1990年第七届全国初中数学联赛决赛试卷_3

合集下载

历届全国初中数学联赛试卷及答案

历届全国初中数学联赛试卷及答案

1991年全国初中数学联合竞赛决赛试题第一试一、选择题本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内. 1.设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223yxy x y xy x +--+的值是 (A )3 ; (B )31; (C )2; (D )35.答( )2. 如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是 (A ) 10; (B )12; (C ) 16; (D )18. 答( )3. 方程012=--x x 的解是(A )251±; (B )251±-; (C )251±或251±-; (D )251±-±. 答( ) 4.已知:)19911991(2111n nx --=(n 是自然数).那么n x x )1(2+-,的值是(A)11991-; (B)11991--; (C)1991)1(n -; (D)11991)1(--n . 答( ) 5.若M n 1210099321=⨯⨯⨯⨯⨯ ,其中M为自然数,n 为使得等式成立的最大的自然数,则M(A)能被2整除,但不能被3整除; (B)能被3整除,但不能被2整除; (C)能被4整除,但不能被3整除; (D)不能被3整除,也不能被2整除.答( )6. 若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么 d c b a +++的最大值是 (A)1-;(B)5-;(C)0;(D)1. 答( ) 7.如图,正方形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S ,32=S 和13=S ,那么,正方形OPQR 的边长是(A)2;(B)3;(C)2 ;(D)3. 答( )8.在锐角ΔABC 中,1=AC ,c AB =, 60=∠A ,ΔABC 的外接圆半径R ≤1,则(A)21< c < 2 ; (B)0< c ≤21;答( )(C )c > 2; (D )c = 2. 答( ) 二、填空题1.E是平行四边形ABCD 中BC 边的中点,AE 交对角线BD 于G ,如果ΔBEG 的面积是1,则平行四边形ABCD 的面积是 .2.已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,=+a cb 32 .3.设m ,n ,p ,q 为非负数,且对一切x >0,qpn m x x x x )1(1)1(+=-+恒成立,则 =++q p n m 22)2( .4.四边形ABCD 中,∠ ABC 135=,∠BCD 120=,AB 6=,BC 35-=,CD = 6,则AD = .第二试11=S 3S =132=S120135xx + y,x -y,x y,y四个数中的三个又相同的数值,求出所有具有这样性质的数对(x , y).二、ΔABC中,AB<AC<BC,D点在BC上,E点在BA的延长线上,且BD=BE=AC,ΔBDE的外接圆与ΔABC的外接圆交于F点(如图).求证:BF=AF+CF三、将正方形ABCD分割为2n个相等的小方格(n是自然数),把相对的顶点A,C染成红色,把B,D染成蓝色,其他交点任意染成红、蓝两色中的一种颜色.证明:恰有三个顶点同色的小方格的数目必是偶数.1992年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.满足1=+-ab b a 的非负整数),(b a 的个数是(A)1; (B)2; (C)3; (D)4.2.若0x 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆与平方式20)2(b ax M +=的关系是(A)∆>M (B)∆=M (C)∆>M ; (D)不确定. 3.若01132=+-x x ,则44-+x x 的个位数字是(A)1; (B)3; (C)5; (D)7. 答( )4.在半径为1的圆中有一内接多边形,若它的边长皆大于1且小于2,则这个多边形的边数必为(A)7; (B)6; (C)5; (D)4. 答( )5.如图,正比例函数)0(>==a ax y x y 和的图像与反比例函数)0(>=k xky 的图像分别相交于A 点和C 点.若AOB Rt ∆和COD ∆的面积分别为S 1和S 2,则S 1与S 2的关系是(A)21S S > (B)21S S = (C)21S S < (D)不确定答( )6.在一个由88⨯个方格组成的边长为8的正方形棋盘内放一个半径为4的圆,若把圆周经过的所有小方格的圆内部分的面积之和记为1S ,把圆周经过的所有小方格的圆内部分的面积之和记为2S ,则21S S 的整数部分是 (A)0; (B)1; (C)2; (D)3. 答( )7.如图,在等腰梯形ABCD 中, AB //CD , AB=2CD ,︒=∠60A ,又E 是底边AB 上一点,且FE=FB=AC , F A=AB .则AE :EB 等于(A)1:2 (B)1:3 (C)2:5 (D)3:10 答( )8.设9321,,,,x x x x ⋅⋅⋅均为正整数,且921x x x <⋅⋅⋅<<,220921=+⋅⋅⋅++x x x ,则当54321x x x x x ++++的值最大时,19x x -的最小值是(A)8; (B)9; (C)10; (D)11. 答( ) 二.填空题1.若一等腰三角形的底边上的高等于18cm ,腰上的中线等15cm ,则这个等腰三角形的面积等于________________.2.若0≠x ,则xx x x 44211+-++的最大值是__________.3.在ABC ∆中,B A C ∠∠=∠和,90 的平分线相交于P 点,又AB PE ⊥于E 点,若3,2==AC BC ,则=⋅EB AE .4.若b a ,都是正实数,且0111=+--b a b a ,则=+33)()(ba ab . 第二试一、设等腰三角形的一腰与底边的长分别是方程062=+-a x x 的两根,当这样的三角形只有一个时,求a 的取值范围.二、如图,在ABC ∆中,D AC AB ,=是底边BC 上一点,E 是线段AD 上一点,且A CED BED ∠=∠=∠2.求证:CD BD 2=.三、某个信封上的两个邮政编码M 和N 均由0,1,2,3,5,6这六个不同数字组成,现有四个编码如下:A :320651B :105263C :612305D :316250已知编码A 、B 、C 、D 各恰有两个数字的位置与M 和N 相同.D 恰有三个数字的位置与M 和N 相同.试求:M 和N.1993年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个小题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.多项式1612+-x x 除以12-x 的余式是(A)1; (B)-1; (C)1-x ; (D)1+x ; 2.对于命题Ⅰ.内角相等的圆内接五边形是正五边形.Ⅱ.内角相等的圆内接四边形是正四边形,以下四个结论中正确的是 (A )Ⅰ,Ⅱ都对 (B )Ⅰ对,Ⅱ错 (C )Ⅰ错,Ⅱ对. (D )Ⅰ,Ⅱ都错. 3.设x 是实数,11++-=x x y .下列四个结论: Ⅰ.y 没有最小值;Ⅱ.只有一个x 使y 取到最小值;Ⅲ.有有限多个x (不止一个)使y 取到最大值; Ⅳ.有无穷多个x 使y 取到最小值.其中正确的是(A )Ⅰ (B )Ⅱ (C )Ⅲ (D )Ⅳ 4.实数54321,,,,x x x x x 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=++=++=++.;;;;52154154354324321321a x x x a x x x a x x x a x x x a x x x 其中54321,,,,a a a a a 是实常数,且54321a a a a a >>>>,则54321,,,,x x x x x 的大小顺序是 (A)54321x x x x x >>>>; (B )53124x x x x x >>>>; (C )52413x x x x x >>>>; (D )24135x x x x x >>>>. 5.不等式73)1(12+<-<-x x x 的整数解的个解(A )等于4 (B )小于4 (C )大于5 (D )等于56.在ABC ∆中,BC AO O A =∠,,是垂心是钝角, 则)cos(OCB OBC ∠+∠的值是(A)22-(B)22 (C)23(D)21-.答( )7.锐角三角ABC 的三边是a , b , c ,它的外心到三边的距离分别为m , n ,p ,那么m :n :p 等于(A)cb a 1:1:1; (B)c b a ::(C)C B A cos :cos :cos (D)C B A sin :sin :sin . 答( )8.13333)919294(3-+-可以化简成 (A))12(333+; (B))12(333- (C)123- (D)123+ 答( )二.填空题1.当x 变化时,分式15632212++++x x x x 的最小值是___________.2.放有小球的1993个盒子从左到右排成一行,如果最左面的盒里有7个小球,且每四个相邻的盒里共有30个小球,那么最右面的盒里有__________个小球.3.若方程k x x =--)4)(1(22有四个非零实根,且它们在数轴上对应的四个点等距排列,则k =____________.4.锐角三角形ABC 中,︒=∠30A .以BC 边为直径作圆,与AB , AC 分别交于D , E ,连接DE , 把三角形ABC 分成三角形ADE 与四边形BDEC ,设它们的面积分别为S 1, S 2,则S 1:S 2=___________.第二试一.设H 是等腰三角形ABC 垂心,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积HBC ABC S S ∆∆⋅的值变小,变大,还是不变?证明你的结论.二.ABC ∆中, BC =5, AC =12, AB =13, 在边AB ,AC 上分别取点D , E , 使线段DE 将ABC ∆分成面积相等的两部分.试求这样的线段DE 的最小长度.三.已知方程0022=++=++b cx x c bx x 及分别各有两个整数根21,x x 及21,x x '',且,021>x x 021>''x x . (1)求证:;0,0,0,02121<'<'<<x x x x (2)求证:1-b ≤c ≤1+b ; (3)求c b ,所有可能的值.1994年全国初中数学联赛试题第一试(4月3日上午8:30—9:30)考生注意:本试共两道大题,满分80分.一、选择题(本题满分48分,每小题6分)本题共有8个小题都给出了A,B、C,D,四个结论,其中只有一个是正确的,请把你认为正确结论的代表字母写在题后答案中的圆括号内,每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在圆括号内),一律得0分.〔答〕( )2.设a,b,c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab,则x,y,zA.都不小于0B.都不大于0C.至少有一个小0于D.至少有一个大于0〔答〕( )3.如图1所示,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若BC=2,DA=3,则AB的长A.等于4B.等于5C.等于6D.不能确定〔答〕( )A.1 B.-1 C.22001D.-22001〔答〕( )5.若平行直线EF,MN与相交直线AB,CD相交成如图2所示的图形,则共得同旁内角A.4对B.8对C.12对D.16对〔答〕( )〔答〕( )7.设锐角三角形ABC的三条高AD,BE,CF相交于H。

1990年全国高中数学联合竞赛试题及解答

1990年全国高中数学联合竞赛试题及解答

1990年全国高中数学联合竞赛一试一、选择题: 1990*1.设⎪⎭⎫⎝⎛∈2,4ππα,则ααcos )(cos ,ααcos )(sin ,ααsin )(cos 的大小顺序是 A.<ααcos )(cos <ααcos )(sin ααsin )(cos B.<ααcos )(cos ααsin )(cos ααcos )(sin <C.<ααcos )(sin <ααcos )(cos ααsin )(cos D.ααsin )(cos <<ααcos )(cos ααcos )(sin◆答案:D ★解析:⎪⎭⎫⎝⎛∈2,4ππα得1sin cos 0<<<αα, ∴ <ααcos )(cos ααcos )(sin ;ααsin )(cos ααcos )(cos <;选D1990*2、设)(x f 是定义在实数集上的周期为2的函数,且是偶函数,已知当[]3,2∈x 时,x x f =)(,则当[]0,2-∈x 时,)(x f 的解析式是( ) A. 4)(+=x x f B. x x f -=2)( C. 13)(+-=x x f D. 12)(++=x x f◆答案:C★解析:设[]1,2--∈x ,则[]3,24∈+x ,于是4)4(+=+x x f ,所以4)4()(+=+=x x f x f ,又设[)0,1-∈x ,则(]1,0∈-x ,故2)(+-=-x x f ,由2)()(+-=-=x x f x f . 综上可得:13)(+-=x x f 故选C .1990*3、设双曲线的左右焦点是21,F F ,左右顶点是N M ,,若21F PF ∆的顶点P 在双曲线上,则21F PF ∆的内切圆与边21F F 的切点位置是( )A.在线段MN 内部B. 在线段M F 1内部或线段2NF 内部C.点M 或点ND.不能确定的◆答案:C★解析:设内切圆在三边上切点分别为F E D ,,,当P 在右支上时,a PF PF 221=-.又a DF DF PF PF 22121=-=-,即D 与N 重合; 当P 在左支上时,同理D 与M 重合.故选C .1990*4、点集⎭⎬⎫⎩⎨⎧+=⎪⎭⎫⎝⎛++y x y x y x lg lg 9131lg |),(33中的元素个数为( ) A. 0 B. 1 C.2 D.多于2◆答案:B★解析:由题意得0913133>=++xy y x .又xy y x y x =⋅⋅≥++33333913139131,等号当且仅当913133==y x 时,即333=x ,393=y 时成立.故选B .1990*5.设非零复数y x ,满足022=++y xy x ,则代数式19901990⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+y x y y x x 的值是( )A.19892-B.1-C.11D.以上答案都不对◆答案:B ★解析:记ω=yx或2ω,其中00120sin 120cos i +=ω.012=++ωω.且13=ω. 若ω=y x,则得119901990-=⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛+y x y y x x .若2ω=y x ,则得119901990-=⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛+y x y y x x .选B .1990*6.已知椭圆12222=+by a x (0>>b a )通过点)1,2(,所有这些椭圆上满足1>y 的点的集合用阴影表示是下面图中的()0)D.C.B.A.0)◆答案:C ★解析:由题意得11422=+b a ,由22b a >,故得222251411b b b b =+<<,即51<<b .再由11422=+b a 得11422<+aa ,52>a .故选C .二.填空题:1990*7.设n 为自然数,b a ,为正实数,且满足2=+b a ,则nn b a +++1111的最小值是 . ◆答案:1★解析:由题意得122=⎪⎭⎫ ⎝⎛+≤b a ab ,从而1≤nn b a ,故11111111≥++++++=+++nn n n n n n n b a b a b a b a .注意以上式子的等号当且仅当1==b a 时成立.即所求最小值为1.1990*8.设)0,2(A 为平面上一定点,))602cos(),602(sin(0--t t P 为动点,则当t 由015变到045时,线段AP 扫过的面积是 . ◆答案:6π ★解析:点P 在单位圆上,)2150cos()602sin(0t t -=-,)2150sin()602cos(0t t -=-.当t 由015变到045时,点P 沿单位圆从⎪⎪⎭⎫ ⎝⎛-23,21运动到⎪⎪⎭⎫⎝⎛23,21.线段AP 扫过的面积等于扇形面积等于6π. 1990*9.设n 为自然数,对于任意实数z y x ,,,恒有())(4442222z y x n z y x ++≤++成立,则n 的最小值是 . ◆答案:3★解析:由于()2222224442222222z x z y y x z y x z y x +++++=++()()()()4444444444443z y x z x z y y x z y x ++=++++++++≤.等号当且仅当z y x ==时成立.故3=n .1990*10.对任意正整数n ,连结原点O 与点)3,(+n n A n ,用)(n f 表示线段n OA 上的整点个数(不计端点),则)1990()2()1(f f f ++的值为 . ◆答案:1326★解析:线段n OA 的方程为x nn y 3+=(n x ≤≤0),故)(n f 等于该线段内的格点数. 若k n 3=(*∈N k ),则得x kk y 1+= (n x ≤≤0)(*∈N k ),其内有两个整点()1,+k k ,()22,2+k k ,此时2)(=n f ;若13±=k n (*∈N k )时,则由于3,+n n n 互质,故n OA 内没有格点,此时0)(=n f .∴ 1326319902)1990()2()1(=⎥⎦⎤⎢⎣⎡=++f f f .1990*11.设1990=n ,则()=++---1990995634223333121n n n n n C C C C .◆答案:21-★解析:取19902321⎪⎪⎭⎫ ⎝⎛+-i 展开的实部即为此式.而i i 232123211990+-=⎪⎪⎭⎫ ⎝⎛+-.故原式21-=. 1990*12.8个女孩与25个男孩围成一圈,任何两个女孩之间至少站两个男孩,则共有 种不同和排列方法.(只要把圆旋转一下就能重合的排法认为是相同的). ◆答案:716!25!7C ⋅⋅★解析:每个女孩与其后的两个男孩组成一组,共8组,与余下9个男孩进行排列,某个女孩始终站第一个位子,其余7组在16198=-+个位子中选择7个位子,得716C 种选法.7个女孩可任意换位, 25个男孩也可任意换位,故共得716!25!7C ⋅⋅种排列方法.1990*13.已知b a ,均为正整数,且b a >,222sin b a ab +=θ,(其中20πθ<<),θn b a A n n sin )(22+=.求证:对于一切自然数n ,n A 均为整数.★证明:由222sin ba ab +=θ,得2222cos b a b a +-=θ.记θn b a B nn sin )(22+=. 当b a ,均为正整数时,ab A 21=、221b a B -=均为整数.()2224b a ab A -=,()()22222222b a b a B +--=也为整数.若θk b a A k k sin )(22+=、θk b a B kk sin )(22+=均为整数,则()()k k k k k B A B A k k b a k b a A 111221221sin cos cos sin )(1sin )(+=++=++=+++θθθθθ为整数.()()k k k k k A A B B k k b a k b a B 111221221sin sin cos cos )(1cos )(-=-+=++=+++θθθθθ也为整数.由数学归纳原理知对于一切N n ∈,n A ,n B 为整数.1990*14、2n 个正数排成n 行n 列:其中,每一行的数成等差数列,每一列的数成等比数列,并且所有的公比相等。

全国初中数学竞赛试题和答案解析

全国初中数学竞赛试题和答案解析

中国教育学会中学数学教学专业委员会全国初中数学竞赛试题一、选择题(共5小题,每小题6分,共30分.)1(甲).如果实数a ,b ,c 22||()||a a b c a b c -++-++可以化简为( ).(A )2c a - (B )22a b - (C )a - (D )a 1(乙).如果22a =-11123a+++的值为( ).(A )2- (B 2 (C )2 (D )222(甲).如果正比例函数y = ax (a ≠ 0)与反比例函数y =xb(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为( ). (A )(2,3) (B )(3,-2) (C )(-2,3) (D )(3,2)2(乙). 在平面直角坐标系xOy 中,满足不等式x 2+y 2≤2x +2y 的整数点坐标(x ,y )的个数为( ). (A )10 (B )9 (C )7 (D )53(甲).如果a b ,为给定的实数,且1a b <<,那么1121a a b a b ++++,, ,这四个数据的平均数与中位数之差的绝对值是( ). (A )1 (B )214a - (C )12 (D )143(乙).如图,四边形ABCD 中,AC ,BD 是对角线, △ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5, 则CD 的长为( ).(A )23 (B )4 (C )52 (D )4.54(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正OAB CED整数,则n 的可能值的个数是( ).(A )1 (B )2 (C )3 (D )44(乙).如果关于x 的方程 20x px q p q --=(,是正整数)的正根小于3, 那么这样的方程的个数是( ).(A ) 5 (B ) 6 (C ) 7 (D ) 85(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0123p p p p ,,,,则0123p p p p ,,,中最大的是( ).(A )0p (B )1p (C )2p (D )3p5(乙).黑板上写有111123100, , ,, 共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( ).(A )2012 (B )101 (C )100 (D )99二、填空题(共5小题,每小题6分,共30分)6(甲).按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作. 如果操作进行四次才停止,那么x 的取值范围是 .6(乙).如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b cb c c a a b+++++的值为 .7(甲).如图,正方形ABCD 的边长为215,E ,F 分别是AB ,BC 的中点,AF 与DE ,DB分别交于点M ,N ,则△DMN 的面积是 . 7(乙).如图所示,点A 在半径为20的圆O 上,以OA 为一条对角线作矩形OBAC ,设直线BC 交圆O 于D 、E 两点,若12OC =,则线段CE 、BD 的长度差是 。

数学竞赛试卷(初赛、决赛及答案)

数学竞赛试卷(初赛、决赛及答案)

2.下面五个图形中,有一个不是正方体的展开图:那么“不是的”图形的编号是 。

3.将60分成10个质数之和,要求最大的质数尽可能小,那么其中最大的质数是 。

4.34减去一个分数,513一个分数,两次计算结果相等,那么这个相等的结果是 。

5.右面残缺算式中已知三个“4”,那么补全后它的乘积是 。

6.有A 、B 两个整数,A 的各位数字之和为35,B 的各位数字之和为26,两数相加时进位三次,那么A+B 的各位数字之和是 。

7.苹果和梨各有若干只,如果5只苹果和3只梨装一袋,还多4只苹果,梨恰好装完;如果7只苹果和3只梨装一袋,苹果恰好装完,梨还多12只,那么苹果和梨共有______只。

8.甲班51人,乙班49人,某次考试两个班全体同学的平均成绩是81分,乙班的平均成绩要比甲班平均成绩高7分,那么乙班的平均成绩是______分。

9.在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是 。

10.高中学生的人数是初中学生的56,高中毕业生的人数是初中毕业生的1217,高、初中毕业生毕业后,高、初中留下的人数都是520人,那么高、初中毕业生共有 人。

11.如图,一个长方形的纸盒内,放着九个正方形的纸片,其中正方形A 和B 的边长分别为4和7,那么长方形(纸盒)的面积是 。

12.甲、乙两地相距100千米,张先骑摩托车从甲出发,1小时后李驾驶汽车从甲出发,两人同时到达乙地。

摩托车开始速度是50千米/d,时,中途减速为40千米/小时。

汽车速度是80千米/小时。

汽车曾在途中停驶10分钟,那么张驾驶的摩托车减速时在他出发后的_________小时。

3.下面五个图形中,有一个不是正方体的展开图:那么“不是的”图形的编号是_________。

4.34减去一个分数,513一个分数,两次计算结果相等,那么这个相等的结果是 。

5.规定:③=2×3×4,④=3×4×5,⑤=4×5×6,…,⑩=9×10×11,…如果,那么方框代表的数是________。

1990年全国初中数学联赛试题及答案

1990年全国初中数学联赛试题及答案

1990年全国初中数学联赛试题第一试一、 选择题本题共有8个小题,每小题都给出了(A)、(B)、(C)、(D)四个结论,其中只有一个是正确的,请把正确结论的代表字母写在题后的圆括号内。

1.31231131144++-++的值是(A )1 (B )-1 (C )2 (D )-2答( )2.在△ABC 中,AD 是高,且AD 2 = BD ·CD ,那么∠BAC 的度数是 (A )小于90° (B )等于90° (C )大于90° (D )不确定答( ) 3.方程k k k x k x (02)13(722=--++-是实数)有两个实根α、β,且0<α<1,1<β<2,那么k 的取值范围是(A )3<k <4 (B )-2<k <-1; (C )3<k <4或-2<k <-1 (D )无解答( ) 4.恰有35个连续自然数的算术平方根的整数部分相同,那么这个相同整数是(A )17 (B )18 (C )35 (D )36答( ) 5.△ABC 中,22=AB ,2=AC ,2=BC ,设P 为BC 边上任一点,则(A )PB PA <2·PC (B )PB PA =2·PC(C )PB PA >2·PC(D )PB PA 与2·PC 的大小关系并不确定答( )6.若六边形的周长等于20,各边长都是整数,且以它的任意三条边为边都不能构成三角形,那么,这样的六边形(A )不存在 (B )只有一个 (C )有有限个,但不只一个 (D )有无穷多个答( )7.若b a log 的尾数是零,且2log log 1log a b b b aa>>,那么下列四个结论:中,正确的结论的个数是(1)21a b b>> (2)0log log =+a b b a(3)10<<<b a (3)01=-ab(A )1 (B )2 (C )3 (D )4答( )8.如图,点P ,Q ,R 分别在△ABC 的边上AB 、BC 、CA 上, 且1====RC QR PQ BP ,那么,△ABC 面积的最大值是(A )3 (B )2 (C )5 (D )3答( )二、 填空题 1.已知82121=+-xx,则xx 12+=2.2223,2,1,…,1234567892的和的个位数的数字是 3.方程01)8)((=---x a x ,有两个整数根,则=a 4.△ABC 中,2==AC AB ,BC 边有100个不同的点1P ,2P ,…,100P ,记i i i BP AP m +=2·C Pi ( =i 1,2,…,100) 则 ++21m m …100m +=第二试一、已知在凸五边形ABCDE 中,∠BAE = 3α,BC=CD=DE ,且∠BCD=∠CDE=180°-2α,求证:∠BAC=∠CAD=∠DAE二、[]x 表示不超过实数x 的最大整数,令{}[]x x x -=(1)找出一个实数x ,满足{}11=⎭⎬⎫⎩⎨⎧+x x(2)证明:满足上述等式的x ,都不是有理数三、设有n n 22⨯个正方形方格棋盘,在其中任意的n 3个方格中各有一枚棋子。

1991~2011全国初中数学联赛试题及答案

1991~2011全国初中数学联赛试题及答案
【答】15.
将这些球的位置按顺序标号为1,2,3,4,…….
由于1号球与7号球中间夹有5个球,1号球与12号球中间夹有10个球,12号球与6号球中间夹有5个球,7号球与13号球中间夹有5个球,13号球与2号球中间夹有10个球,2号球与8号球中间夹有5个球,8号球与14号球中间夹有5个球,14号球与3号球中间夹有10个球,3号球与9号球中间夹有5个球,9号球与15号球中间夹有5个球,15号球与4号球中间夹有10个球,4号球与10号球中间夹有5个球,因此,编号为1,7,12,6, 13,2,8,14,3,9,15,4,10的球颜色相同,编号为5,11的球可以为另外的一种颜色.因此,可以按照要求摆放15个球.
………………………………20分
又因为MD//AC,所以MD和MQ为同一条直线.
又点Q、D均在⊙I上,所以点Q和点D重合,故PD是⊙I的切线.……………………………25分
三.(本题满分25分)已知二次函数 的图象经过两点P ,Q .
(1)如果 都是整数,且 ,求 的值.
(2)设二次函数 的图象与 轴的交点为A、B,与 轴的交点为C.如果关于 的方程 的两个根都是整数,求△ABC的面积.
类似的,可求得 出现的总次数均为 .
因此 =28068.
二、填空题:(本题满分28分,每小题7分)
1.已知实数 满足方程组 则 .
【答】13.
由 得 ,把 代入,可得 .
因此, 是一元二次方程 的两个实数根,易求得这两个实数根分别为3和 ,所以 .
2.二次函数 的图象与 轴正方向交于A,B两点,与 轴正方向交于点C.已知 , ,则 .
如果球的个数多于15个,则一方面,16号球与10号球应同色,另一方面,5号球与16号球中间夹有10个球,所以5号球与16号球同色,从而1到16号球的颜色都相同,进一步可以知道:所有的球的颜色都相同,与要求不符.

历届(1-23)希望杯数学竞赛初一七年级真题及答案(最新整理WORD版)

历届(1-23)希望杯数学竞赛初一七年级真题及答案(最新整理WORD版)

“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题第 1 页共277 页目录1.希望杯第一届(1990年)初中一年级第一试试题............................................. 003-0052.希望杯第一届(1990年)初中一年级第二试试题............................................. 010-0123.希望杯第二届(1991年)初中一年级第一试试题............................................. 016-0204.希望杯第二届(1991年)初中一年级第二试试题............................................. 022-0265.希望杯第三届(1992年)初中一年级第一试试题............................................. 029-0326.希望杯第三届(1992年)初中一年级第二试试题............................................. 034-0407.希望杯第四届(1993年)初中一年级第一试试题............................................. 044-0508.希望杯第四届(1993年)初中一年级第二试试题............................................. 051-0589.希望杯第五届(1994年)初中一年级第一试试题............................................. 058-06610.希望杯第五届(1994年)初中一年级第二试试题 .......................................... 065-07311.希望杯第六届(1995年)初中一年级第一试试题 ........................................... 072-080 12希望杯第六届(1995年)初中一年级第二试试题........................................... 079-08713.希望杯第七届(1996年)初中一年级第一试试题........................................... 089-09814.希望杯第七届(1996年)初中一年级第二试试题............................................. 95-10515.希望杯第八届(1997年)初中一年级第一试试题........................................... 103-11316.希望杯第八届(1997年)初中一年级第二试试题........................................... 110-12017.希望杯第九届(1998年)初中一年级第一试试题........................................... 119-12918.希望杯第九届(1998年)初中一年级第二试试题........................................... 128-13819.希望杯第十届(1999年)初中一年级第二试试题........................................... 135-14720.希望杯第十届(1999年)初中一年级第一试试题........................................... 148-15121.希望杯第十一届(2000年)初中一年级第一试试题....................................... 148-16122.希望杯第十一届(2000年)初中一年级第二试试题....................................... 155-16923.希望杯第十二届(2001年)初中一年级第一试试题....................................... 159-17424.希望杯第十二届(2001年)初中一年级第二试试题....................................... 163-17825.希望杯第十三届(2002年)初中一年级第一试试题....................................... 169-18426.希望杯第十三届(2001年)初中一年级第二试试题....................................... 173-18927.希望杯第十四届(2003年)初中一年级第一试试题....................................... 180-19628.希望杯第十四届(2003年)初中一年级第二试试题....................................... 184-200第 2 页共277 页29.希望杯第十五届(2004年)初中一年级第一试试题 (188)30.希望杯第十五届(2004年)初中一年级第二试试题 (189)31.希望杯第十六届(2005年)初中一年级第一试试题....................................... 213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (189)33.希望杯第十七届(2006年)初中一年级第一试试题....................................... 228-23334.希望杯第十七届(2006年)初中一年级第二试试题....................................... 234-23835.希望杯第十八届(2007年)初中一年级第一试试题....................................... 242-246 26.希望杯第十八届(2007年)初中一年级第二试试题....................................... 248-25137.希望杯第十九届(2008年)初中一年级第一试试题....................................... 252-25638.希望杯第十九届(2008年)初中一年级第二试试题....................................... 257-26239.希望杯第二十届(2009年)初中一年级第一试试题....................................... 263-26620.希望杯第二十届(2009年)初中一年级第二试试题....................................... 267-27121.希望杯第二十一届(2010年)初中一年级第一试试题 ................................... 274-27622.希望杯第二十二届(2011年)初中一年级第二试试题 ................................... 285-28823.希望杯第二十三届(2012年)初中一年级第二试试题 ................................... 288-301第 3 页共277 页第 4 页 共 277 页希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( )A .a ,b 都是0.B .a ,b 之一是0.C .a ,b 互为相反数.D .a ,b 互为倒数.2.下面的说法中正确的是 ( )A .单项式与单项式的和是单项式.B .单项式与单项式的和是多项式.C .多项式与多项式的和是多项式.D .整式与整式的和是整式.3.下面说法中不正确的是 ( )A. 有最小的自然数. B .没有最小的正有理数.C .没有最大的负整数.D .没有最大的非负数.4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么( ) A .a ,b 同号. B .a ,b 异号.C .a >0. D .b >0.5.大于-π并且不是自然数的整数有( ) A .2个. B .3个.C .4个. D .无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是 ( )A .0个.B .1个.C .2个.D .3个.7.a 代表有理数,那么,a 和-a 的大小关系是 ( )A .a 大于-a .B .a 小于-a .C .a 大于-a 或a 小于-a .D .a 不一定大于-a .8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A .乘以同一个数.B .乘以同一个整式.C .加上同一个代数式.D .都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A .一样多.B .多了.C .少了.D .多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A .增多.B .减少.C .不变.D .增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______.第 5 页 共 277 页 3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______. 8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x -2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第 6 页共277 页第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题第7 页共277 页提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-50005000)=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-=-2500.+1)=5x+26.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.第8 页共277 页8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即第9 页共277 页希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m 的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中第10 页共277 页的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y 的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.第11 页共277 页答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m ,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出第12 页共277 页∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.第13 页共277 页3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得第14 页共277 页即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.第15 页共277 页希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+12468;C.(-13579)×12468; D.(-13579)÷124686.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )A.-1120; B.-413; C.-316; D.-617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x.B.甲方程的两边都乘以43x;C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34.第16 页共277 页第 17 页 共 277 页10.如图: ,数轴上标出了有理数a ,b ,c 的位置,其中O是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30. 12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( )A.%2p q +;B.()%mp nq +;C.()%mp nq p q ++;D.()%mp nq m n++. 二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______. 3. 计算:(63)36162-⨯=__________.4. 求值:(-1991)-|3-|-31||=______. 5. 计算:1111112612203042-----=_________. 6.n 为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n 的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.第18 页共277 页答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。

历届(第1-23届)希望杯数学竞赛初一七年级真题及答案

历届(第1-23届)希望杯数学竞赛初一七年级真题及答案

“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题............................................. 003-0052.希望杯第一届(1990年)初中一年级第二试试题............................................. 010-0123.希望杯第二届(1991年)初中一年级第一试试题............................................. 018-0204.希望杯第二届(1991年)初中一年级第二试试题............................................. 024-0265.希望杯第三届(1992年)初中一年级第一试试题............................................. 032-0326.希望杯第三届(1992年)初中一年级第二试试题............................................. 038-0407.希望杯第四届(1993年)初中一年级第一试试题............................................. 048-0508.希望杯第四届(1993年)初中一年级第二试试题............................................. 056-0589.希望杯第五届(1994年)初中一年级第一试试题............................................. 064-06610.希望杯第五届(1994年)初中一年级第二试试题 .......................................... 071-07311.希望杯第六届(1995年)初中一年级第一试试题........................................... 078-080 12希望杯第六届(1995年)初中一年级第二试试题........................................... 085-08713.希望杯第七届(1996年)初中一年级第一试试题........................................... 096-09814.希望杯第七届(1996年)初中一年级第二试试题........................................... 103-10515.希望杯第八届(1997年)初中一年级第一试试题............................................ 111-11316.希望杯第八届(1997年)初中一年级第二试试题........................................... 118-12017.希望杯第九届(1998年)初中一年级第一试试题........................................... 127-12918.希望杯第九届(1998年)初中一年级第二试试题........................................... 136-13819.希望杯第十届(1999年)初中一年级第二试试题........................................... 145-14720.希望杯第十届(1999年)初中一年级第一试试题........................................... 148-15121.希望杯第十一届(2000年)初中一年级第一试试题....................................... 159-16122.希望杯第十一届(2000年)初中一年级第二试试题....................................... 167-16923.希望杯第十二届(2001年)初中一年级第一试试题....................................... 171-17424.希望杯第十二届(2001年)初中一年级第二试试题....................................... 176-17825.希望杯第十三届(2002年)初中一年级第一试试题....................................... 182-18426.希望杯第十三届(2001年)初中一年级第二试试题....................................... 186-18927.希望杯第十四届(2003年)初中一年级第一试试题....................................... 193-19628.希望杯第十四届(2003年)初中一年级第二试试题....................................... 198-20029.希望杯第十五届(2004年)初中一年级第一试试题 (203)30.希望杯第十五届(2004年)初中一年级第二试试题 (204)31.希望杯第十六届(2005年)初中一年级第一试试题....................................... 213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (204)33.希望杯第十七届(2006年)初中一年级第一试试题....................................... 228-23334.希望杯第十七届(2006年)初中一年级第二试试题....................................... 234-23835.希望杯第十八届(2007年)初中一年级第一试试题....................................... 242-246 26.希望杯第十八届(2007年)初中一年级第二试试题....................................... 248-25137.希望杯第十九届(2008年)初中一年级第一试试题....................................... 252-25638.希望杯第十九届(2008年)初中一年级第二试试题....................................... 257-26239.希望杯第二十届(2009年)初中一年级第一试试题....................................... 263-26620.希望杯第二十届(2009年)初中一年级第二试试题....................................... 267-27121.希望杯第二十一届(2010年)初中一年级第一试试题................................... 274-27622.希望杯第二十二届(2011年)初中一年级第二试试题................................... 285-28823.希望杯第二十三届(2012年)初中一年级第二试试题................................... 288-301希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么( )A.a,b都是0.B.a,b之一是0.C.a,b互为相反数.D.a,b互为倒数.2.下面的说法中正确的是( )A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式.3.下面说法中不正确的是( )A. 有最小的自然数.B.没有最小的正有理数.C.没有最大的负整数.D.没有最大的非负数.4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么( )A.a,b同号.B.a,b异号.C.a>0.D.b>0.5.大于-π并且不是自然数的整数有( )A.2个.B.3个.C.4个.D.无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是( )A.0个.B.1个.C.2个.D.3个.7.a代表有理数,那么,a和-a的大小关系是( )A.a大于-a.B.a小于-a.C.a大于-a或a小于-a.D.a不一定大于-a.8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A.一样多.B.多了.C.少了.D.多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A.增多.B.减少.C.不变.D.增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______. 3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______.8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989) =(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+1 2468;C.(-13579)×12468; D.(-13579)÷124686.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )A.-1120; B.-413; C.-316; D.-617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x .B.甲方程的两边都乘以43x; C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34. 10.如图: ,数轴上标出了有理数a ,b ,c 的位置,其中O 是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30.12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()%mp nq m n++.二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______.3.计算:(63)36162-⨯=__________.4.求值:(-1991)-|3-|-31||=______.5.计算:111111 2612203042-----=_________.6.n为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫---⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。

圆的初中数学竞赛题选

圆的初中数学竞赛题选

圆的初中数学竞赛题选文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]关于圆的问题圆的有关问题是与直线型紧密结合在一起的,因而综合性强,富于变化.圆的有关计算与证明例1 圆内接八边形的四条边长为1,另四条边长为2.求此八边形的面积.例2 在边长为1cm的正五边形,去掉所有与五边形各顶点距离都小于1c m的点,求余下部分的面积.例3三个全等的圆有一个公共点O,并且都在一个已知△ABC内.每个圆与△ABC 的两边相切.求证:△ABC的内心、外心和O点共线.例4如图35-4,在△ABC中,BD、CE为高,F、G分别为ED、BC的中点,O为外心,求证:AO∥FG.例5已知在凸五边形ABCDE中,∠BAE=3a,BC=CD=DE,且∠BCO=∠CDE=180°-2a,求证:∠BAC=∠CAD=∠DAE.例6如图35-6,AB 为定圆O 中的定弦,作⊙O 的弦C 1D 1,C 2D 2,…C 1988D 1988,对其中每一i (i=1,2,…,1988),C i D i 都被弦AB 平分于M i .过C i 、D i 分别作⊙O 的切线,两切线交于P i .求证:点P 1,P 2,…,P 1988与某定点等距离,并指出这定点是什么点.例7若凸四边形两对角线的乘积等于它的两组对边乘积之和,则此四边形内接于圆. 托勒密逆定理例8如图35-8,已知AD 、BC 是⊙O 的两条相交的弦,且B 在劣弧AD 上,⊙O 的半径为5,BC=6,AD 被BC 平分;又设从A 出发的弦只有AD 能被BC 等分,这样可以知道AB 劣弧对应的圆心角的正弦是一个有理数.如果把这个有理数化为最简分数nm,求mn. 例9(1962年北京中学生数学竞赛题)任意剪六个圆形纸片放在桌面上,使得没有一个纸片的中心落在另一纸片上或被另一纸片盖住,然后用一枚针去世扎这一堆纸片.证明:不论针尖落在哪一点,总是不能一次把六个纸片全部扎中.例10(第21届国际中学生数学竞赛题)如图35-10,平面上两圆相交,其中一交点为A.两动点各以匀速自A 点出发在不同的圆周上同向移动,这两点移动一周后同时返回到A 点.求证平面上有一定点P ,它不论在何时皆和两动点等距离.关于圆的问题例1 (第3届全国部分省市初中数学通讯赛试题)圆内接八边形的四条边长为1,另四条边长为2.求此八边形的面积.解 由弓形面积公式知所求的八边形的面积与八边形各边排列的顺序无关.不妨设八边形ABCDEFGH 如图35-1,且有AB=CD=EF=GH=2, BC=DE=FG=HA=1. 双向延长AH 、BC 、DE 、FG得正方形KLMN.故S 八边形ABCDEFGH =S 正方形KLMN -4S △ABK=.245)2(214)122(22+=⋅-+例2 (第19届全苏中学生竞赛题)在边长为1cm 的正五边形,去掉所有与五边形各顶点距离都小于1cm 的点,求余下部分的面积.解 以A 为圆心,1cm 长为半径的扇形ABE 内的点到点A 的距离都小于1cm.分别以正五边形的各顶点为圆心,1cm 长为半径作弧,以五段圆弧为边界的“曲边五边形”MNPQR 内的点到正五边形ABCDE 各顶点的距离小于1cm.五边形内余下的部分是五个等积的“曲边三角形”BMC 、CND 、DPE 、EQA 、ARB (如图35-2).考察“曲边三角形”BMC 与以∠BAM 为圆心角(等于60°)的扇形BAM 的面积之和,恰等于等边三角形ABM 与以∠CBM 为圆心角(等于108°-60°=48°)的扇形CBM 的面积之和.所以,所要求的面积为: 5S 曲边△BMC=5(S △ABM +S 扇形CBM -S 扇形BAM ) =5)615243(ππ-+=).(64352cm π-例3 (第22届国际数学竞赛题)三个全等的圆有一个公共点O ,并且都在一个已知△ABC 内.每个圆与△ABC 的两边相切.求证:△ABC 的内心、外心和O 点共线.证明 如图35-3,设三等圆为⊙A ′、⊙B ′和⊙C ′.故A ′B ′∥AB ,B ′C ′∥BC ,C ′A ′∥CA.于是△A ′B ′C ′∽△ABC.由于三等圆分别与△ABC 的两边相切,故AA ′、BB ′、CC ′相交于△ABC 内心I.显然,I 也是△A ′B ′C ′的内心.因此,△ABC 的外心E ,△A ′B ′C ′的外心又O 是三等圆的公共点,OA ′=OB ′=OC ′,因此O 即是△A ′B ′C ′的外心E ′.故E ,O 、I 三点共线.四点共圆例4 (1980年哈尔滨初中数学竞赛题)如图35-4,在△ABC 中,BD 、CE 为高,F 、G 分别为ED 、BC 的中点,O 为外心,求证:AO ∥FG.证明 过A 作⊙O 的切线AT.∵BD 、CE 为高,∴B 、C 、D 、E 四点共圆.∴∠TAC=∠ABC=∠ADE∴AT ∥ED.又AO ⊥AT ,∴AO⊥ED.又∵G 为BC 中点,∴DG=21BC=EG.而EF=DF ,∴FG ⊥ED.故AO∥FG.例5(1990年全国初中数学竞赛题)已知在凸五边形ABCDE 中,∠BAE=3a,BC=CD=DE ,且∠BCO=∠CDE=180°-2a ,求证:∠BAC=∠CAD=∠DAE.证明 连结BD 、CE.∵BC=CD=DE ,∠BCD=∠CDE ,∴△BCD ≌△CDE.又∠BCD=180°-2a,∴∠CBD=∠CDB=∠DCE=∠DEC=a,∴B 、C 、D 、E 四点共圆,且BC=CD=DE=2a.∴BCDE=6a.又∠BAE=3a , ∴A 、B 、C 、D 、E 共圆.∴∠BAC=∠CAD=∠DAE=a.例6 (1988年广州等五市数学联赛题)如图35-6,AB为定圆O中的定弦,作⊙O的弦C1D1,C2D2,…C1988D1988,对其中每一i(i=1,2,…,1988),CiDi都被弦AB平分于Mi.过Ci、Di分别作⊙O的切线,两切线交于Pi.求证:点P1,P2,…,P1988与某定点等距离,并指出这定点是什么点.证明连OCi 、ODi,对每个i(i=1,2,…1988),∵Ci Di均被AB平分于Mi,∴Ci Mi·DiMi=AMi·BMi.①又PiCi,PiDi分别切⊙O于Ci、Di,故知O、Ci、Pi、Di共圆,且OPi通过CiDi的中点Mi.∴CiMi·DiMi=PiMi·OMi. ②由①、②得OMi·MiPi=MiA·MiB.∴Pi和O、A、B共圆.但O、A、B为定点,∴Pi和⊙OAB的圆心距离相等.即点P1,P2,…,P1988与定点等距离,这定点为⊙OAB的圆心.例7若凸四边形两对角线的乘积等于它的两组对边乘积之和,则此四边形人接于圆.证明如图35-7,在凸四边形ABCD中,设AC·BD=AB·CD+AD·BC.(※)作∠ECD=∠ACB,∠EBC=∠CAD,于是△BEC∽△ADC,∴ACBCADBE=ACBCDCEC=②由①得BE·AC=AD·BC. ③由②及∠1=∠2,可得△ABC∽△DCE.∴∠3=∠4,.DCACDEAB=③+④即有(BE+DE)·AC=AD ·BC+AB ·DC. ⑤比较⑤式与(※)式 得BE+DE=BD. 这说明,E 在BD 上,∠3与∠BDC 重合. ∴∠BDC=∠BAC.故A 、B 、C 、D 四点共圆. 此例是托勒密逆定理.1.杂题例8(第1届美国数学邀请赛题)如图35-8,已知AD 、BC 是⊙O 的两条相交的弦,且B 在劣弧AD 上,⊙O 的半径为5,BC=6,AD被BC 平分;又设从A 出发的弦只有AD 能被BC 等分,这样可以知道AB 劣弧对应的圆心角的正弦是一个有理数.如果把这个有理数化为最简分数n m,求mn.分析设AD 、BC 交于M ,M 为AD 中点,则点M 的轨迹是在A 点与⊙O 内切的半径为25的⊙P ,依题意BC 与⊙P 切于点M. 要求mn ,须求sin ∠AOB=nm,亦是求cos ∠AOB 之值.作ON ⊥BC 于N ,连OB ,则 BN=BC 21=3,ON=.422=-BN OB作PQ ⊥ON 于Q,连PM,则PQNM 为矩形,故有QN=PM=OP=21AO=25,OQ=ON-QN=,23 MN=PQ=,222=-OQ OP BM=BN-MN=1 BP=.22922=+PM BM 在△POB 中,由余弦定理, cos ∠AOB=BOPO BP BO PO⋅⋅-+2222=5252)2921(5)25(222⋅⋅-+=2524,∴sin ∠AOB=AOB ∠-2cos 1=.257)2524(12=-∴mn=7×25=175.例9(1962年北京中学生数学竞赛题)任意剪六个圆形纸片放在桌面上,使得没有一个纸片的中心落在另一纸片上或被另一纸片盖住,然后用一枚针去世扎这一堆纸片.证明:不论针尖落在哪一点,总是不能一次把六个纸片全部扎中.分析 这命题等价于:平面上有六个圆,每个圆心都在其余各圆的外部,证明平面上任意一点都不会同时在这六个圆内部. 证明 (反证法)如图35-9,设平面上有一点M 同时在这六个圆内部,连结六个圆心: MO 1,MO 2,…,MO 6.则∠O 1MO 2+∠O 2MO 3+…+∠O 6MO 1=360°.因此,至少有一个角不大于60°,不妨设∠O1MO2≤60°,即γ≤60°.又,α+β+γ=180°则α,β中必有一个不小于60°.不妨设β≥60°,则β≥γ.∴O1O2≤O1M<r1(r1为圆⊙O1的半径).故O2在⊙O1内,这与题设矛盾,这就证明了M点不可能同时在六个圆的内部.例10(第21届国际中学生数学竞赛题)如图35-10,平面上两圆相交,其中一交点为A.两动点各以匀速自A点出发在不同的圆周上同向移动,这两点移动一周后同时返回到A点.求证平面上有一定点P,它不论在何时皆和两动点等距离.解设⊙O1与⊙O2相交于A和A′并设两动点Q1和Q2分别在⊙O1和⊙O2上,使∠AO1Q1=∠AO2Q2.连Q1A′Q2A′.因为圆周角等于同弧所对圆心角的一半,故∠AA′Q1=∠21AO1Q1,∠AA′Q2=π-∠AXQ2=π-21∠AO2Q2.∴∠AA′Q1+∠AA′Q2=π.即有Q1、B、Q2三点共线.过A点作MN⊥AA′分别交两圆于M、N,(如图35-11),设Q1和Q2表示两动点在任一时刻的位置.由圆内接四边形两对角互补可知∠MQ1A′=∠A′Q2N=.2作Q1Q的中垂线,交MN于它的中点P,点P就是所求的定点.它显然和Q1,Q2等距离.后记;。

完整)历年全国初中数学联赛试题总汇

完整)历年全国初中数学联赛试题总汇

完整)历年全国初中数学联赛试题总汇1991年全国初中数学联合竞赛决赛试题第一试一、选择题1.设等式 $a(x-a)+a(y-a)=x-a-a-y$ 在实数范围内成立,其中 $a$,$x$,$y$ 是两两不同的实数,则 $\dfrac{3x^2+xy-y^2}{2x-xy+y}=$ (A)3;(B)$\dfrac{1}{3}$;(C)2;(D)$\dfrac{15}{33}$。

答案:(B)2.如图,$AB\parallel EF\parallel CD$,已知 $AB=20$,$CD=80$,$BC=100$,那么$EF$ 的值是(A)10;(B)12;(C)16;(D)18.答案:(C)3.方程 $x^2-x-1=0$ 的解是 $\dfrac{-1\pm\sqrt{5}}{2}$;$\dfrac{-1\pm i\sqrt{3}}{2}$ 或 $\dfrac{1\pm i\sqrt{3}}{2}$。

答案:(A)4.已知:$x=(1991-1991n)$($n$ 是自然数)。

那么 $(x-1+x^2)^n$ 的值是(A)$1991^{-1}$;(B)$-1991^{-1}$;(C)$(-1)^n1991$;(D)$(-1)^n1991^{-1}$。

答案:(B)5.若$1\times2\times3\times\cdots\times99\times100=12^nM$,其中$M$ 为自然数,$n$ 为使得等式成立的最大的自然数,则$M$ 能被(A)2 整除,但不能被3整除;(B)能被3整除,但不能被2整除;(C)能被4整除,但不能被3整除;(D)不能被3整除,也不能被2整除。

答案:(D)6.若 $a$,$c$,$d$ 是整数,$b$ 是正整数,且满足$a+b=c$,$b+c=d$,$c+d=a$,那么 $a+b+c+d$ 的最大值是(A)$-1$;(B)$-5$;(C)$0$;(D)$1$。

答案:(B)7.如图,正方形 $OPQR$ 内接于 $\triangle ABC$。

历届(1-23)希望杯数学竞赛初一七年级真题及答案(最新整理WORD版)

历届(1-23)希望杯数学竞赛初一七年级真题及答案(最新整理WORD版)

“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题............................................. 003-0052.希望杯第一届(1990年)初中一年级第二试试题............................................. 010-0123.希望杯第二届(1991年)初中一年级第一试试题............................................. 016-0204.希望杯第二届(1991年)初中一年级第二试试题............................................. 022-0265.希望杯第三届(1992年)初中一年级第一试试题............................................. 029-0326.希望杯第三届(1992年)初中一年级第二试试题............................................. 034-0407.希望杯第四届(1993年)初中一年级第一试试题............................................. 043-0508.希望杯第四届(1993年)初中一年级第二试试题............................................. 050-0589.希望杯第五届(1994年)初中一年级第一试试题............................................. 057-06610.希望杯第五届(1994年)初中一年级第二试试题 .......................................... 063-07311.希望杯第六届(1995年)初中一年级第一试试题 ........................................... 070-080 12希望杯第六届(1995年)初中一年级第二试试题........................................... 077-08713.希望杯第七届(1996年)初中一年级第一试试题........................................... 086-09814.希望杯第七届(1996年)初中一年级第二试试题............................................. 91-10515.希望杯第八届(1997年)初中一年级第一试试题............................................. 99-11316.希望杯第八届(1997年)初中一年级第二试试题........................................... 106-12017.希望杯第九届(1998年)初中一年级第一试试题........................................... 114-12918.希望杯第九届(1998年)初中一年级第二试试题........................................... 123-13819.希望杯第十届(1999年)初中一年级第二试试题........................................... 130-14720.希望杯第十届(1999年)初中一年级第一试试题........................................... 148-15121.希望杯第十一届(2000年)初中一年级第一试试题....................................... 143-16122.希望杯第十一届(2000年)初中一年级第二试试题....................................... 150-16923.希望杯第十二届(2001年)初中一年级第一试试题....................................... 154-17424.希望杯第十二届(2001年)初中一年级第二试试题....................................... 158-17825.希望杯第十三届(2002年)初中一年级第一试试题....................................... 164-18426.希望杯第十三届(2001年)初中一年级第二试试题....................................... 168-18927.希望杯第十四届(2003年)初中一年级第一试试题....................................... 175-19628.希望杯第十四届(2003年)初中一年级第二试试题....................................... 179-20029.希望杯第十五届(2004年)初中一年级第一试试题 (183)30.希望杯第十五届(2004年)初中一年级第二试试题 (184)31.希望杯第十六届(2005年)初中一年级第一试试题....................................... 213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (184)33.希望杯第十七届(2006年)初中一年级第一试试题....................................... 228-23334.希望杯第十七届(2006年)初中一年级第二试试题....................................... 234-23835.希望杯第十八届(2007年)初中一年级第一试试题....................................... 242-246 26.希望杯第十八届(2007年)初中一年级第二试试题....................................... 248-25137.希望杯第十九届(2008年)初中一年级第一试试题....................................... 252-25638.希望杯第十九届(2008年)初中一年级第二试试题....................................... 257-26239.希望杯第二十届(2009年)初中一年级第一试试题....................................... 263-26620.希望杯第二十届(2009年)初中一年级第二试试题....................................... 267-27121.希望杯第二十一届(2010年)初中一年级第一试试题 ................................... 274-27622.希望杯第二十二届(2011年)初中一年级第二试试题 ................................... 285-28823.希望杯第二十三届(2012年)初中一年级第二试试题 ................................... 288-301希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( )A .a ,b 都是0.B .a ,b 之一是0.C .a ,b 互为相反数.D .a ,b 互为倒数.2.下面的说法中正确的是 ( )A .单项式与单项式的和是单项式.B .单项式与单项式的和是多项式.C .多项式与多项式的和是多项式.D .整式与整式的和是整式.3.下面说法中不正确的是 ( )A. 有最小的自然数. B .没有最小的正有理数.C .没有最大的负整数.D .没有最大的非负数.4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么( ) A .a ,b 同号. B .a ,b 异号.C .a >0. D .b >0.5.大于-π并且不是自然数的整数有( ) A .2个. B .3个.C .4个. D .无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是 ( )A .0个.B .1个.C .2个.D .3个.7.a 代表有理数,那么,a 和-a 的大小关系是 ( )A .a 大于-a .B .a 小于-a .C .a 大于-a 或a 小于-a .D .a 不一定大于-a .8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A .乘以同一个数.B .乘以同一个整式.C .加上同一个代数式.D .都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A .一样多.B .多了.C .少了.D .多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A .增多.B .减少.C .不变.D .增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______.3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______. 8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x -2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m 的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y 的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+12468;C.(-13579)×12468; D.(-13579)÷124686.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )A.-1120; B.-413; C.-316; D.-617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x.B.甲方程的两边都乘以43x;C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34.10.如图: ,数轴上标出了有理数a,b,c的位置,其中O是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30. 12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()%mp nq m n++.二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______. 3. 计算:(63)36162-⨯=__________.4. 求值:(-1991)-|3-|-31||=______. 5. 计算:1111112612203042-----=_________. 6.n 为正整数,1990n -1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n 的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。

1990第七届全国初中数学联赛(精品)

1990第七届全国初中数学联赛(精品)

1990第七届全国初中数学联赛第一试一、选择题本题共有8个小题,每小题都给出了A ,B ,C ,D 四个结论,其中只有一个是正确的,请把正确结论的代表字母写在题后的圆括号内.1++的值是( )A .1B .1-C .2D .2-2.在ABC △中,AD 是高,且2AD BD CD =⋅,那么BAC ∠的度数是( ) A .小于90︒ B .等于90︒ C .大于90︒ D .不确定 3.方程227(13)20x k x k k -++--=(k 是实数)有两个实根α,β,且01α<<,12β<<,那么k 的取值范围是( )A .34k <<B .21k -<<-;C .34k <<或21k -<<-D .无解4.恰有35个连续自然数的算术平方根的整数部分相同,那么这个相同整数是( ) A .17 B .18 C .35 D .365.ABC △中,AB =,AC 2BC =,设P 为BC 边上任一点,则( ) A .2PA PB PC <⋅ B .2PA PB PC =⋅C .2PA PB PC >⋅DFD .2PA 与PB PC ⋅的大小关系并不确定6.若六边形的周长等于20,各边长都是整数,且以它的任意三条边为边都不能构成三角形,那么,这样的六边形( )A .不存在B .只有一个C .有有限个,但不止一个D .有无穷多个7.若log a b的尾数是零,且21log log log a a b a b>,那么下列四个结论:⑴21a b>⑵log log 0a b b a +=⑶01a b <<< ⑷10ab -= 中,正确的结论的个数是( )A .1B .2C .3D .48.如图,点P ,Q ,R 分别在ABC △的边上AB ,BC ,CA 上,且1BP PQ QR RC ====,那么,ABC △面积的最大值是( )AB .2CD .3二、填空题1.已知11228x x -+=,则21x x+=_________.2.21,22,23,2123456789的和的个位数的数字是_________. 3.方程()(8)10x a x ---=有两个整数根,则a =_______.4.ABC △中,2AB AC ==,BC 边有100个不同的点1P ,2P ,…,100P ,记2i i i i m AP BP PC =+⋅ (12100)i =,,,则12100m m m +++=___________.RPCBA第二试一、已知在凸五边形ABCDE 中,3BAE α∠=,BC CD DE ==,且1802BCD CDE α∠=∠=︒-.求证:BAC CAD DAE ∠=∠=∠.二、[]x 表示不超过实数x 的最大整数,令{}[]x x x =-.⑴找出一个实数x ,满足{}11x x ⎧⎫+=⎨⎬⎩⎭;⑵证明:满足上述等式的x ,都不是有理数. 三、设有22n n ⨯个正方形方格棋盘,在其中任意的3n 个方格中各有一枚棋子.求证:可以选出n 行和n 列,使得3n 枚棋子都在这n 行和n 列中.1990第七届全国初中数学联赛答案 第一试一、选择题1.D【解析】 这是常见的题型,逐项化简可得:原式=2==-. 故选D .【点评】 这是一道简单的分式运算的题目,需要同学们在细心的前提下尽可能迅速地作出答案,为后面的解题赢得时间.2.D【解析】 如图,由2AD BD CD =⋅,有222AD BD CD =⋅,DC AB DA2222222BD CD AD BD CD BD CD ++=++⋅,22222()()()BD AD AD CD BD CD +++=+.EAB即222AB AC BC += 可得90BAC ∠=︒.如图,虽然2AD BD CD =⋅,D 点在ABC △外,90ACB ∠>︒,90BAC ∠<︒ 因此BAC ∠的度数不确定. 故选D .【点评】 这道题目是一个陷阱,因为直角三角形有这个性质,所以同学们很容易想当然认为其逆命题也成立,进而得出错误的结论.这就要求同学们在做题的过程中考虑问题一定要全面,不能想当然.3.C【解析】 记22()7(13)2f x x k x k k =-++--,利用图象,由222(0)20(1)28034(2)30f k k f k k k f k k ⎧=-->⎪⎫=--<⎨⎪⇒<<⎬⎪=->⎪⎭⎩或21k -<<-. 故选C .【点评】 这道题目考查的是一元二次方程根的位置与系数的关系.根据题目给出的信息,应该迅速找出解法,就是通过在0,1,2三个点的验证,解不等式组.4.A【解析】 设这35个连续自然数最小的是2n ,最大的是2(1)1n +-.∴22(1)35n n +-=, 即2135n +=, ∴17n =. 故选D .5.C【解析】 如图,设BP x =,2PC x =-,在ABP △中,由余弦定理,有 2222cos PA AB BP AB BP B =+-⋅28cos x B =+-.在ABC △中,由余弦定理,有2222cos B +-===.∴2258PA x x =-+.而2(2)2PB PC x x x x ⋅=-=-,令222582y PA PB PC x x x x =-⋅=-+-+,227152782048x x x ⎛⎫-+=-+> ⎪⎝⎭,∴2PA PB PC >⋅.故选C .【点评】 这道题考查的是方程思想和三角形的余弦定理,从题目来讲难度并不大,但因为涉及到一些计算,会显得有些繁琐,但只要大家认真细心,一定可以较快的作出答案.6.DA【解析】 若能找到6个整数1a ,2a ,…6a ,使满足:⑴12620a a a +++=;⑵12a a ≤,123a a a +≤,234a a a +≤;345a a a +≤,456a a a +≤; ⑶123456a a a a a a ++++>.则以1a ,2a ,…,6a 为边长的六边形,即可符合要求.事实上,对任选三整数16i j k <<≤≤,必有i j k a a a +≤,可见此六边形的任三边不能构成一个三角形.现取121a a ==,32a =,43a =,55a =,68a =, 则1a ,2a ,3a ,4a ,5a ,6a 满足全部条件.故这样的六边形至少存在一个.又由n 边形(4)n ≥的不稳定性, 即知这样的六边形有无穷多个. 故选D .【点评】 这道题有一定的难度.仔细分析起来,需要列出一些式子,同时考虑到三角形边长需要满足的条件,然后猜出一个满足题设条件的例子,进而由多边形的不稳定性,可以得出这样的六边形有无穷多个的结论.7.A【解析】由1log log aa b >得1log log 2a ab b ->, 所以log 0a b <.得1a <,1b >或1a >,1b <且log 0b a <, 所以结论⑶与结论⑵都是错误的.在结论⑴中,若1b>1b <,从而1a >2a 所以结论⑴也是错误的. 这样,只有结论⑷是正确的.事实上,由2log log a b a >可得11log 2log 2log a b a b a b>=, 又因为log 0a b <所以2(log )4a b <,即2log 0a b -<<. 因为log a b 为整数,所以log 1a b =-, 即1b a=,从而1ab =,结论⑷正确.故选A【点评】 这道题主要考查的是对数的变换和一些不等式变换的技巧,通过简单的变化和排除法,相信大家很快可以得出答案.8.B【解析】 如图,首先,若以Ⅰ,Ⅱ,Ⅲ,Ⅳ分别记APR △,BQP △,CRQ △,PQR △,则S Ⅱ,S Ⅲ,S Ⅳ均不大于111122⨯⨯=,又因为180()PQR B C A ∠=︒-∠+∠=∠,所以易证:21h h ≤(1h ,2h 分别为QRP △,APR △公共边PR 上的高.因为若作出PQR △关于PR 的对称图形PQ R ',这时Q ',A 都在以PR 为弦的含A ∠的弓形弧上,且因PQ Q R ''=,所以Q '为此弧中点,故可得出21h h ≤).h 1h 2321QQ'R P CBA从而12S S ≤≤ⅠⅣ,这样1422ABC S S S S S =+++⨯=△ⅠⅡⅢⅣ≤.最后,当2AB AC ==,90A ∠=︒时,2ABC S =△即可以达到最大值2. 故选B .【点评】 这道题作为选择题里的最后一道,是有一些难度的,主要考查三角形面积与两边及夹角的关系、对称变换以及一些面积的比较.首先要判断出四个小三角形面积的最大值,然后通过举例看是否可以同时取得最大值.二、填空题1.62【解析】 对所求多项式变形可得:21122211262x x x x x x -⎛⎫+=+=+-= ⎪⎝⎭. 【点评】 这道题比较简单,主要看大家对平方和公式的熟悉程度,通过一个简单的配方,就可以把要求的式子与已知的式子联系起来.2.5【解析】 因12345678910123456789=⨯+,所以所求数字等于(1496569410)12345678(149656941)+++++++++⨯+++++++++的结果的个位数字.即58545⨯+=的个位数的数字,故所求数字为5.【点评】 这道题主要考查大家归纳总结的能力,通过观察,大家把注意力放在运算得出的个位数上,总结出规律以后,问题就迎刃而解了.3.8【解析】 原方程整理为2(8)810x a x a -++-=.设1x ,2x 为方程的两个整数根, 由128x x a +=+知a 为整数, 因此,x a -和8x -都是整数. 故由原方程知8(1)x a x -=-=±,所以8a =.【点评】 这道题主要考查一元二次方程的根与系数的关系,通过方程形式的转换,再观察整理出的一次项和常数项,根据题目的条件,很快可以得出正确的答案.4.400 【解析】 作AD BC ⊥,如图5,则BD DC =.设BD DC y ==,i DP x =.则2i i i m AP BP Pc =+⋅2()()i AP y x x y =+-+222i AP x y =-+P iD CA22AD y =+ 24AC ==.12100400m m m +++=.【点评】 这道题主要考查的是等腰三角形的性质、勾股定理以及一些代数变换.关键是找出规律,通过设出关键的两条边的长度,然后做代数变换,最终发现多项式的第一项都是常数,问题迎刃而解.第二试一、略【解析】 证明:如图6,连BD 、CE .因1802BC CD DE BCD CDE BCD CDE α==⎫⇒⎬∠=∠=︒-⎭△≌△. CBD CDB DCE DEC α⇒∠=∠=∠=∠=.∴(1802)1803BCE ααα∠=︒--=︒-. 又∵3BAE α∠=,A B C E A B C D E A B D E ⇒⎫⇒⎬⎭,,,共圆,,,,共圆同理可证,,,共圆, BAC CAD DAE α⇒∠=∠=∠=.【点评】 这是一道简单的几何证明的题目,主要考查的是圆相关的性质,还用到一些全等三角形的性质,根据题设和求证,同学们应该很快感觉出需要做辅助圆,进而作出解答.二、⑴取(132x =或(132x = 【解析】 解法1:设x m α=+,1n xβ=+(m ,n 为整数,0α≤,1β<).若{}11x x αβ⎧⎫+=+=⎨⎬⎩⎭,∴11x m n m n x αβ+=+++=++是整数.令1x k x +=(k 为整数),即210x kx -+=,解得(12x k =±.当||2k =时,||1x =.易验证它不满足所设等式.当||3k ≥时,(12x k =是满足等式的全体实数.由于24k -不是完全平方数(事实上,若224k h -=,则224k h -=,但当||3k ≥时,两个平方数之差不小于5).所以x 是无理数,即满足题设等式的x 都不是有理数. 解法2:⑴取(132x =或(132x =, EDCBA⑵用反证法证明之.反设满足等式之x 为有理数.首先,若x 为整数,则{}0x =,代入等式得11x ⎧⎫=⎨⎬⎩⎭,101x ⎧⎫⎨⎬⎩⎭≤≤,矛盾.其次,若x 为非整数的有理数,令qx n p=+(其中,n ,p ,q 均为整数,1q p ≤≤且()1q p =,). 则1r s x np q=++(其中s ,r 为整数,当0n ≥时,0r np q <+≤,当1n -≤时,0np q r +<≤).则1rx np q⎧⎫=⎨⎬+⎩⎭. 若x 满足等式,即1q r p np q+=+, 即()()q np q pr p np q ++=+, 从而得2[(1)]q p np n q r =+--. 即p 整除2q ,与()1p q =,矛盾. 故满足等式之x 的不是有理数.【点评】 这道题考查的也是方程的思想,通过设出需要分析的未知数,列出方程进行变换和求解,很容易就可以得出结论.也可以通过观察和尝试,首先举出一个例子,证明可以通过反证法.三、略 【解析】 证明:设各行的棋子数分别为1P ,2P ,…,n P ,1n P -,…,2n P .且1212n n n P P P P P +≥≥≥≥≥≥. 由题设12123n n n P P P P P n +++++++=. ① 选取含棋子数为1P ,2P ,…,n P 的这n 行,则 122n P P P n +++≥. 否则,若1221n P P P n +++-≤, ② 则1P ,2P ,…,n P 中至少有一个不大于1, 由①,②得121n n P P n ++++≥,从而1n P +,…,2n P 中至少有一个大于1,这与所设矛盾.选出的这个n 行已含有不少于2n 枚棋子,再选出n 行使其包含其余的棋子(不多于n 枚),这样选取的n 行和n 列包含了全部3n 枚棋子.【点评】 这道题有一定的难度,主要的思想是把每一行所包含棋子的个数设出来,然后按照从大到小的顺序排列起来,解下来就根据题设的条件,同时利用我们列出的不等式进行分析,最终给出一种选取方法.。

1990年全国高中数学联赛试卷+解析

1990年全国高中数学联赛试卷+解析

1990年全国高中数学联赛第一试(10月14日上午8∶00—10∶00)一.选择题(本题满分30分,每小题5分)1.设α∈(π4,π2),则(cos α)cos α,(sin α)cos α,(cos α)sin α的大小顺序是A .(cos α)cos α<(sin α)cos α<(cos α)sin αB .(cos α)cos α<(cos α)sin α <(sin α)cos αC .(sin α)cos α<(cos α)cos α<(cos α)sin αD .(cos α)sin α <(cos α)cos α<(sin α)cos α 2.设f (x )是定义在实数集上的周期为2的函数,且是偶函数,已知当x ∈[2,3]时,f (x )=x ,则当x ∈[-2,0]时,f (x )的解析式是( )A .f (x )=x +4B . f (x )=2-xC . f (x )=3-|x +1|D . f (x )=2+|x +1| 3.设双曲线的左右焦点是F 1、F 2,左右顶点是M 、N ,若△PF 1F 2的顶点P 在双曲线上,则△PF 1F 2的内切圆与边F 1F 2的切点位置是( )A .在线段MN 内部B .在线段F 1M 内部或在线段NF 2内部C .点M 或点ND .不能确定的4.点集{(x ,y )|lg(x 3+13y 3+19)=lg x +lg y }中元素个数为( )A .0B .1C .2D .多于2 5.设非零复数x 、y 满足x 2+xy +y 2=0,则代数式⎝⎛⎭⎫x x +y 1990+⎝⎛⎭⎫y x +y 1990的值是( ) A .2-1989B .-1C .1D .以上答案都不对6.已知椭圆x 2a 2+y 2b 2=1(a >b >0)通过点(2,1),所有这些椭圆上满足|y |>1的点的集合用阴影表示是下面图中的( )二.填空题(本题满分30分,每小题5分)1.设n 为自然数,a 、b 为正实数,且满足a +b=2,则11+a n +11+b n的最小值是 . 2.设A (2,0)为平面上一定点,P (sin(2t -60°),cos(2t -60°))为动点,则当t 由15°变到45°时,线段AP 扫过的面积是 .3.设n 为自然数,对于任意实数x ,y ,z ,恒有(x 2+y 2+z 2)2≤n (x 4+y 4+z 4)成立,则n 的最小值是 .4.对任意正整数n ,连结原点O 与点A n (n ,n +3),用f (n )表示线段OA n 上的整点个数(不计端点),试求f (1)+f (2)+…+f (1990).0)D.C.B.A.0)5.设n=1990,则12n (1-3C 2n +32C 4n -33C 6n +…+3994C 1998n -3995C 1990n = . 6.8个女孩与25个男孩围成一圈,任何两个女孩之间至少站两个男孩,则共有种不同和排列方法.(只要把圆旋转一下就能重合的排法认为是相同的).三.(本题满分20分)已知a ,b 均为正整数,且a >b ,sin θ=2ab a 2+b 2,(其中0<θ<π2),A n =(a 2+b 2)n sin nθ.求证:对于一切自然数n ,A n 均为整数.四.n 2个正数排成n 行n 列 其中每一行的数成等差数列,每一列的数成等比数列,并且所有公比相等.已知a 24=1,a 42=18,a 43=316,求a 11+a 22+……+a nn .五.设棱锥M —ABCD 的底面为正方形,且MA=MD ,MA ⊥AB ,如果△AMD 的面积为1,试求能够放入这个棱锥的最大球的半径.a 11 a 12 a 13 a 14 ……a 1na 21 a 22 a 23 a 24 ……a 2n a 31 a 32 a 33 a 34 ……a 3n a 41 a 42 a 43 a 44 ……a 4n …………………………………… a n 1 a n 2 a n 3 a n 4 ……a nnACBMD第二试(10月14日上午10∶30—12∶30)一.(本题满分35分)四边形ABCD 内接于圆O ,对角线AC 与BD 相交于P ,设三角形ABP 、BCP 、CDP 和DAP 的外接圆圆心分别是O 1、O 2、O 3、O 4.求证OP 、O 1O 3、O 2O 4三直线共点.二.(本题满分35分)设 E={1,2,3,……,200},G={a 1,a 2,……,a 100}⊂≠E . 且G 具有下列两条性质: ⑴ 对任何1≤i <j ≤100,恒有 a i +a j ≠201; ⑵100Σi=1a i=10080.试证明:G 中的奇数的个数是4的倍数.且G 中所有数字的平方和为一个定数.三.(本题满分35分) 某市有n 所中学,第i 所中学派出C i 名代表(1≤C i ≤39,1≤i ≤n )来到体育馆观看球赛,全部学生总数为nΣi=1C i=1990.看台上每一横排有199个座位,要求同一学校的学生必须坐在同一横排,问体育馆最少要安排多少横排才能够保证全部学生都能坐下.O OABC D P1 O O O 234 F1990年全国高中数学联赛(解答)第一试一.选择题(本题满分30分,每小题5分)1.设α∈(π4,π2),则(cos α)cos α,(sin α)cos α,(cos α)sin α的大小顺序是A .(cos α)cos α<(sin α)cos α<(cos α)sin αB .(cos α)cos α<(cos α)sin α <(sin α)cos αC .(sin α)cos α<(cos α)cos α<(cos α)sin αD .(cos α)sin α <(cos α)cos α<(sin α)cos α (1990年全国高中数学联赛) 解:α∈(π4,π2)⇒0<cos α<sin α<1,∴ (cos α)cos α<(sin α)cos α;(cos α)sin α<(cos α)cos α;选D . 2.设f (x )是定义在实数集上的周期为2的函数,且是偶函数,已知当x ∈[2,3]时,f (x )=x ,则当x ∈[-2,0]时,f (x )的解析式是( )A .f (x )=x +4B . f (x )=2-xC . f (x )=3-|x +1|D . f (x )=2+|x +1| 解 设x ∈[-2,-1],则x +4∈[2,3],于是f (x+4)=x +4,但f (x )= f (x +4)=x +4 (x ∈[-2,-1]), 又设x ∈[-1,0),则-x ∈(0,1],故f (-x )=-x +2,由f (x )= f (-x )=-x +2 (x ∈[-1,0).f (x )=3-|x +1|=⎩⎨⎧3-(-x -1)=x +4 (x ∈[-2,-1]),3-(x +1)=-x +2 (x ∈(-1,0)).故选C .3.设双曲线的左右焦点是F 1、F 2,左右顶点是M 、N ,若△PF 1F 2的顶点P 在双曲线上,则△PF 1F 2的内切圆与边F 1F 2的切点位置是( )A .在线段MN 内部B .在线段F 1M 内部或在线段NF 2内部C .点M 或点ND .不能确定的解:设内切圆在三边上切点分别为D 、E 、F ,当P 在右支上时,PF 1-PF 2=2a .但PF 1-PF 2=F 1D -F 2D=2a ,即D 与N 重合,当P 在左支上时,D 与M 重合.故选C .4.点集{(x ,y )|lg(x 3+13y 3+19)=lg x +lg y }中元素个数为( )A .0B .1C .2D .多于2 解:x 3+13y 3+19=xy >0.但x 3+13y 3+19≥33x 3·13y 3·19 =xy ,等号当且仅当x 3=13y 3=19时,即x=33 3 ,y=393时成立.故选B .5.设非零复数x 、y 满足x 2+xy +y 2=0,则代数式⎝⎛⎭⎫x x +y 1990+⎝⎛⎭⎫y x +y 1990的值是( )A .2-1989B .-1C .1D .以上答案都不对解:xy=ω或ω2,其中ω=cos120°+i sin120°.1+ω+ω2=0.且ω3=1.若x y =ω,则得(ω1+ω)1990+(1ω+1)1990=-1.若x y =ω2,则得(ω21+ω2)1990+(1ω2+1)1990=-1.选B .6.已知椭圆x 2a 2+y 2b 2=1(a >b >0)通过点(2,1),所有这些椭圆上满足|y |>1的点的集合用阴影表示是下面图中的( )解:4a 2+1b 2=1,由a 2>b 2,故得1b 2<1<4b 2+1b 2=5b 2,1<b <5.4a 2+1b 2=1 5a 2<1,a 2>5.故选C .二.填空题(本题满分30分,每小题5分)1.设n 为自然数,a 、b 为正实数,且满足a +b=2,则11+a n +11+b n 的最小值是 . 解:ab ≤(a+b 2)2=1,从而a n b n ≤1,故11+a n +11+b n = 1+a n +1+b n 1+a n +b n +a n b n≥1.等号当且仅当a=b=1时成立.即所求最小值=1.2.设A (2,0)为平面上一定点,P (sin(2t -60°),cos(2t -60°))为动点,则当t 由15°变到45°时,线段AP 扫过的面积是 .解:点P 在单位圆上,sin(2t -60°)=cos(150°-2t ),cos(2t -60°)=sin(150°-2t ).当t 由15°变到45°时,点P 沿单位圆从(-12,32)运动到(12,32).线段AP 扫过的面积=扇形面积=16π.3.设n 为自然数,对于任意实数x ,y ,z ,恒有(x 2+y 2+z 2)2≤n (x 4+y 4+z 4)成立,则n 的最小值是 .解:(x 2+y 2+z 2)2=x 4+y 4+z 4+2x 2y 2+2y 2z 2+2z 2x 2≤x 4+y 4+z 4+(x 4+y 4)+(y 4+z 4)+(z 4+x 4)=3(x 4+y 4+z 4).等号当且仅当x=y=z 时成立.故n=3.4.对任意正整数n ,连结原点O 与点A n (n ,n +3),用f (n )表示线段OA n 上的整点个数(不计端点),试求f (1)+f (2)+…+f (1990).解 线段OA n 的方程为y=n +3nx (0≤x ≤n ),故f (n )等于该线段内的格点数.若n=3k (k ∈N +),则得y=k +1k x (0≤x ≤n )(k ∈N *),其内有两个整点(k ,k +1),(2k ,2k +2),此时f (n )=2;若n=3k ±1(k ∈N +)时,则由于n 与n +3互质,故OA n 内没有格点,此时f (n )=0.∴ f (1)+f (2)+…+f (1990)=2[19903]=1326.5.设n=1990,则12n (1-3C 2n +32C 4n -33C 6n +…+3994C 1998n -3995C 1990n = .0)D.C.B.A.0)解:取(-12+32i )1990展开的实部即为此式.而(-12+32i )1990=-12+32i .故原式=-12.6.8个女孩与25个男孩围成一圈,任何两个女孩之间至少站两个男孩,则共有种不同和排列方法.(只要把圆旋转一下就能重合的排法认为是相同的).解:每个女孩与其后的两个男孩组成一组,共8组,与余下9个男孩进行排列,某个女孩始终站第一个位子,其余7组在8+9-1个位子中选择7个位子,得C 78+9-1=C 716种选法.7个女孩可任意换位,25个男孩也可任意换位,故共得C 716∙7!∙25!种排列方法. 三.(本题满分20分)已知a ,b 均为正整数,且a >b ,sin θ=2ab a 2+b 2,(其中0<θ<π2),A n =(a 2+b 2)n sin nθ.求证:对于一切自然数n ,A n 均为整数.证明:由sin θ=2aba 2+b 2,得cos θ=a 2-b 2a 2+b2.记A n =(a 2+b 2)n cos nθ.当a 、b 均为正整数时,A 1=2ab 、B 1=a 2-b 2均为整数.A 2=4ab (a 2-b 2),B 2=2(a 2-b 2)2-(a 2+b 2)2也为整数. 若A k =(a 2+b 2)k sin kθ、B k =(a 2+b 2)k cos kθ均为整数,则A k +1=(a 2+b 2)k +1sin(k +1)θ=(a 2+b 2)k +1sin kθcos θ+(a 2+b 2)cos kθsin θ=A k ∙B 1+A 1B k 为整数. B k +1=(a 2+b 2)k +1cos(k +1)θ=(a 2+b 2)k +1cos kθcos θ-(a 2+b 2)k +1sin kθsin θ=B k B 1-A k A 1为整数.由数学归纳原理知对于一切n ∈N *,A n 、B n 为整数.四.n 2个正数排成n 行n 列 其中每一行的数成等差数列,每一列的数成等比数列,并且所有公比相等.已知a 24=1,a 42=18,a 43=316,求a 11+a 22+……+a nn .(1990年全国高中数学联赛)分析 由a 42、a 43或求a 44,由a 24,a 44可求公比. 解 设第一行等差数列的公差为d ,各列的公比为q .∴ a 44=2a 43-a 42=14.由a 44=a 24∙q 2,得,q=12. ∴ a 12=a 42∙q -3=1.∴ d=a 14_x001F_-a 124-2= 12,a 11 a 12 a 13 a 14 ……a 1na 21 a 22 a 23 a 24 ……a 2n a 31 a 32 a 33 a 34 ……a 3n a 41 a 42 a 43 a 44 ……a 4n …………………………………… a n 1 a n 2 a n 3 a n 4 ……a nn∴ a 1k =a 12+(k -2)d=12k (k=1,2,3,…,n )∴ a kk =a 1k q k -1=12k ·(12)k -1=(12)k ·k .令S n = a 11+a 22+…+a nn .则 S -12S=n Σk=1k 2k -n +1Σk=2k -12k =12+nΣk=212k -n2n +1=12 +12 -12n -n 2n +1 =1-n +22n +1.∴ S=2-n +22n .五.设棱锥M —ABCD 的底面为正方形,且MA=MD ,MA ⊥AB ,如果△AMD 的面积为1,试求能够放入这个棱锥的最大球的半径.解:取AD 、BC 中点E 、F ,则ME ⊥AD ,AB ⊥MA ,AB ⊥AD , AB⊥平面MAD , ∴ 平面MAD ⊥平面ABC . ∴ ME ⊥平面ABC . ∴ 平面MEF ⊥平面ABC .∵ EF ∥AB ,故EF ⊥平面MAD ,∴ 平面MEF ⊥平面MAD .∵ BC ⊥EF ,BC ⊥ME ,∴ BC ⊥平面MEF , ∴平面MEF ⊥平面MBC .设AB=a ,则ME= 2a,MF=a 2+4a 2.a +2a≥22,a 2+4a2≥2. 取△MEF 的内切圆圆心O ,作OP ⊥EF 、OQ ⊥ME ,OR ⊥MF ,由于平面MEF 与平面MAD 、ABC 、MBC 均垂直,则OP 、OQ 、OR 分别与平面ABC 、MAD 、MBC 垂直.从而以此内切圆半径为半径的球与平面MAD 、ABC 、MBC 都相切, 设此球的半径为r ,则∴ r=12(a +2a-a 2+4a 2)≤2a +2a +a 2+4a2≤12+1=2-1.等号当且仅当a=2a ,即a=2时成立.作QH ⊥MA ,由于OQ ∥AB ,故OQ ∥平面MAB ,故球心O 与平面MAB 的距离=QH ,当AB=2,ME=2,MA=102,MQ=2-(2-1)=1. ∵ △MQH ∽△MAE ,∴QH MQ =AE MA ,QH=MQ ·AE MA =1·22102=55>2-1.即O 与平面MAB 的距离>r ,同理O 与平面MCD 的距离>r .故球O 是放入此棱锥的最大球.∴ 所求的最大球半径=2-1.HDE F M O Q P RBC A第二试(10月14日上午10∶30—12∶30)一.(本题满分35分)四边形ABCD 内接于圆O ,对角线AC 与BD 相交于P ,设三角形ABP 、BCP 、CDP 和DAP 的外接圆圆心分别是O 1、O 2、O 3、O 4.求证OP 、O 1O 3、O 2O 4三直线共点.证明 ∵O 为⊿ABC 的外心,∴ OA=OB . ∵ O 1为⊿P AB 的外心,∴O 1A=O 1B . ∴ OO 1⊥AB . 作⊿PCD 的外接圆⊙O 3,延长PO 3与所作圆交于点E ,并与AB 交于点F ,连DE ,则∠1=∠2=∠3,∠EPD=∠BPF ,∴ ∠PFB=∠EDP=90︒. ∴ PO 3⊥AB ,即OO 1∥PO 3.同理,OO 3∥PO 1.即OO 1PO 3是平行四边形.∴ O 1O 3与PO 互相平分,即O 1O 3过PO 的中点. 同理,O 2O 4过PO 中点. ∴ OP 、O 1O 3、O 2O 4三直线共点.二.(本题满分35分)设 E={1,2,3,……,200},G={a 1,a 2,……,a 100}⊂≠E . 且G 具有下列两条性质: ⑴ 对任何1≤i <j ≤100,恒有 a i +a j ≠201; ⑵100Σi=1a i=10080.试证明:G 中的奇数的个数是4的倍数.且G 中所有数字的平方和为一个定数.证明:⑴取100个集合:{a i ,b i }:a i =i ,b i =201-i (i=1,2,…,100),于是每个集合中至多能取出1个数.于是至多可以选出00个数.现要求选出100个数,故每个集合恰选出1个数.把这100个集合分成两类:① {4k +1,200-4k };② {4k -1,202-4k }.每类都有50个集合.设第①类选出m 个奇数,50-m 个偶数,第②类中选出n 个奇数,50-n 个偶数. 于是1∙m +0∙(50-m )+(-1)∙n +2∙(50-n )≡10080≡0(mod 4).即m -3n ≡0(mod 4),即m +n ≡0(mod 4)∴ G 中的奇数的个数是4的倍数. ⑵ 设选出的100个数为x 1,x 2,…,x 100,于是未选出的100个数为201-x 1,201-x 2,…,201-x 100.故x 1+x 2+…+x 100=10080.∴ x 12+x 22+…+x 1002+(201-x 1)2+(201-x 2)2+…+(201-x 100)2=2(x 12+x 22+...+x 1002)-2×201×(x 1+x 2+...+x 100)+100×2012 =2(x 12+x 22+...+x 1002)-2×201×10080+100×2012 =12+22+32+ (2002)O OA BCDP 1O O O 234EF123∴ x 12+x 22+…+x 1002=12[(12+22+32+…+2002)+2×201×10080-100×2012]=12[16×200×201×401+201×20160-20100×201] =12×[100×67×401+201×60]=1349380.为定值. 三.(本题满分35分) 某市有n 所中学,第i 所中学派出C i 名代表(1≤C i ≤39,1≤i ≤n )来到体育馆观看球赛,全部学生总数为nΣi=1C i=1990.看台上每一横排有199个座位,要求同一学校的学生必须坐在同一横排,问体育馆最少要安排多少横排才能够保证全部学生都能坐下. 解:首先,199>39×5,故每排至少可坐5所学校的学生.1990=199×10,故如果没有“同一学校的学生必须坐在同一横排”的限制,则全部学生只要坐在10排就够了.现让这些学生先按学校顺序入坐,从第一排坐起,一个学校的学生全部坐好后,另一个学校的学生接下去坐,如果在某一行不够坐,则余下的学生坐到下一行.这样一个空位都不留,则坐10排,这些学生就全部坐完.这时,有些学校的学生可能分坐在两行,让这些学校的学生全部从原坐处起来,坐到第11、12排去.由于,这种情况只可能在第一行末尾与第二行开头、第二行末尾与第三行开头、……第九行末尾与第十行开头这9处发生,故需要调整的学校不超过10所,于是第11、12行至多各坐5所学校的学生,就可全部坐完.这说明12行保证够坐.其次证明,11行不能保证就此学生按条件全部入坐:199=6×33+1.1990=34×58+18. 取59所学校,其中58所学校34人,1所学校18人.则对前58所学校的学生,每排只能坐5所学校而不能坐6所学校.故11排只能坐其中55所学校的学生.即11排不够坐.综上可知,最少要安排12横排才能保证全部学生都能坐下.。

1990年第七届全国初中数学联赛决赛试卷

1990年第七届全国初中数学联赛决赛试卷

1990年第七届全国初中数学联赛决赛试卷第 一 试一、 选择题本题共有8个小题,每小题都给出了(A)、(B)、(C)、(D)四个结论,其中只有一个是正确的,请把正确结论的代表字母写在题后的圆括号内。

1.31231131144++-++的值是( )(A )1 (B )-1(C )2 (D )-22.在△ABC 中,AD 是高,且AD 2 = BD ·CD ,那么∠BAC 的度数是( )(A )小于90° (B )等于90°(C )大于90° (D )不确定3.方程k k k x k x (02)13(722=--++-是实数)有两个实根α、β,且0<α<1,1<β<2,那么k 的取值范围是( )(A )3<k <4; (B )-2<k <-1;(C )3<k <4或-2<k <-1 (D )无解。

4.恰有35个连续自然数的算术平方根的整数部分相同,那么这个相同整数是( )(A )17 (B )18 (C )35 (D )365.△ABC 中,22=AB ,2=AC ,2=BC ,设P 为BC 边上任一点,则( )(A )PB PA <2·PC(B )PB PA =2·PC (C )PB PA >2·PC (D )PB PA 与2·PC 的大小关系并不确定 6.若六边形的周长等于20,各边长都是整数,且以它的任意三条边为边都不能构成三角形,那么,这样的六边形( )(A )不存在 (B )只有一个(C )有有限个,但不只一个 (D )有无穷多个7.若b a log 的尾数是零,且2log log 1log a b b b a a>>,那么下列四个结论:(1)21a b b>> (2)0log log =+a b b a (3)10<<<b a (3)01=-ab中,正确的结论的个数是( )(A )1 (B )2 (C )3 (D )48.如图,点P ,Q ,R 分别在△ABC 的边上AB 、BC 、CA 上,且1====RC QR PQ BP ,那么,△ABC 面积的最大值是(A )3 (B )2 (C )5 (D )3答( )二、 填空题1.已知82121=+-x x ,则xx 12+= 2.2223,2,1,…,1234567892的和的个位数的数字是3.方程01)8)((=---x a x ,有两个整数根,则=a4.△ABC 中,2==AC AB ,BC 边有100个不同的点1P ,2P ,…,100P ,记i i i BP AP m +=2·C P i ( =i 1,2,…,100) 则 ++21m m …100m +=第 二 试一、已知在凸五边形ABCDE 中,∠BAE = 3α,BC=CD=DE ,且∠BCD=∠CDE=180°-2α,求证:∠BAC=∠CAD=∠DAE二、[]x 表示不超过实数x 的最大整数,令{}[]x x x -=(1)找出一个实数x ,满足{}11=⎭⎬⎫⎩⎨⎧+x x (2)证明:满足上述等式的x ,都不是有理数三、设有n n 22⨯个正方形方格棋盘,在其中任意的n 3个方格中各有一枚棋子。

历年初中数学竞赛真题库(含答案)

历年初中数学竞赛真题库(含答案)

历年初中数学竞赛真题库(含答案)1991年全国初中数学联合竞赛决赛试题第⼀试⼀、选择题本题共有8个⼩题,每⼩题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有⼀个是正确的.请把正确结论的代表字母写在题后的圆括号内..设等式y a a x a y a a x a ---=-+-)()(在实数范围内成⽴,其中a ,x ,y 是两两不同的实数,则22223y xy x y xy x +--+的值是(A )3 ;(B )31;(C )2;(D )35.答().如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是(A ) 10;(B )12;(C ) 16;(D )18.答().⽅程012=--x x 的解是(A )251±;(B )251±-;(C )251±或251±-;(D )251±-±.答().已知:)19911991(2111n n x --=(n 是⾃然数).那么nx x )1(2+-,的值是(A)11991-;(B)11991--;(C)1991)1(n -;(D)11991)1(--n .答().若M n1210099321= ,其中M为⾃然数,n 为使得等式成⽴的最⼤的⾃然数,则M(A)能被2整除,但不能被3整除;(B)能被3整除,但不能被2整除;(C)能被4整除,但不能被3整除;(D)不能被3整除,也不能被2整除.答().若a ,c ,d 是整数,b 是正整数,且满⾜c b a =+,d c b =+,a d c =+,那么 d c b a +++的最⼤值是(A)1-;(B)5-;(C)0;(D)1.答().如图,正⽅形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的⾯积分别是11=S ,32=S 和13=S ,那么,正⽅形OPQR 的边长是(A)2;(B)3;(C)2 ;(D)3.答()11=S.在锐⾓ΔABC 中,1=AC ,c AB =,60=∠A,ΔABC 的外接圆半径R ≤1,则(A)21< c < 2 ;(B)0< c ≤21;答()(C )c > 2;(D )c = 2.答()⼆、填空题1.E是平⾏四边形ABCD 中BC 边的中点,AE 交对⾓线BD 于G ,如果ΔBEG 的⾯积是1,则平⾏四边形ABCD 的⾯积是.2.已知关于x 的⼀元⼆次⽅程02=++c bx ax 没有实数解.甲由于看错了⼆次项系数,误求得两根为2和4;⼄由于看错了某⼀项系数的符号,误求得两根为-1和4,那么,=+a cb 32 .3.设m ,n ,p ,q 为⾮负数,且对⼀切x >0,q pnm x x x x )1(1)1(+=-+恒成⽴,则 =++q p n m 22)2( .4.四边形ABCD 中,∠ ABC 135=,∠BCD120=,AB 6=,BC 35-=,CD = 6,则AD = .第⼆试x + y , x - y , x y , y x四个数中的三个⼜相同的数值,求出所有具有这样性质的数对(x , y ).⼆、ΔABC 中,AB <AC <BC ,D 点在BC 上,E 点在BA 的延长线上,且 BD =BE =AC ,ΔBDE 的外接圆与ΔABC 的外接圆交于F 点(如图).求证:BF =AF +CF三、将正⽅形ABCD 分割为 2n 个相等的⼩⽅格(n 是⾃然数),把相对的顶点A ,C 染成红⾊,把B ,D 染成蓝⾊,其他交点任意染成红、蓝两⾊中的⼀种颜⾊.证明:恰有三个顶点同⾊的⼩⽅格的数⽬必是偶数.120 1351992年全国初中数学联合竞赛决赛试题第⼀试⼀.选择题本题共有8个题,每⼩题都给出了(A), (B), (C), (D)四个结论,其中只有⼀个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.满⾜1=+-ab b a 的⾮负整数),(b a 的个数是 (A)1; (B)2; (C)3; (D)4.2.若0x 是⼀元⼆次⽅程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=?与平⽅式20)2(b ax M +=的关系是(A)?>M (B)?=M (C)?>M ; (D)不确定.3.若01132=+-x x ,则44-+x x 的个位数字是 (A)1; (B)3; (C)5; (D)7. 答( )4.在半径为1的圆中有⼀内接多边形,若它的边长皆⼤于1且⼩于2,则这个多边形的边数必为(A)7; (B)6; (C)5; (D)4. 答( )5.如图,正⽐例函数)0(>==a ax y x y 和的图像与反⽐例函数)0(>=k x ky 的图像分别相交于A 点和C 点.若AOB Rt ?和COD ?的⾯积分别为S 1和S 2,则S 1与S 2的关系是(A)21S S > (B)21S S = (C)21S S < (D)不确定答( )6.在⼀个由88?个⽅格组成的边长为8的正⽅形棋盘内放⼀个半径为4的圆,若把圆周经过的所有⼩⽅格的圆内部分的⾯积之和记为1S ,把圆周经过的所有⼩⽅格的圆内部分的⾯积之和记为2S ,则21S S 的整数部分是(A)0; (B)1; (C)2; (D)3. 答( )=∠60A ,⼜E 7.如图,在等腰梯形ABCD 中, AB //CD , AB=2CD ,是底边AB 上⼀点,且FE=FB=AC , FA=AB .则AE :EB 等于 (A)1:2 (B)1:3 (C)2:5 (D)3:10 答( )8.设9321,,,,x x x x 均为正整数,且 921x x x9x x -的最⼩值是(A)8; (B)9; (C)10; (D)11. 答( ) ⼆.填空题1.若⼀等腰三⾓形的底边上的⾼等于18cm ,腰上的中线等15cm ,则这个等腰三⾓形的⾯积等于________________.2.若0≠x ,则x x x x 44211+-++的最⼤值是__________. 3.在ABC ?中,B AC ∠∠=∠和,90的平分线相交于P 点,⼜AB PE ⊥于E 点,若3,2==AC BC ,则=?EB AE .4.若b a ,都是正实数,且0111=+--b a b a ,则=+33)()(b a a b .第⼆试⼀、设等腰三⾓形的⼀腰与底边的长分别是⽅程062=+-a x x 的两根,当这样的三⾓形只有⼀个时,求a 的取值范围.⼆、如图,在ABC ?中,D AC AB ,=是底边BC 上⼀点,E 是线段AD 上⼀点,且A CED BED ∠=∠=∠2.求证:CD BD 2=.三、某个信封上的两个邮政编码M 和N 均由0,1,2,3,5,6这六个不同数字组成,现有四个编码如下:A :320651B :105263C :612305D :316250已知编码A 、B 、C 、D 各恰有两个数字的位置与M 和N 相同.D 恰有三个数字的位置与M和N 相同.试求:M 和N.1993年全国初中数学联合竞赛决赛试题第⼀试⼀.选择题本题共有8个⼩题,每⼩题都给出了(A), (B), (C), (D)四个结论,其中只有⼀个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.多项式1612+-x x 除以12-x 的余式是 (A)1; (B)-1; (C)1-x ; (D)1+x ;2.对于命题Ⅰ.内⾓相等的圆内接五边形是正五边形.Ⅱ.内⾓相等的圆内接四边形是正四边形,以下四个结论中正确的是 (A )Ⅰ,Ⅱ都对 (B )Ⅰ对,Ⅱ错 (C )Ⅰ错,Ⅱ对. (D )Ⅰ,Ⅱ都错.3.设x 是实数,11++-=x x y .下列四个结论: Ⅰ.y 没有最⼩值;Ⅱ.只有⼀个x 使y 取到最⼩值;Ⅲ.有有限多个x (不⽌⼀个)使y 取到最⼤值; Ⅳ.有⽆穷多个x 使y 取到最⼩值. 其中正确的是(A )Ⅰ (B )Ⅱ (C )Ⅲ (D )Ⅳ4.实数54321,,,,xx x x x 满⾜⽅程组=++=++=++=++=++.;;;;52154154354324321321a x x x a x x x a x x x a x x x a x x x其中54321,,,,a a a a a 是实常数,且54321a a a a a >>>>,则54321,,,,x x x x x 的⼤⼩顺序是(A)54321x x x x x >>>>; (B )53124x x x x x >>>>;(C )52413x x x x x >>>>; (D )24135x x x x x >>>>.5.不等式73)1(12+<-<-x x x 的整数解的个解 (A )等于4 (B )⼩于4 (C )⼤于5 (D )等于56.在ABC ?中,BC AO O A =∠,,是垂⼼是钝⾓, 则)cos(OCB OBC ∠+∠的值是(A)22-(B)22(C)23 (D)21-. 答( )7.锐⾓三⾓ABC 的三边是a , b , c ,它的外⼼到三边的距离分别为m , n , p ,那么m :n :p 等于(A)c b a 1:1:1; (B)c b a ::(C)C B A cos :cos :cos (D)C B A sin :sin :sin . 答( )8.13333)919294(3-+-可以化简成 (A))12(333+; (B))12(333- (C)123- (D)123+ 答( ) ⼆.填空题1. 当x 变化时,分式15632212++++x x x x 的最⼩值是___________.2.放有⼩球的1993个盒⼦从左到右排成⼀⾏,如果最左⾯的盒⾥有7个⼩球,且每四个相邻的盒⾥共有30个⼩球,那么最右⾯的盒⾥有__________个⼩球.3.若⽅程k x x =--)4)(1(22有四个⾮零实根,且它们在数轴上对应的四个点等距排列,则k =____________.4.锐⾓三⾓形ABC 中,?=∠30A .以BC 边为直径作圆,与AB , AC 分别交于D , E ,连接DE , 把三⾓形ABC 分成三⾓形ADE 与四边形BDEC ,设它们的⾯积分别为S 1, S 2,则S 1:S 2=___________.第⼆试⼀.设H 是等腰三⾓形ABC 垂⼼,在底边BC 保持不变的情况下让顶点A ⾄底边BC 的距离变⼩,这时乘积HBC ABC SS 的值变⼩,变⼤,还是不变?证明你的结论.⼆.ABC ?中, BC =5, AC =12, AB =13, 在边AB ,AC 上分别取点D ,E , 使线段DE 将ABC ?分成⾯积相等的两部分.试求这样的线段DE 的最⼩长度.三.已知⽅程0022=++=++b cx x c bx x 及分别各有两个整数根21,x x 及21,x x '',且,021>x x 021>''x x . (1)求证:;0,0,0,02121<'<'<(3)求c b ,所有可能的值.1994年全国初中数学联赛试题第⼀试(4⽉3⽇上午8:30—9:30)考⽣注意:本试共两道⼤题,满分80分.⼀、选择题(本题满分48分,每⼩题6分)本题共有8个⼩题都给出了A,B、C,D,四个结论,其中只有⼀个是正确的,请把你认为正确结论的代表字母写在题后答案中的圆括号内,每⼩题选对得6分;不选、选错或选出的代表字母超过⼀个(不论是否写在圆括号内),⼀律得0分.〔答〕( )2.设a,b,c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab,则x,y,zA.都不⼩于0B.都不⼤于0C.⾄少有⼀个⼩0于D.⾄少有⼀个⼤于0〔答〕( )3.如图1所⽰,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA 相切,若BC=2,DA=3,则AB的长A.等于4B.等于5C.等于6D.不能确定〔答〕( )A.1 B.-1 C.22001D.-22001〔答〕( )5.若平⾏直线EF,MN与相交直线AB,CD相交成如图2所⽰的图形,则共得同旁内⾓A.4对B.8对C.12对D.16对〔答〕( )〔答〕( )7.设锐⾓三⾓形ABC的三条⾼AD,BE,CF相交于H。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1990年第七届全国初中数学联赛决赛试卷
第 一 试
一、 选择题
本题共有8个小题,每小题都给出了(A)、(B)、(C)、(D)四个结论,其中只有一个是正确的,请把正确结论的代表字母写在题后的圆括号内。

1.312
311
311
44++-++的值是
(A )1 (B )-1
(C )2 (D )-2
答( )
2.在△ABC 中,AD 是高,且AD 2 = BD ·CD ,那么∠BAC 的度数是
(A )小于90° (B )等于90°
(C )大于90° (D )不确定
答( )
3.方程k k k x k x (02)13(722=--++-是实数)有两个实根α、β,且0<α<1,1<β<2,那么k 的取值范围是
(A )3<k <4; (B )-2<k <-1;
(C )3<k <4或-2<k <-1 (D )无解。

答( )
4.恰有35个连续自然数的算术平方根的整数部分相同,那么这个相同整数是
(A )17 (B )18 (C )35 (D )36
答( )
5.△ABC 中,22=AB ,2=
AC ,2=BC ,设P 为BC 边上任一点,则 (A )PB PA <2·PC
(B )PB PA =2·PC (C )PB PA >2·PC
(D )PB PA 与2·PC 的大小关系并不确定
答( )
6.若六边形的周长等于20,各边长都是整数,且以它的任意三条边为边都不能构成三角形,那么,这样的六边形
(A )不存在 (B )只有一个
(C )有有限个,但不只一个 (D )有无穷多个
答( )
7.若b a log 的尾数是零,且2log log 1log a b b b a a
>>,那么下列四个结论: (1)21a b b
>> (2)0log log =+a b b a (3)10<<<b a (3)01=-ab
中,正确的结论的个数是
(A )1 (B )2 (C )3 (D )4 答( )
8.如图,点P ,Q ,R 分别在△ABC 的边上AB 、BC 、CA 上,且1====RC QR PQ BP ,那么,△ABC 面积的最大值是
(A )3 (B )2 (C )5 (D )3 答( )
二、 填空题
1.已知821
21
=+-x x ,则x
x 12+= 2.2223,2,1,…,1234567892的和的个位数的数字是
3.方程01)8)((=---x a x ,有两个整数根,则=a
4.△ABC 中,2==AC AB ,BC 边有100个不同的点1P ,2P ,…,100P ,记i i i BP AP m +=2·C P
i ( =i 1,2,…,100) 则 ++21m m …100m +=
第 二 试
一、已知在凸五边形ABCDE 中,∠BAE = 3α,BC=CD=DE ,且∠BCD=∠CDE=180°-2α,求证:∠BAC=∠CAD=∠DAE
二、[]x 表示不超过实数x 的最大整数,令{}[]x x x -=
(1)找出一个实数x ,满足{}11=⎭
⎬⎫⎩⎨⎧+x x (2)证明:满足上述等式的x ,都不是有理数
三、设有n n 22⨯个正方形方格棋盘,在其中任意的n 3个方格中各有一枚棋子。

求证:可以选出n 行和n 列,使得n 3枚棋子都在这n 行和n 列中。

相关文档
最新文档