原子核变得不稳定。
核式结构还可以用核壳模型来解释。
核壳模型是描述原子核内部核子排列方式的模型。
它类似于原子外部的电子壳层结构。
核壳模型认为原子核由能级较低的核壳层和能级较高的核壳层组成,类似于电子的能级结构。
核壳模型解释了为什么一些特定核子的数目更稳定。
例如,在一些原子核中,质子或中子的数目正好达到一些特定值时,原子核更稳定。
这被称为“魔数”现象。
魔数对应着核壳层的填充情况,类似于电子壳层填充到满壳时的稳定性。
2021版高考物理大复习通用版:原子结构和原子核含答案
(2)原子的核式结构模型:在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。
二、氢原子光谱
1.光谱:
用光栅或棱镜可以把各种颜色的光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱。
2.光谱分类
3.氢原子光谱的实验规
律:巴耳末系是氢光谱在可见光区的谱线,其波长公式
1
λ
=R(
1
22
-1
n2
),(n=3,4,5,…,R是里德伯常量,R=1.10×107 m-1)。
4.光谱分
析:利用每种原子都有自己的特征谱线可以用来鉴别物质和确定物质的组成成分,且灵敏度很高。
在发现和鉴别化学元素上有着重大的意义。
三、氢原子的能级、能级公式
1.玻尔理论。
原子的核式结构
db b
d
这就是卢瑟福散射公式。d就是
粒子散射到和+d之间立体角d
的有效散射截面,又称为微分截面.
d
• Ze
d
r
将卢瑟福散射公式和实验所能观察的数据联系起来.
A为薄膜面积、t为薄膜厚度、N为单位体积的原子数。 原子总数为:N'NAt
设薄膜很薄,这些原子对射来的粒子前后不互相遮蔽,
总的有效散射面积为: d N ' d N A t d
28.8
一散射物的情况下 现用一带电粒子轰击这两个球体。
环形面积为: d =2 bdb
135
43.0
1.38
31.2
932×104千克/米3的金箔。
环这形就面 是d 积卢n 为瑟':福/散d d 射 =公2'式s b。i dn b 4 /2 常 数 120
二、 粒子散射实验
105
在同一 粒子源和同一散射物的情况下
这样的实验结果是不可能用汤姆逊模型给予解答的.
考虑两个外形、大小、电荷和质量相同的带电球体,其中 一个球体的电荷密度均匀分布,另一集中在球心。现用一 带电粒子轰击这两个球体。
F
o R
汤姆逊模型
1 2Ze2
F
F
4 0 1
4 0
r2
2Ze2 R3
, r,
rR rR
r
1 2Ze2
Fmax40 R2 ,
rR
•
1 2Ze2
F
F
40
r2
r
o R
卢瑟福模型
汤姆逊模型中,不可能出现较大的相互作用力,而卢瑟福 模型可以出现很大的作用力,可能使得入射离子反弹.
三、 卢瑟福原子有核模型
原子的核式结构模型
原子的核式结构模型一、背景在深入研究原子的内部结构后,科学家们得出了一种关于原子构造的理论,即核式结构模型。
这个模型揭示了原子中心的秘密,为我们打开了理解物质世界的新视角。
二、核式结构模型的提出19世纪末,卢瑟福通过α粒子散射实验,发现原子中心有一个密集的原子核,其体积仅占据原子体积的几千分之一。
同时,他发现原子核周围环绕着电子,这些电子沿着轨道运动,就像行星围绕太阳运动一样。
这一发现,彻底改变了我们对原子的理解。
三、核式结构模型的内容核式结构模型的主要内容是:原子由一个位于中心的原子核和核外电子组成,电子在特定轨道上运动,并受到原子核的吸引。
原子核由质子和中子组成,其质量约占原子质量的99.9%,而电子的质量几乎可以忽略不计。
因此,原子的大部分体积是由原子核占据的。
四、核式结构模型的意义核式结构模型的提出,为我们理解原子的性质和行为提供了基础。
它解释了为什么原子在化学反应中会形成稳定的化合物,为什么元素之间会有不同的化学亲和力等等。
这一模型成为了现代化学的基础,为我们的科技发展提供了重要的理论基础。
五、结论总的来说,原子的核式结构模型是科学史上的一个重大突破,它为我们打开了理解物质世界的新视角。
然而,随着科技的发展,我们还需要更深入的研究和探索,以揭示原子内部的更多秘密。
让我们期待更多的科学发现,以更好地理解这个美丽的物质世界。
原子的核式结构模型一、背景在深入研究原子的内部结构后,科学家们得出了一种关于原子构造的理论,即核式结构模型。
这个模型揭示了原子中心的秘密,为我们打开了理解物质世界的新视角。
二、核式结构模型的提出19世纪末,卢瑟福通过α粒子散射实验,发现原子中心有一个密集的原子核,其体积仅占据原子体积的几千分之一。
同时,他发现原子核周围环绕着电子,这些电子沿着轨道运动,就像行星围绕太阳运动一样。
这一发现,彻底改变了我们对原子的理解。
三、核式结构模型的内容核式结构模型的主要内容是:原子由一个位于中心的原子核和核外电子组成,电子在特定轨道上运动,并受到原子核的吸引。
高中原子的核式结构物理知识点
高中原子的核式结构物理知识点高中原子的核式结构物理知识点1、原子的核式结构(1) 粒子散射实验结果:绝大多数粒子沿原方向前进,少数粒子发生较大偏转。
(2)原子的核式结构模型:在原子的中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎全部的质量都集中在原子核里,带负电的电子在核外空间绕核旋转.(3)原子核的大小:原子的半径大约是10-10米,原子核的半径大约为10-14米~10-15米.2、玻尔理论有三个要点:(1)原子只能处于一系列的不连续的能量状态中,在这些状态中原子是稳定的.电子虽然绕核旋转,但并不向外辐射能量,这些状态叫定态.(2)原子从一种定态跃迁到另一定态时,它辐射(或吸收)一定频率的光子,光子的能量由这两个定态的能量差决定.即hν=E2-E1(3)原子的不同能量状态对应于电子沿不同圆形轨道运动.原子的定态是不连续的,因而电子的可能轨道是分立的.在玻尔模型中,原子的可能状态是不连续的,各状态对应的能量也是不连续的,这些不连续的能量值的能量值叫做能级。
3、原子核的组成核力原子核是由质子和中子组成的.质子和中子统称为核子.将核子稳固地束缚在一起的力叫核力,这是一种很强的力,而且是短程力,只能在2.0X10-15的距离内起作用,所以只有相邻的核子间才有核力作用.4、原子核的衰变(1)天然放射现象:有些元素自发地放射出看不见的射线,这种现象叫天然放射现象.(2)放射性元素放射的射线有三种:、射线、射线,这三种射线可以用磁场和电场加以区别,如图15.2-1 所示(3)放射性元素的衰变:放射性元素放射出粒子或粒子后,衰变成新的原子核,原子核的这种变化称为衰变.衰变规律:衰变中的电荷数和质量数都是守恒的.(4)半衰期:放射性元素的原子核有半数发生衰变所需要的时间称为半衰期.不同的放射性元素的半衰期是不同的,但对于确定的放射性元素,其半衰期是确定的.它由原子核的内部因素所决定,跟元素的化学状态、温度、压强等因素无关.(5)同位素:具有相同质子数,中子数不同的原子在元素周期表中处于同一位置,互称同位素。
原子的核式结构模型
描述微观粒子运动的基本方程, 用于求解原子中电子的波函数和
能量。
原子轨道
由量子力学计算得出的电子在原子 中的概率分布区域,决定了元素的 化学性质。
自旋和磁矩
电子自旋和轨道运动产生的磁矩是 原子磁性的来源。
多电子原子中电子排布规律研究进展
泡利原理
确定每个电子状态的独特性,保证电子排布的稳 定性。
原子中心有一个带正电的原子核,电子绕核旋转。该模型预测了α粒子散射实 验的结果,即大多数α粒子穿过原子时不受影响,少数α粒子受到大角度偏转, 极少数α粒子被反弹回来。
实验结果与预测一致
α粒子散射实验结果与卢瑟福的核式结构模型预测相符,从而验证了该模型的正 确性。同时,其他相关实验结果也支持了核式结构模型的理论预测。
局限性
玻尔理论虽然成功地解释了氢原子光谱和类氢离子光谱,但对于复杂原子(多电 子原子)的光谱现象却无法解释。此外,玻尔理论也无法解释原子的化学性质和 化学键的形成。
03
原子核式结构模型具体内容
原子核组成与性质
原子核位于原子的中心,由质子和中 子组成。
原子核的半径约为原子半径的万分之 一,但质量却占原子总质量的99.9% 以上。
04
电子云密度越大,表明 电子在该区域出现的概 率越高。
能量层级
原子中的电子按照能量高低分 布在不同的能级上,每个能级 对应一定的电子云形状和取向
。
当电子从一个能级跃迁到另一 个能级时,会吸收或释放能量 ,表现为光的吸收或发射。
电子跃迁遵循一定的选择定则 ,如偶极跃迁选择定则、自旋
原子核的发现
卢瑟福根据α粒子散射实验现象提出了原子核式结构模型。在 原子的中心有一个很小的核,叫原子核,原子的全部正电荷 和几乎全部质量都集中在原子核里,带负电的电子在核外空 间里绕着核旋转。
原子的核式结构课件
§1.2 原子的核式结构(卢瑟福模型)
二、盖革-马斯顿实验
(a) 侧视图 (b) 俯视图 R:放射源;F:散射箔;S:闪烁屏;B:金属匣
α粒子:放射性元素发射出的高速带电粒子,其速度约为光速的十分之一,带+2e的电荷,质量约为4MH。 散射:一个运动粒子受到另一个粒子的作用而改变原来的运动方向的现象。 粒子受到散射时,它的出射方向与原入射方向之间的夹角叫做散射角。
(3) 阿伏伽德罗定律
1811年,意大利物理学家阿伏伽德罗提出:一摩尔任何原子的数目都是NA,称为阿伏伽德罗常数. 说明:NA是联系微观物理学和宏观物理学的纽带,是物理学中重要的常数之一. 当进行任何微观物理量的测量时, 由于实验是在宏观世界里进行的,因此都必须借助于NA ; NA之巨大,正说明了微观世界之细小. NA测量方法: 1838年,法拉第(Faraday,1791-1867年)电解定律: 任何一摩尔单价离子,永远带有相同的电量F,F称为法拉第常数,经实验测定,F=96486.7 C/mol,则 其中,e为电子电量,测出e,就可以求出.我们再次看到,将宏观量F与微观量e联系起来了.
当r>R时,原子受的库仑斥力为: 当r<R时,原子受的库仑斥力为: 当r=R时,原子受的库仑斥力最大:
近似2:只受库仑力的作用。
粒子受原子作用后动量发生变化: 最大散射角:
大角散射不可能在汤姆逊模型中发生,散射角大于3°的比1%少得多;散射角大于90°的约为10-3500.必须重新寻找原子的结构模型。
三、 课堂反馈
思考与讨论: 原子质量和大小的数量级是多少?请尽可能多地列出估算方法.并举例说明. 是联系微观物理学和宏观物理学的桥梁.有哪些微观量与宏观量可以通过联系?如何联系?请举例说明. 电子的质量和电荷是多少? 如何测量电子的荷质比?
原子物理学-第一章
例题 2 的质子射向金箔, 若用动能为 1 MeV 的质子射向金箔,问质子和金 箔原子核( 箔原子核(Z=79)可以达到的最小距离多大?又问 )可以达到的最小距离多大? 如用同样能量的氕核代替质子,最小距离为多大? 如用同样能量的氕核代替质子,最小距离为多大? 解:
发现电子的实验
• 1897年,汤姆孙(J.J.Thomson)测定了阴极 射线中粒子的荷质比,成为电子的发现者 • 1909年前后,密立根(likan)和他 的学生对单个电子的电荷进行了精密的测 量(密立根油滴实验)
• 目前最精密的实验给出电子的电荷和质量 (1986年国际推荐值)分别为:
• 由牛顿第二定律出发推导散射公式:
v v F = ma
v Z1 Z 2 e v 0 dv r =m 2 4πε 0 r dt
2
r的单位矢量
• 由于库仑力是中心力,而中心力满足角 动量守恒,即:
dϕ mr = L(const ) = mvb dt
2
v v mvb dv Z1 Z 2 e v 0 dv dϕ = 2 r =m 2 4πε 0 r dϕ dt r dϕ
a 2 dΩ c dρ (θ ) = ⋅ nAt θ 16 A sin 4 c 2
3,N个α粒子打到 Ω 的粒子数 , 个 粒子打到d
a dΩ c dN = N θ 16 A sin 4 c 2
2 '
1 Z1 Z 2 e nAt = Nnt 4πε 4E 0
返回
晶体结构
• 假设晶体中的原子 是互 相接触的球体,密度为ρ, mol质量为A,则
4 3 V0 = = πr N 0 ρ 3
原子的核式结构模型
原子的核式结构模型核式结构模型最早由英国物理学家卢瑟福在1911年提出。
他的实验是在散射实验的基础上进行的,通过让高能α粒子正入射到金箔上观察散射的粒子轨迹,研究原子的内部结构。
核式结构模型的基本假设是原子由一个带正电荷的中心核和围绕核运动的电子组成。
核中包含质子和中子,质子带正电荷,中子不带电荷。
电子带负电荷,具有质量,绕核轨道运动。
根据核式结构模型,核中的质子和中子集中在原子的中心,形成原子核,质子和中子的数量决定了元素的原子序数和质量数。
围绕核的是电子云,电子云具有质量很小的特点,且电子数与质子数相等,以达到整个原子中的总正电荷等于总负电荷的平衡。
核式结构模型的主要特点有以下几点:1.原子核是原子的中心,质子和中子集中在这个中心,形成一个紧密结合的核。
质子带正电荷,中子不带电荷,所以核带正电荷。
原子核是非常小而密集的,但也是非常重要的,因为其中的质子和中子决定了元素的化学性质和质量数。
2.电子围绕着原子核,形成电子云。
电子云由负电荷的电子组成,它们被正电荷的核吸引,使得整个原子中的正电荷和负电荷保持平衡。
电子云的位置和运动状态是不确定的,只有在特定距离和特定能级上才能稳定地存在。
3.不同元素的原子核中质子和中子的数量不同,决定了元素的原子序数和质量数。
原子序数是指元素中的质子数,决定了其在元素周期表中的位置。
质量数是指一种元素中质子和中子的总数,决定了元素的相对原子质量。
核式结构模型的提出对后来的原子结构研究和理解有着重要的意义。
虽然核式结构模型无法解释电子云的具体结构和能级分布,也无法解释更微观的原子核内部结构和核反应的发生机制,但它奠定了原子结构领域的基础,并为后来量子力学的发展提供了重要的思路和依据。
总结起来,核式结构模型是描述原子内部结构的模型,认为原子由带正电荷的中心核和围绕核运动的电子组成。
质子和中子集中在核中,电子围绕着核形成电子云。
核式结构模型的提出为后来对原子结构的研究奠定了基础,也为量子力学的发展提供了启示。
原子物理复习要点
原子物理学复习要点第一章 原子的核式结构一、学习要点1.原子的质量和大小M A =A N A (g), R ~10-10 m ,N A =6.022⨯1023mol -1,1u=1.6605655⨯10-27kg2.原子核式结构模型(1)汤姆孙原子模型(2)α粒子散射实验:装置、结果、分析(3)原子的核式结构模型(4)α粒子散射理论:库仑散射理论公式(会推导):θπεcot 422002Mv Ze b =卢瑟福散射公式: 2sin )Z ()41(4220220θπεσΩ=d Mv e d ,θθπd d sin 2=Ω实验验证:A N n Mv t d dN μρθ=⎪⎭⎫ ⎝⎛∝Ω-- ; )21(,Z ,,2sin 220214,μ靶原子的摩尔质量 (4)微分散射面的物理意义、总截面(5)原子核大小的估计 (会推导): 散射角θ:),2sin 11(Z 2412020θπε+⋅=Mv e r mα粒子正入射:20024Z 4Mv e r m πε= ,m r ~10-15-10-14m二、基本练习1.褚书课本P 20-212.选择(1)原子半径的数量级是:A .10-10cm; B.10-8m C. 10-10m D.10-13m(2)原子核式结构模型的提出是根据α粒子散射实验中A.绝大多数α粒子散射角接近180︒B.α粒子只偏2︒~3︒C.以小角散射为主也存在大角散射D.以大角散射为主也存在小角散射(3)进行卢瑟福理论实验验证时发现小角散射与实验不符这说明:A.原子不一定存在核式结构B.散射物太厚C.卢瑟福理论是错误的D.小角散射时一次散射理论不成立(4)用相同能量的α粒子束和质子束分别与金箔正碰,测量金原子核半径的上限. 问用质子束所得结果是用α粒子束所得结果的几倍?A. 1/4 B . 1/2 C . 1 D. 2(5)动能E K =40keV 的α粒子对心接近Pb(z=82)核而产生散射,则最小距离为(m ):A.5.9⨯10-10B.3.05⨯10-12C.5.9⨯10-12D.5.9⨯10-14(6)如果用相同动能的质子和氘核同金箔产生散射,那么用质子作为入射粒子测得的金原子半径上限是用氘核子作为入射粒子测得的金原子半径上限的几倍?A.2B.1/2C.1 D .4(7)在金箔引起的α粒子散射实验中,每10000个对准金箔的α粒子中发现有4个粒子被散射到角度大于5°的范围内.若金箔的厚度增加到4倍,那么被散射的α粒子会有多少?A. 16B..8C.4D.2(8)在同一α粒子源和散射靶的条件下观察到α粒子被散射在90°和60°角方向上单位立体角内的粒子数之比为:A .4:1 B.2:2 C.1:4 D.1:8(9)在α粒子散射实验中,若把α粒子换成质子,要想得到α粒子相同的角分布,在散射物不变条件下则必须使:A.质子的速度与α粒子的相同; B .质子的能量与α粒子的相同;C .质子的速度是α粒子的一半;D .质子的能量是α粒子的一半2.简答题(1)什么是电子?简述密立根油滴实验.(2)简述卢瑟福原子有核模型的要点.(3)简述α粒子散射实验. α粒子大角散射的结果说明了什么?(4)什么是微分散射截面?简述其物理意义.3.计算题:(1)当一束能量为4.8Mev 的α粒子垂直入射到厚度为4.0×10-5cm 的金箔上时探测器沿20°方向上每秒记录到2.0×104个α粒子试求:①仅改变探测器安置方位,沿60°方向每秒可记录到多少个α粒子?②若α粒子能量减少一半,则沿20°方向每秒可测得多少个α粒子?③α粒子能量仍为4.8MeV ,而将金箔换成厚度的铝箔,则沿20°方向每秒可记录到多少个α粒子?(ρ金=19.3g/cm 3 ρ铅=27g /cm 3;A 金=179 ,A 铝=27,Z 金=79 Z 铝=13)(2)试证明:α粒子散射中α粒子与原子核对心碰撞时两者之间的最小距离是散射角为900时相对应的瞄准距离的两倍.(3)10Mev 的质子射到铜箔片上,已知铜的Z=29, 试求质子散射角为900时的瞄准距离b 和最接近于核的距离r m .第二章 玻尔氢原子理论一、学习要点:1.氢原子光谱:线状谱、五个线系(记住名称、顺序)、广义巴尔末公式)11(~22n m R -=ν、 光谱项()2nR n T =、并合原则:)()(~n T m T -=ν 2.玻尔氢原子理论:(1)玻尔三条基本假设的实验基础和内容(记熟)(2)圆轨道理论(会推导):氢原子中假设原子核静止,电子绕核作匀速率圆周运动02200202220A 529,04,Z Z 4≈===e m a n a n e m r e e n πεπε;13714,Z Z 40202≈===c e n c n e c e n πεααπευ; ()n hcT n hc R n e m E e n --=-=∞22224220Z 2Z )41( πε,n =1.2.3……(3)实验验证:(a )氢原子五个线系的形成)11(Z ~,)4(222232042n m R c h e m R e -==∞∞νπεπ (会推导)非量子化轨道跃迁 )(212n E E mv h -+=∞ν (b )夫-赫实验:装置、.结果及分析;原子的电离电势、激发电势3.类氢离子(+++Li ,He ,正电子偶素.-μ原子等) (1) He +光谱:毕克林系的发现、波数公式、与氢原子巴耳末系的异同等(2)理论处理(会推导):计及原子核的运动,电子和原子核绕共同质心作匀速率圆周运动e e m M m M +⋅=μ, 正负电荷中心之距Ze n r n 22204μπε =. 能量2242202Z )41(n e E n μπε-=,里德伯常数变化Mm R R e A +=∞11 重氢(氘)的发现及相关理论计算4.椭圆轨道理论 索末菲量子化条件q q n h n pdq ,⎰=为整数a n nb n e m a n e m E n p e n ϕϕϕπεπε==-==,Z 4,2Z )41(,2220224220 ,n n n ,,3,2,1;,3,2,1 ==ϕn 一定,n E 一定,长半轴一定,有n 个短半轴,有n 个椭圆轨道(状态),即n E 为n 度简并5空间量子化:(1)旧量子论中的三个量子数n ,m n n =ψϕ,的名称、取值范围、物理量表达式、几何参量表达式名 称 取 值 物理量表达式 几何参量表达式 nn ϕψn(2)空间量子化(ϕP 空间取向)、电子的轨道磁矩(旧量子论)、斯特恩—盖拉赫实验6.玻尔对应原理及玻尔理论的地位二、基本练习(共29题)1.楮书P76--772.选择题(1)若氢原子被激发到主量子数为n 的能级,当产生能级跃迁时可能发生的所有谱线总条数应为:A .n-1B .n(n-1)/2C .n(n+1)/2D .n(2)氢原子光谱赖曼系和巴耳末系的系线限波长分别为:A.R/4 和R/9B.R 和R/4C.4/R 和9/RD.1/R 和4/R(3)氢原子赖曼系的线系限波数为R,则氢原子的电离电势为:A .3Rhc/4 B. Rhc C.3Rhc/4e D. Rhc/e(4)氢原子基态的电离电势和第一激发电势分别是:A .13.6V 和10.2V;B –13.6V 和-10.2V; C.13.6V 和3.4V; D. –13.6V 和-3.4V(5)由玻尔氢原子理论得出的第一玻尔半径0a 的数值是:A.5.291010-⨯mB.0.529×10-10mC. 5.29×10-12mD.529×10-12m(6)根据玻尔理论,若将氢原子激发到n=5的状态,则:A.可能出现10条谱线,分别属四个线系B.可能出现9条谱线,分别属3个线系C.可能出现11条谱线,分别属5个线系D.可能出现1条谱线,属赖曼系(7)欲使处于激发态的氢原子发出αH 线,则至少需提供多少能量(eV )?A.13.6B.12.09C.10.2D.3.4(8)氢原子被激发后其电子处在第四轨道上运动,按照玻尔理论在观测时间内最多能看到几条线?A.1B.6C.4D.3(9)氢原子光谱由莱曼、巴耳末、帕邢、布喇开系…组成.为获得红外波段原子发射光谱,则轰击基态氢原子的最小动能为:A .0.66 eV B.12.09eV C.10.2eV D.12.57eV(10)用能量为12.7eV 的电子去激发基态氢原子时,受激氢原子向低能级跃迁时最多可能出现几条光谱线(不考虑自旋);A .3 B.10 C.1 D.4(11)有速度为1.875m/s 106⨯的自由电子被一质子俘获,放出一个光子而形成基态氢原子,则光子的频率(Hz )为:A .3.3⨯1015; B.2.4⨯1015 ; C.5.7⨯1015; D.2.1⨯1016.(12)按照玻尔理论基态氢原子中电子绕核运动的线速度约为光速的:A.1/10倍B.1/100倍 C .1/137倍 D.1/237倍(13)玻尔磁子B μ为多少焦耳/特斯拉?A .0.9271910-⨯ B.0.9272110-⨯ C. 0.9272310-⨯ D .0.9272510-⨯(14)已知一对正负电子绕其共同的质心转动会暂时形成类似于氢原子的结构的“正电子素”那么该“正电子素”由第一激发态跃迁时发射光谱线的波长应为:A .3∞R /8 B.3∞R /4 C.8/3∞R D.4/3∞R(15)象μ-子(带有一个单位负电荷)通过物质时,有些在核附近的轨道上将被俘获而形成μ-原子,那么μ-原子基态轨道半径与相应的电子轨道半径之比为(μ-子的质量为m=206m e )A.1/206B.1/(206)2C.206D.2062(16)电子偶素是由电子和正电子组成的原子,基态电离能量为:A.-3.4eVB.+3.4eVC.+6.8eVD.-6.8eV(17)根据玻尔理论可知,氦离子H e +的第一轨道半径是:A .20a B. 40a C. 0a /2 D. 0a /4(18)一次电离的氦离子 H e +处于第一激发态(n=2)时电子的轨道半径为:A.0.53⨯10-10mB.1.06⨯10-10mC.2.12⨯10-10mD.0.26⨯10-10m(19)假设氦原子(Z=2)的一个电子已被电离,如果还想把另一个电子电离,若以eV 为单位至少需提供的能量为:A .54.4 B.-54.4 C.13.6 D.3.4(20)在H e +离子中基态电子的结合能是:A.27.2eVB.54.4eVC.19.77eVD.24.17eV(21)夫—赫实验的结果表明:A 电子自旋的存在;B 原子能量量子化C 原子具有磁性;D 原子角动量量子化(22)夫—赫实验使用的充气三极管是在:A.相对阴极来说板极上加正向电压,栅极上加负电压;B.板极相对栅极是负电压,栅极相对阴极是正电压;C.板极相对栅极是正电压,栅极相对阴极是负电压;D.相对阴极来说板极加负电压,栅极加正电压(23)处于基态的氢原子被能量为12.09eV 的光子激发后,其轨道半径增为原来的A .4倍 B.3倍 C.9倍 D.16倍(24)氢原子处于基态吸收1λ=1026Å的光子后电子的轨道磁矩为原来的( )倍:A .3; B. 2; C.不变; D.93.简答题(1)19世纪末经典物理出现哪些无法解决的矛盾?(1999长春光机所)(2)用简要的语言叙述玻尔理论,并根据你的叙述导出氢原子基态能量表达式.(1998南开大学)(3)写出下列物理量的符号及其推荐值(用国际单位制):真空的光速、普朗克常数、玻尔半径、玻尔磁子、玻尔兹曼常数、万有引力恒量. (2000南开大学)(4)解释下列概念:光谱项、定态、简并、电子的轨道磁矩、对应原理.(5)简述玻尔对原子结构的理论的贡献和玻尔理论的地位与不足.4.计算题(1)单色光照射使处于基态的氢原子激发,受激发的氢原子向低能级跃迁时可能发出10条谱线.问:①入射光的能量为多少?②其中波长最长的一条谱线的波长为多少?(hc=12400eV·Å)(2)已知一对正负电子绕共同质心转动会形成类似氢原子结构-正电子素.试求:①正电子素处于基态时正负电子间的距离;②n=5时正电子素的电离能(已知玻尔半径0a =0.529Å).(3)不计电子自旋当电子在垂直于均匀磁场B 的平面内运动时,试用玻尔理论求电子动态轨道半径和能级(提示: B v m E e n ⋅-=ϕμ221 ; n me 2 =ϕμ n p =ϕ) (4)氢原子巴尔末系的第一条谱线与He +离子毕克林系的第二条谱线(6→4)两者之间的波长差是多少?(R H =1.09678×10-3 Å, R He =1.09722×10-3 Å)(5)设氢原子光谱的巴耳末系的第一条谱线αH 的波长为αλ,第二条谱线βH 的波长为βλ,试证明:帕邢系的第一条谱线的波长为βαβαλλλλλ-=.(2000.上海大学)(6)一个光子电离处于基态的氢原子,被电离的自由电子又被氦原子核俘获,形成处于2=n 能级的氦离子He +,同时放出波长为500nm 的光子,求原入射光子的能量和自由电子的动能,并用能级图表示整个过程.(1997北京师大)(7)在天文上可观察到氢原子高激发态之间的跃迁,如108=n 与109=n 之间,请计算此跃迁的波长和频率. (1997.中科院)(8) He +离子毕克林系的第一条谱线的波长与氢原子的巴耳末系αH 线相近. 为使基态的He +离子激发并发出这条谱线,必须至少用多大的动能的电子去轰击它?(2001.中科院)(9)试用光谱的精细结构常数表示处于基态的氢原子中电子的速度、轨道半径、氢原子的电离电势和里德伯常数. (1999.中科院)(10)计算氢原子中电子从量子数为n 的状态跃迁到1-n 的状态时所发出谱线的频率. (2001.中科院固体所)第三章 量子力学初步一、学习要点轨道角动量()1,,2,1,0,1-=+=n l l l p l ,l 称为轨道角量子数,轨道角量子数l =0 1 2 3 4 …电 子 态 s p d f g …原 子 态 S P D F G …能量()n hcT n hc R n e m E e n --=-=∞22224220Z 2Z )41( πε,n =1.2.3……轨道投影角动量()l l l l m m p l l lz ,1,,1,0,,1,,----== ,称轨道磁量子数,表征轨道角动量对外场方向的取向,轨道角动量对外场方向的投影图描述电子空间运动的三个量子数l m l n ,,的名称、取值范围、所表征的物理量表达式二、基本练习(1)按量子力学原理,原子状态用波函数来描述. 不考虑电子自旋,对氢原子当有确定主量子数n 时,对应的状态数是:A .2n; B.2n+1; C.n 2; D.2n 2(2)按量子力学原理,原子状态用波函数来描述.不考虑电子自旋,对氢原子当nl 确定后,对应的状态数为:A.n 2;B.2n;C.l ;D.2l +1(3)按原子力学原理,原子状态用波函数来描述.考虑电子自旋,对氢原子当nl 确定后,对应的状态数为:A.2(2l +1);B.2l +1;C. n;D.n 2(4)按量子力学原理,原子状态用波函数来描述.考虑自旋对氢原子当nl m 确定后对应的状态数为:A.1;B.2;C.2l +1;D. n(5)试画出2=l 时电子轨道角动量在磁场中空间量子化示意图,并标出电子轨道角动量在外磁场方向z 的投影的各种可能值.(中山大学1993)第四章 碱金属原子一、学习要点1.碱金属原子光谱和能级(1)四个线系:主线系、第一辅线系(漫)、第二辅线系(锐)、柏格曼系(基)共振线、线系限波数、波数表达式(2)光谱项()()222222Z Z n R n R n R n RT l σ-==∆-==**;σ-=∆-=∆-=**Z Z ,ll n n n n (3)起始主量子数Li:n=2 ; Na:n=3 ; K:n=4 ; Rb:n=5 ;Cs:n=6 ; Fr:n=7(4)碱金属原子能级.选择定则1±=∆l(5)原子实极化和轨道贯穿是造成碱金属原子能级与氢原子不同的原因2.电子自旋(1)实验基础与内容:电子除具有质量、电荷外,还具有自旋角动量()21(,1=+=s s s p s 称自旋角量子数)和自旋磁矩B s s e s p m e μμμ3,=-= . 自旋投影角动量21,±==s s sz m m p 称自旋磁量子数 (2)单电子角动量耦合:总角动量()⎪⎪⎩⎪⎪⎨⎧=≠±=+=0,210,21,1l l l j j j p j ,称总角量子数(内量子数、副量子数;总角动量的投影角动量()j j j j m m p j j jz ,1,,1,,----== ,称总磁量子数(3)描述一个电子的量子态的四个量子数:强场:s l m m l n ,,,;弱场:j m j l n ,,,原子态(光谱项)符号 j s L n 12+S 态不分裂, ,,,,G F D P 态分裂为两层3.碱金属原子光谱和能级的精细结构:(1)原因:电子自旋—轨道的相互作用(2)能级和光谱项的裂距;(3)选择定则:1±=∆l ,1,0±=∆j画出锂、钠、钾原子的精细结构能级跃迁图4.氢原子光谱和能级的精细结构:(1)原因:相对论效应和电子自旋-轨道相互作用;(2)狄拉克能级公式;(3)赖曼系第一条谱线和巴尔末线系αH 线的精细分裂(4)蓝姆移动*二.基本练习:1.褚书P1432.选择题:(1)单个f 电子总角动量量子数的可能值为:A. j =3,2,1,0; B .j=±3; C. j= ±7/2 , ± 5/2; D. j= 5/2 ,7/2(2)单个d 电子的总角动量投影的可能值为:A.2 ,3 ;B.3 ,4 ;C. 235, 215; D. 3/2, 5/2 . (3)已知一个价电子的21,1==s l ,试由s l j m m m +=求j m 的可能值:A .3/2,1/2 ,-1/2 ,-3/2 ; B. 3/2 ,1/2 ,1/2, -1/2 ,-1/2,-3/2;C .3/2,1/2 ,0,-1/2, -3/2; D. 3/2,1/2 ,1/2 ,0,-1/2, -1/2,-3/2;(4)锂原子光谱由主线系.第一辅线系.第二辅线系及柏格曼系组成.这些谱线系中全部谱线在可见光区只有:A.主线系;B.第一辅线系;C.第二辅线系;D.柏格曼系(5)锂原子主线系的谱线在不考虑精细结构时,其波数公式的正确表达式应为: A.nP S -=2~ν; B. S nP 2~→=ν; C .nP S →=2~ν; D .S nP 2~-=ν (6)碱金属原子的光谱项为:A.T=R/n 2; B .T=Z 2R/n 2; C .T=R/n *2; D. T=RZ *2/n *2(7)锂原子从3P 态向基态跃迁时,产生多少条被选择定则允许的谱线(不考虑精细结构)?A.一条B.三条C.四条D.六条(8)已知锂原子光谱主线系最长波长为6707埃,辅线系线系限波长为3519埃,则Li 原子的电离电势为:A .5.38V B.1.85V C.3.53V D.9.14V(9)钠原子基项3S 的量子改正数为1.37,试确定该原子的电离电势:A.0.514V;B.1.51V;C.5.12V;D.9.14V(10)碱金属原子能级的双重结构是由于下列哪一项产生:A.相对论效应B.原子实的极化C.价电子的轨道贯穿D.价电子的自旋-轨道相互作用(11)产生钠的两条黄谱线的跃迁是:A.2P 3/2→2S 1/2 , 2P 1/2→2S 1/2;B. 2S 1/2→2P 1/2 , 2S 1/2→2P 3/2;C. 2D 3/2→2P 1/2, 2D 3/2→2P 3/2;D. 2D 3/2→2P 1/2 , 2D 3/2→2P 3/2(12)若已知K 原子共振线双重成分的波长等于7698.98埃和7664.9埃,则该原子4p 能级的裂距为多少eV ?A.7.4×10-2; B .7.4×10-3; C .7.4×10-4; D .7.4×10-5.(13)对锂原子主线系的谱线,考虑精细结构后,其波数公式的正确表达式应为: A.ν~= 22S 1/2-n 2P 1/2 ν~= 22S 1/2-n 2P 3/2 B. ν~= 22S 1/2→n 2P 3/2 ν~= 22S 1/2→n 2P 1/2C. ν~= n 2P 3/2-22S 1/2 ν~= n 2P 1/2-22S 3/2D. ν~= n 2P 3/2→n 2P 3/2 ν~= n 2P 1/2→n 21/2(14)碱金属原子光谱精细结构形成的根本物理原因:A.电子自旋的存在B.观察仪器分辨率的提高C.选择定则的提出D.轨道角动量的量子化(15)已知钠光谱的主线系的第一条谱线由λ1=5890埃和λ2=5896埃的双线组成,则第二辅线系极限的双线间距(以电子伏特为单位):A.0;B.2.14⨯10-3;C.2.07⨯10-3;D.3.42⨯10-2(16)考虑电子自旋,碱金属原子光谱中每一条谱线分裂成两条且两条线的间隔随波数增加而减少的是什么线系?A.主线系;B.锐线系;C.漫线系;D.基线系(17)如果l 是单电子原子中电子的轨道角动量量子数,则偶极距跃迁选择定则为:A.0=∆l ;B. 0=∆l 或±1;C. 1±=∆l ;D. 1=∆l(18)碱金属原子的价电子处于n =3, l =1的状态,其精细结构的状态符号应为:A .32S 1/2.32S 3/2; B.3P 1/2.3P 3/2; C .32P 1/2.32P 3/2; D .32D 3/2.32D 5/2(19)下列哪种原子状态在碱金属原子中是不存在的:A .12S 1/2; B. 22S 1/2; C .32P 1/2; D. 32S 1/2.32D 5/2(20)对碱金属原子的精细结构12S 1/2 12P 1/2, 32D 5/2, 42F 5/2,22D 3/2这些状态中实际存在的是:A.12S 1/2,32D 5/2,42F 5/2;B.12S 1/2 ,12P 1/2, 42F 5/2;C.12P 1/2,32D 5/2,22D 3/2;D.32D 5/2, 42F 5/2,32D 3/2(21)氢原子光谱形成的精细结构(不考虑蓝姆移动)是由于:A.自旋-轨道耦合B.相对论修正和极化贯穿C.自旋-轨道耦合和相对论修正D.极化.贯穿.自旋-轨道耦合和相对论修正(22)对氢原子考虑精细结构之后,其赖曼系一般结构的每一条谱线应分裂为:A.二条B.三条C.五条D.不分裂(23)考虑精细结构,不考虑蓝姆位移,氢光谱Hα线应具有:A.双线B.三线C.五线D.七线(24)氢原子巴尔末系的谱线,计及精细结构以后,每一条谱线都分裂为五个,但如果再考虑蓝姆位移其谱线分裂条数为:A.五条B.六条C.七条D.八条(25)已知锂原子主线系最长波长为λ1=67074埃,第二辅线系的线系限波长为λ∞=3519埃,则锂原子的第一激发电势和电离电势依次为(已知R =1.09729⨯107m -1)A.0.85eV,5.38eV;B.1.85V ,5.38V;C.0.85V ,5.38VD.13.85eV ,5.38eV(26)钠原子由nS 跃迁到3P 态和由nD 跃迁到3P 态产生的谱线分别属于:A.第一辅线系和基线系B.柏格曼系和锐线系C.主线系和第一辅线系D.第二辅线系和漫线系(27)d 电子的总角动量取值可能为: A. 215,235; B . 23,215; C. 235,263; D. 2,63.简答题(1)碱金属原子能级与轨道角量子数有关的原因是什么?造成碱金属原子精细能级的原因是什么?为什么S 态不分裂, ,,,,G F D P 态分裂为两层?(2)造成氢原子精细能级和光谱的原因是什么?(3)试由氢原子能量的狄拉克公式出发,画出巴尔末系第一条谱线分裂后的能级跃迁图,并写出各自成分的波数表达式(4)在强磁场下描述一个电子的一个量子态一般需哪四个量子数?试写出各自的名称、.取值范围、力学量表达式?在弱磁场下情况如何?试回答上面的问题.(5)简述碱金属原子光谱的精细结构(实验现象及解释).4.计算题(1)锂原子的基态光谱项值T2S=43484cm-1,若已知直接跃迁3P→3S产生波长为3233埃的谱线.试问当被激发原子由3P态到2S态时还会产生哪些谱线?求出这些谱线的波长(R =10972⨯10-3埃-1)(2)已知铍离子Be+主线系第一条谱线及线系限波长分别为3210埃和683埃,试计算该离子S项和P项的量子亏损以及锐线系第一条谱线的波长.(北大1986)(3)锂原子的基态是S2,当处于D3激发态的锂原子向低能级跃迁时,可能产生几条谱线(不考虑精细结构)?这些谱线中哪些属于你知道的谱线系的?同时写出所属谱线系的名称及波数表达式. 试画出有关的能级跃迁图,在图中标出各能级的光谱项符号,并用箭头都标出各种可能的跃迁. (中科院2001)(4)①试写出钠原子主线系、第一辅线系、第二辅线系和伯格曼系的波数表达式.②已知:35.1=∆s ,86.0=∆p,01.0=∆d,求钠原子的电离电势.③若不考虑精细结构,则钠原子自D3态向低能级跃迁时,可产生几条谱线?是哪两个能级间的跃迁?各对应哪个线系的谱线?④若考虑精细结构,则上问中谱线分别是几线结构?用光谱项表达式表示出相应的跃迁.(中科院1998)第五章多电子原子一、学习要点1.氦原子和碱土金属原子:(1)氦原子光谱和能级(正氦(三重态)、仲氦(单态))(2)镁原子光谱和能级2.重点掌握L-S耦合,了解j-j耦合3.洪特定则、朗德间隔定则、泡利不相容原理;4.两个价电子原子的电偶极辐射跃迁选择定则;5.*复杂原子光谱的一般规律:位移律、交替律、三个电子的角动量耦合6.普用选择定则(电子组态的跃迁选择定则,又称宇称跃迁选择定则,或拉波特定则;L-S耦合选择定则等)6.氦氖激光器*二、基本练习1.褚书P168-169习题2.选择题(1)关于氦原子光谱下列说法错误的是:A.第一激发态不能自发的跃迁到基态;B.1s2p 3P2,1,0能级是正常顺序;C.基态与第一激发态能量相差很大;D.三重态与单态之间没有跃迁(2)氦原子由状态1s2p 3P2,1,0向1s2s 3S1跃迁,可产生的谱线条数为:A.0;B.2;C.3;D.1(3)氦原子由状态1s3d 3D3,2,1向1s2p3P2,1,0跃迁时可产生的谱线条数为:A.3;B.4;C.6;D.5(4)氦原子有单态和三重态两套能级,从而它们产生的光谱特点是:A.单能级各线系皆为单线,三重能级各线皆为三线;B.单重能级各线系皆为双线,三重能级各线系皆为三线;C.单重能级各线系皆为单线,三重能级各线系皆为双线;D.单重能级各线系皆为单线,三重能级各线系较为复杂,不一定是三线.(5)下列原子状态中哪一个是氦原子的基态?A.1P1;B.3P1 ;C.3S1; D.1S0;(6)氦原子的电子组态为n1pn2s,则可能的原子态:A.由于n不确定不能给出确定的J值,不能决定原子态;B.为n1pn2s 3D2,1,0和n1pn2s 1D1;C.由于违背泡利原理只存单态不存在三重态;D.为n1pn2s 3P2,1,0和n1pn2s 1P1.(7)C++离子由2s3p 3P2,1,0到2s3s 3S1两能级的跃迁,可产生几条光谱线?A.6条;B.3条;C.2条;D.1条.(8)氦原子有单态和三重态,但1s1s3S1并不存在,其原因是:A.因为自旋为1/2,l1=l2=0 故J=1/2 ;B.泡利不相容原理限制了1s1s3S1的存在;C..因为三重态能量最低的是1s2s3S1;D.因为1s1s3S1和1s2s3S1是简并态(9)泡利不相容原理说:A.自旋为整数的粒子不能处于同一量子态中;B.自旋为整数的粒子能处于同一量子态中;C.自旋为半整数的粒子能处于同一量子态中;D.自旋为半整数的粒子不能处于同一量子态中.(10)若某原子的两个价电子处于2s2p组态,利用L-S耦合可得到其原子态的个数是:A.1;B.3;C.4;D.6.(11)4D3/2 态的轨道角动量的平方值是:A.-3 2 ; B.6 2; C.-2 2; D.2 2(12)一个p电子与一个 s电子在L-S耦合下可能有原子态为:A.3P0,1,2, 3S1 ;B.3P0,1,2 , 1S0;C.1P1, 3P0,1,2 ;D.3S1 ,1P1(13)设原子的两个价电子是p电子和d电子,在L-S耦合下可能的原子态有:A.4个;B.9个;C.12个;D.15个;(14)电子组态2p4d所形成的可能原子态有:A.1P 3P 1F 3F; B. 1P 1D 1F 3P 3D 3F;C.3F 1F; D.1S 1P 1D 3S 3P 3D.(15)硼(Z=5)的B+离子若处于第一激发态,则电子组态为:A.2s2pB.2s2sC.1s2sD.2p3s(16)铍(Be)原子若处于第一激发态,则其电子组态:A.2s2s;B.2s3p;C.1s2p;D.2s2p(17)若镁原子处于基态,它的电子组态应为:A.2s2s B.2s2p C.3s3s D.3s3p(18)今有电子组态1s2p,1s1p,2d3p,3p3s,试判断下列哪些电子组态是完全存在的:A.1s2p ,1s1pB.1s2p,2d3p C,2d3p,2p3s D.1s2p,2p3s(19)电子组态1s2p所构成的原子态应为:A1s2p1P1 , 1s2p3P2,1,0 B.1s2p1S0 ,1s2p3S1C1s2p1S0, 1s2p1P1 , 1s2p3S1 , 1s2p3P2,1,0; D.1s2p1S0,1s2p1P1(20)判断下列各谱项中那个谱项不可能存在:A.3F2;B.4P5/2;C.2F7/2;D.3D1/2(21)试判断原子态:1s1s 3S 1,1s2p 3P 2,1s2p 1D 1, 2s2p 3P 2中下列哪组是完全存在的?A. 1s1s 3S 1 1s2p 3P 2 2s2p 3P 2 B .1s2p 3P 2 1s2p 1D 1C. 1s2p 3P 2 2s2p 3P 2D.1s1s 3S 1 2s2p 3P 2 1s2p 1D 1(22)在铍原子中,如果3D 1,2,3对应的三能级可以分辨,当有2s3d 3D 1,2,3到2s2p 3P 2,1,0的跃迁中可产生几条光谱线?A .6 B.3 C.2 D.9(23)有状态2p3d 3P →2s3p 3P 的跃迁:A.可产生9条谱线B.可产生7条谱线C 可产生6条谱线 D.不能发生(24)已知Cl (Z=17)原子的电子组态是1s 22s 22p 63p 5,则其原子态是:A.2P 1/2;B.4P 1/2 ;C.2P 3/2;D.4P 3/2(25) 原子处在多重性为5,J 的简并度为7的状态,试确定轨道角动量的最大值: A. 6; B. 12; C. 15; D. 30(26)试确定D 3/2谱项可能的多重性:A.1,3,5,7;B.2,4,6,8; C .3,5,7; D.2,4,6.(27)某系统中有三个电子分别处于s 态.p 态.d 态,该系统可能有的光谱项个数是:A .7; B.17; C.8; D.18(28)钙原子的能级应该有几重结构?A .双重; B.一、三重; C.二、四重; D.单重3.简答题(1)简要解释下列概念:泡利不相容原理、洪特定则、朗德间隔定则.(2)L-S 耦合的某原子的激发态电子组态是2p3p ,可能形成哪些原子态?若相应的能级顺序符合一般规律,应如何排列?并画出此原子由电子组态2p3p 向2p3s 可能产生的跃迁.(首都师大1998)(3)写出两个同科p 电子形成的原子态,那一个能级最低?(4)写出两个同科d 电子形成的原子态,那一个能级最低?(5)写出5个同科p 电子形成的原子态,那一个能级最低?(6)写出4个同科p 电子形成的原子态,那一个能级最低?(7)汞原子有两个价电子,基态电子组态为6s6s 若其中一个电子被激发到7s 态(中间有6p 态)由此形成的激发态向低能级跃迁时有多少种可能的光谱跃迁?画出能级跃迁图.(8)某系统由一个d 电子和一个2P 3/2原子构成,求该系统可能的光谱项.(9)某系统由spd 电子构成,试写出它的光谱项.(10)碳原子的一个价电子被激发到3d 态,①写出该受激原子的电子组态以及它们在L —S 耦合下形成的原子态; ②画出对应的能级图并说明这些能级间能否发生电偶极跃迁?为什么?第六章 磁场中的原子一、学习要点1.原子有效磁矩 J J P m e g2-=μ, )1(2)1()1()1(1++++-++=J J S S L L J J g (会推导) 2.外磁场对原子的作用:(1)拉莫尔进动圆频率(会推导): B m e g eL 2=ω(2)原子受磁场作用的附加能量:B g M B E B J J μμ=⋅-=∆附加光谱项()1-m 7.464~,~4B mc eB L L g M mc eB g M T J J ≈===∆ππ 能级分裂图(3)史—盖实验;原子束在非均匀磁场中的分裂B J g M v L dz dB m s μ221⎪⎭⎫ ⎝⎛-=,(m 为原子质量) (4)塞曼效应:光谱线在外磁场中的分裂,机制是原子磁矩与外磁场的相互作用,使能级进一步的分裂所造成的. 塞曼效应的意义①正常塞曼效应:在磁场中原来的一条谱线分裂成3条,相邻两条谱线的波数相差一个洛伦兹单位L ~Cd 6438埃 红光1D 2→1P 1氦原子 66781埃 1D 2→1P 1②反常塞曼效应:弱磁场下:Na 黄光:D 2线 5890埃 2P 3/2→2S 1/2(1分为6);D 1线5896埃 2P 1/2→2S 1/2(1分为4)Li ( 2D 3/2→2P 1/2)格罗春图、相邻两条谱线的波数差、能级跃迁图选择定则 )(1);(0);(1+-+-=∆σπσJ M 垂直磁场、平行磁场观察的谱线条数及偏振情况③帕邢—贝克效应:强磁场中反常塞曼效应变为正常塞曼效应()()B M M B E B S L S L μμμ2+=⋅+-=∆ ,()L M M SL ~2~∆+∆=∆ν,1,0,0±=∆=∆L S M M ()L L ~,0,~~~0-+=νν (5)顺磁共振、物质的磁性二、基本练习1.楮书P1972.选择题(1)在正常塞曼效应中,沿磁场方向观察时将看到几条谱线:A .0; B.1; C.2; D.3(2)正常塞曼效应总是对应三条谱线,是因为:A .每个能级在外磁场中劈裂成三个; B.不同能级的郎德因子g 大小不同;C .每个能级在外场中劈裂后的间隔相同; D.因为只有三种跃迁(3)B 原子态2P 1/2对应的有效磁矩(g =2/3)是 A. B μ33; B. B μ32; C. B μ32 ; D. B μ22. (4)在强外磁场中原子的附加能量E ∆除正比于B 之外,同原子状态有关的因子有:A.朗德因子和玻尔磁子B.磁量子数、朗德因子C.朗德因子、磁量子数M L 和M JD.磁量子数M L 和M S(5)塞曼效应中观测到的π和σ成分,分别对应的选择定则为:A ;)(0);(1πσ±=∆J M B. )(1);(1σπ+-=∆J M ;0=∆J M 时不出现;C. )(0σ=∆J M ,)(1π±=∆J M ;D. )(0);(1πσ=∆±=∆S L M M(6)原子在6G 3/2状态,其有效磁矩为:A .B μ315; B. 0; C. B μ25; D. B μ215- (7)若原子处于1D 2和2S 1/2态,试求它们的朗德因子g 值:A .1和2/3; B.2和2/3; C.1和4/3; D.1和2(8)由朗德因子公式当L=S,J≠0时,可得g 值:A .2; B.1; C.3/2; D.3/4(9)由朗德因子公式当L=0但S≠0时,可得g 值:A .1; B.1/2; C.3; D.2(10)如果原子处于2P 1/2态,它的朗德因子g 值:A.2/3; B.1/3; C.2; D.1/2(11)某原子处于4D 1/2态,若将其放于弱磁场中,则能级分裂为:A .2个; B.9个; C.不分裂; D.4个(12)判断处在弱磁场中,下列原子态的子能级数那一个是正确的:A.4D 3/2分裂为2个;B.1P 1分裂为3个;C.2F 5/2分裂为7个;D.1D 2分裂为4个(13)如果原子处于2P 3/2态,将它置于弱外磁场中时,它对应能级应分裂为:A.3个B.2个C.4个D.5个(14)态1D 2的能级在磁感应强度B 的弱磁场中分裂多少子能级?A.3个B.5个C.2个D.4个(15)钠黄光D 2线对应着32P 3/2→32S 1/2态的跃迁,把钠光源置于弱磁场中谱线将如何分裂:A.3条B.6条C.4条D.8条(16)碱金属原子漫线系的第一条精细结构光谱线(2D 3/2→2P 3/2)在磁场中发生塞曼效应,光谱线发生分裂,沿磁场方向拍摄到的光谱线条数为A.3条B.6条C.4条D.9条(17)对钠的D 2线(2P 3/2→2S 1/2)将其置于弱的外磁场中,其谱线的最大裂距max~ν∆和最小裂距min~ν∆各是 A.2L 和L/6; B.5/2L 和1/2L; C.4/3L 和2/3L; D.5/3L 和1/3L(18)使窄的原子束按照施特恩—盖拉赫的方法通过极不均匀的磁场 ,若原子处于5F 1态,试问原子束分裂成A.不分裂B.3条C.5条D.7条(19)(1997北师大)对于塞曼效应实验,下列哪种说法是正确的?A .实验中利用非均匀磁场观察原子谱线的分裂情况;B .实验中所观察到原子谱线都是线偏振光;C .凡是一条谱线分裂成等间距的三条线的,一定是正常塞曼效应;D .以上3种说法都不正确.3.计算题。
原子的核式结构
原子的核式结构
中子+质子=原子核
原子核+电子=原子
中子= 质子+电子+中微子
质子是合成粒子,属于费米子,有夸克组成
电子属于基本粒子,目前无法细分更小,属于轻子类
扩展资料
原子(atom)指化学反应不可再分的基本微粒,原子在化学反应中不可分割。
但在物理状态中可以分割。
原子由原子核和绕核运动的电子组成。
原子构成一般物质的最小单位,称为元素。
已知的元素有119种。
因此具有核式结构。
质子(proton)是一种带1.6 ×10-19 库仑(C)正电荷的亚原子粒子,直径约1.6~1.7×10−15 m ,质量是938百万电子伏特/c²(MeV/c²),即
1.672621637(83)×10-27千克,大约是电子质量的1836.5倍(电子的质量为9.10938215(45)×10-31千克),质子比中子稍轻(中子的质量为1.674927211(84)×10-27千克)。
质子属于重子类,由两个上夸克和一个下夸克通过胶子在强相互作用下构成。
原子核中质子数目决定其化学性质和它属于何种化学元素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1890年,曼彻斯特大学物理学教授A.休斯脱(Schuster, 1851-1934)就曾研究过氢放电管中阴极射线的偏转,并且算 出构成阴极射线微粒的荷质比为氢离子荷质比的千倍以上。 但他不敢相信自己的测量结果,而觉得“阴极射线质量只有 氢原子质量的千分之一还不到”的结论是荒谬的;相反他假 定阴极射线粒子的大小与原子一样,而电荷比氢离子大。 1897年德国W.考夫曼(Kaufman,1871-1947)做了类似的 实验,他测到的远比汤姆逊的要精确,与现代值只差1%,他 还观察到了e/m值随电子速度的改变而改变( , 爱因斯坦1905年在相对论中预言),但是,他当时没有勇气 发表这些结果:他不承认阴极射线是粒子的假设。直到1901 年,他才把结果公布于世。
§1.1 汤姆孙原子结构模型
一 电子的发现 1897年,汤姆逊通 过阴极射线管的实验发 现了电子,并进一步测 出了电子的荷质比:e/m 汤姆逊被誉为:“一位最 先打开通向基本粒子物 理学大门的伟人.”
图1汤姆逊正在进行实验
图2 阴极射线实验装置示意图
加电场E后,射线偏转, 阴极射线带负电。 再加磁场H后,射线不偏转, qB qE E / B 。 去掉电场E后,射线成一圆形轨迹, qB m 2 / r q / m E / rB 2 求出荷质比。 微粒的荷质比为氢离子荷质比的千倍以上阴极 射线质量只有氢原子质量的千分之一还不到 电子
质量最轻的氢原子:1.673×10-27kg
原子质量的数量级:10-27kg——10-25kg 原子的半径- 10-10 m(0.1nm)
二、 汤姆逊原子模型-布丁模型 1903年英国科学家汤姆逊提出 “葡萄干蛋糕 ”式原子模型或称为“西瓜”模型-原子中正电 荷和质量均匀分布在原子大小的弹性实心球内, 电子就象西瓜里的瓜子那样嵌在这个球内。
电子电荷的精确测定是在1910年由R.A.密立根 (Millikan)作出的,即著名的“油滴实验”。
e=1.60217733×10-19C, m=9.1093897×10-31kg。
A MA N0
3A r ( ) 4N 0
1 3
• A:以克为单位时 , 一摩尔原子的质量 对原子发光现象的解释-电子在其平 衡位置作简谐振动的结果,原子所发出的光的
频率就相当于这些振动的频率。
§1.2 原子的核式结构 (卢瑟福模型)
α 粒子:放射性元素发射 出的高速带电粒子,其速度 约为光速的十分之一,带 +2e的电荷,质量约为4MH。 散射:一个运动粒子受到 另一个粒子的作用而改变原 来的运动方向的现象。 粒子受到散射时,它的出 ( a) 侧视图 (b) 俯视图。R:放射源; 射方向与原入射方向之间的 夹角叫做散射角。 F:散射箔; S:闪烁屏;B:金属匣
2 2 p 4 Ze 4 Ze 4 最大散射角: tg ~ 10 p 4 0 RVM V 4 0 RM V 2
大角散射不可能在汤姆逊模型中发生 , 散射角大于
3°的比1%少得多;散射角大于90°的约为10-3500.
必须重新寻找原子的结构模型。
困难:作用力F太小,不能发生大角散射。
F 1 4 0 2Ze 2 r2
2 2 Ze 当r<R时,原子受的库仑斥力为: F r 3 4 0 R 2 1 2 Ze 当r=R时,原子受的库仑斥力最大: Fmax 4 0 R 2
1
粒子受原子作用后动量发生变化:
4Ze 2 p Fmax t 4 0 RV
解决方法:减少带正电部分的半径R,使作用力增大。
三
卢瑟福的核式模型
原子序数为 Z的原子的中心 ,有一 个带正电荷的核 ( 原子核 ),它所带的 正电量 Ze , 它的体积极小但质量很 大 , 几乎等于整个原子的质量 , 正常 情况下核外有 Z 个电子围绕它运动。 定性地解释:由于原子核很小,绝大部分粒 子并不能瞄准原子核入射,而只是从原子核 周围穿过,所以原子核的作用力仍然不大, 因此偏转也很小,也有少数粒子有可能从原 子核附近通过,这时,r较小,受的作用力较 大,就会有较大的偏转,而极少数正对原子 核入射的 粒子,由于 r 很小,受的作用力很 大,就有可能反弹回来。所以卢瑟福的核式 结构模型能定性地解释α 粒子散射实验。
2.卢瑟福散射公式
b→
b db → d
问题:环形面积和空心圆锥体 2 的立体角之间有何关系呢? ctg 4 M b 4 Ek b 0 0 2 2
2 2Ze Ze
2 2 Ze 2 2 cos 2 ) ( ) d d 2bdb ( 环形面积: 2 3 40 Mv sin 2
F
1 4 0
2Ze 2 r2
四、卢瑟福散射理论
假设:忽略电子的作用 、粒子 和原子核看成点电荷、原子核不 动、大角散射是一次散射结果
1.库仑散射公式
Ek M 2 ctg 4 0 b 4 0 2 b 2 2 2Ze Ze
b是瞄准距离
上式反应出b和的对应关系 。b小, 大; b大,小 要得到大角散射,正电荷必须集中在很小的范 围内,粒子必须在离正电荷很近处通过。 问题: b 是微观量,至今还不可控制,在实验中也无 法测量,所以这个公式还不可能和实验值直接比较。
1
cos d 空心锥体的立体角:d 2 sin d 4 sin 2 2
一
盖革-马斯顿实验
实验结果:大多数散射角很小,约1/8000散射大于90°; 极个别的散射角等于180°。
这是我一生中从未有过的最难以置信的事件,它的难以置信好 比你对一张白纸射出一发 15英寸的炮弹,结果却被顶了回来打在 自己身上-卢瑟福的话
二
汤姆逊模型的困难
近似 1 :粒子散射受电子的影响忽略不 计,只须考虑原子中带正电而质量大的 部分对粒子的影响。 近似2:只受库仑力的作用。 当r>R时,原子受的库仑斥力为: