BOOST电路设计及matlab仿真

合集下载

基于MATLAB的升压-降压式变换器的建模与仿真

基于MATLAB的升压-降压式变换器的建模与仿真

基于MATLAB 的升压-降压式变换器的建模与仿真一、摘要本文在对升压-降压(Boost-Buck )式变换器电路理论分析的基础上,建立了基于Simulink 的升压-降压式变换器的仿真模型,运用IGBT 对升压-降压进行控制,并对工作情况进行仿真分析与研究。

通过仿真分析也验证了本文所建模型的正确性。

二、设计意义直流斩波就是将直流电压变换成固定的或可调的直流电压,也称DC/DC 变换。

使用直流斩波技术,不仅可以实现调压的功能,而且还可以达到改善网侧谐波和提高功率因数的目的。

升压-降压式变换电路即升降压斩波电路,主要应用于已具有直流电源需要调节直流电压的场合。

三、设计原理升压-降压式变换器电路图如下图1-1所示。

设电路中电感L 值很大,电容C 值也很大,使电感电流L i 和电容电压0u 基本为恒值。

图1-1 电路原理设计原理是:当可控开关V 出于通态时,电源经V 向电感L 供电使其贮存能量,此时电流为1i ,方向如图1-1中所示。

同时,电容C 维持输出电压基本恒定并向负载R 供电。

此后,使V 关断,电感L 中贮存的能量向负载释放,电流为2i ,方向如图1-1中所示。

可见,负载电压极性为上负下正,与电源电压极性相反,因此该电路也称作反极性斩波电路。

稳定时,一个周期T 内电感L 两端电压L u 对时间的积分为零,当V 处于通态期间时,L u =E ;而当V 处于端态期间时,L u =-0u 。

于是,E on t =off t U 0,所以输出电压为U=offon t t E=βαE 其中β=1-α,若改变导通比α,则输出电压既可以比电源电压高,也可以比电源电压低。

当0<α<0.5时为降压,当0.5<α<1时为升压,如此可以实现升压-降压的变换,该电路称作升降压斩波电路即升降压变换器。

图1-2中给出了电源电流1i 和负载电流2i 的波形,设两者的平均值分别为1I 和2I , 当电流脉动足够小时,有21I I =off on t t 。

boost电路仿真报告

boost电路仿真报告

Boost 电路1.实验名称:基于matlab 的boost 电路仿真的实验报告分析。

2.实验目的:○1学习matlab 的基础知识和操作; ○2改变占空比以及原件参数,观察电压和电流的变化。

3.实验平台:simulink 和simpowersystems4.实验原理:首先假设电路中电感L 的值很大,电容C 值 也很大。

当IGBT处于通态时,电源E 向电感L 充电,充电电流基本恒定为I 1,同时电容C 上的电压向负载R 供电。

因C 值很大,基本保持输出电压u 0为恒值,记为U 0 。

设IGBT 处于通态的时间为t on ,此阶段电感L 上积蓄的能量为EI 1t on 。

当IGBT 处于断态时E 和L 共同向电容C 充电并向负载R 提供能量。

设IGBT 处于断态的时间为t off ,则在此期间电感L 释放的能量为(U 0 -E )I 1t off 。

当电路工作于稳态时,一个周期T 中电感L 上积蓄的能量与释放的能量相等 EI 1t on =(U 0 -E )I 1t off 化简为 U 0=T*E/t off 输出电压高于电源电压图1图25.实验过程:1、研究电路电感L的变化对电路工作状态的影响,其中E=10(V), T=1e-4(S), α=10%, C=1e-5, R=10Ω,触发角0度。

平均值最大值最小值差值最大值最小值差值L(H)U R(V)I o(A)U max(V)U min(V)I max(A)I min(A)1e-3 10.28 1.144 10.6609 9.628 1.0329 1.1864 1.0875 0.0989 3e-3 10.29 1.145 10.714 9.676 1.038 1.1591 1.1261 0.033 5e-3 10.29 1.145 10.7264 9.6855 1.0409 1.1536 1.1388 0.0148图3 直流电源为10V图4 脉冲信号设置图6 电容设置图7示波器设置图8 电感设置为L=1e-3H 图9 电感设置为L=3e-3图10 电感设置为L=5e-3仿真结果如下:(1)电感L=1e-3(H)时的波形,如图11 图11图11.1 电压放大的波形图11.2 电流放大的波形(2)电感L=3e-3(H)时的波形,如图12图12图12.1 电压放大的波形图12.2 电流放大的波形(3)电感L=5e-3(H)时的波形,如图13图13图13.1 电压放大的波形图13.2 电流放大的波形结论:由以上的波形(1)~(3)可以知:电感越大,波纹越小;由数据可知,电感越大,最大最小值之差越小。

基于Pid Fuzzy控制Boost电路的设计以及MATLAB仿真

基于Pid Fuzzy控制Boost电路的设计以及MATLAB仿真

用Pid Fuzzy控制Boost电路专业:电气工程学号:********姓名:11111111_Boost升压电路的Pid及Fuzzy控制及仿真111111111摘要:随着现代科学技术的快速发展,电力电子技术在军事、工业、民用中都得到了广发的应用,尤其是依托于电力电子技术的开关电源更是突飞猛进;本文简单论述了用Pid Fuzzy控制Boost电路的方法,文中没有对信号模型的化简计算等做过于详尽的分析,主要是学会作为研究生遇到问题时,如何查找资料、整理思路解决问题,以及如何撰写论文,为以后的科学研究工作打下基础。

关键词:Boost;Fuzzy;Pid;升压电路一、作业目的1.学习Boost电路的基本原理,学习MATLAB在电力电子技术中的应用。

2.掌握Pid控制及其调节机理,了解Fuzzy控制器的设计过程及基本工作原理。

3.掌握解决问题的基本步骤以及如何撰写论文。

二、仿真电路要求指标1.输入电压Ui :20V—95V;输出电压Uo:100V;满载输出电流Io=18A2.纹波:Vripple ≦1%Io=18A3.效率:Ui=75V时η≧954.负载切换时输出电压Uo 纹波要求:满载切半载、半载切1/10载时Vripple≦1%;满载切1/10载时Vripple≦5%5.自定义参数:开关频率f=100KHz三、参数计算、电路设计及仿真模拟1.参数计算1)电阻R的计算由输出电压Uo =100V,输出电流Io=18A得满载电阻R=OOUI=5.5562)电感L的计算由已知条件输入电压20V —95V ,输出电压U o =100V 得占空比:0.8~0.05D =Boost 升压电路的临界电感方程:2R =D -D T 2L (1) 对上式求导得1D=3处有最大值又0.05<D<0.8满足要求223R 5.5561=D -D T=-=4.1uH 22100L ⨯10(1)0.33(10.33) 考虑到电感预量取 L=10uH3) 电容C 的计算由o c o V D TQ U ==C RC∆∆得o c o I D T C=U ∆考虑到电流连续电流和占空比均取最大值 o c 3o I D T 180.8C===144uF U 10010⨯∆⨯ 考虑到电感预量取 C=500uF2. Boost 主电路及Pid 的设计1) 主电路图2-1图2-1 Boost 主电路拓扑上图中各器件均的内阻都很小,可以看成是理想器件2)Pid控制Boost电路拓扑[2]图2-2图2-2 Boost电路的Pid闭环控制系统模型3)Boost电路的Pid闭环控制系统传递函数整定图2-3VrefE(s) V(s)参考信号B(s)反馈信号 V o(s)图2-3 Boost电路的Pid闭环系统框图由上图得到传递函数的关系如下:C(s)G(s)E(s)=G(s)G(s)G(s)E(s)c m vd=(s)H(s)C(s)B=E(s)=R(s)-B(s)上式子中:vdG(s):Boost电路开关MOSFET到书输出V O的传递函数G(s)m:PWM脉宽调制器的传递函数H(s):反馈回路的传递函数G(s)c :为补偿网络的传递函数G c(s)G m(s)G vd(s)H(s)4) 传递函数的计算以下参数整定参考徐德红的《电力电子建模及控制》一书中的第四章节(DC/DC 变换器反馈控制设计) i.H(s):H(s)为反馈传递函数,Boost 的输出电压稳定在100V ,所以用100V 作为参考电压,计算式子为(s)100H(s)=1(s)100ref o V V == ii.G (s)m :G (s)m 为脉宽调制波形的传递函数,本例中采用幅值为1m V v =的三角波作为脉宽调制信号,三角波的频率为100kHz11m V Vm== iii.G (s)vd :所参考书目中,在不考虑电感电容电阻的情况下,即将Boost 主电路模型做小信号分析处理得到Boost 主电路由MOSFET 开关的输入到输出的传递函数为1in 2211(1s)V G (s)=(1)L LC R vd RC LCD s s -⨯-++ 式中:2(1D)LL =-R =OOU I =5.556Ω负载电阻的电阻值 C=500uF 输出电压滤波电容值100750.25100o m o V V D V --===(输入电压定位75V ) 将L R C D 带入公式中:6226910100.75 5.556920.7515.55650010 5.010(1s)75G (s)=5.010vd s s ---⨯⨯-⨯⨯⨯-⨯⨯++104291.510 4.810360 1.12510s s s ⨯-⨯=++⨯3. Pid 控制器补偿函数G (s)c 的计算以及调节1) Boost 的伯德图分析将G (s)vd 104291.510 4.810360 1.12510ss s ⨯-⨯=++⨯输入MATLAB 得到校正前系统的Bode 图3-1图3-1 校正前系统Bode 图对于闭环系统的特征方程式(s)1G(s)H(s)0F =+=我们知道如果系统传递函数有极点在虚轴上或是在s 平面的右半边,则系统为不稳定系统,而特征方程式G(s)H(s)中包含了所有闭环极点的信息,因此可以通过分析G(s)H(s)的特征全面把握系统的稳定性,G(s)H(s)包含了从误差信号(s)E 到反馈信号B(s)之间回路中各个环节的全部传递函数,G(s)H(s)称为回路增益函数,(s)=G(s)H(s)(s)B E =反馈信号误差信号。

BOOST电路设计与仿真

BOOST电路设计与仿真

目录一.Boost 主电路设计: (2)占空比 D 计算 (2)临界电感 L 计算 (2)临界电容 C 计算(取纹波) (2)输出电阻阻值 (2)二.Boost 变换器开环解析 (3)PSIM 仿真 (3)Matlab 仿真频域特征 (3)三.Boost 闭环控制设计 (3)闭环控制原理 (3)赔偿网络的设计(使用SISOTOOL确立参数) (3)计算赔偿网络的参数 (4)四.修正后电路 PSIM 仿真 (5)五.设计领会 (5)Boost变换器性能指标 :输入电压:标准直流电压Vin=48V输出电压:直流电压Vo=220V 输出功率: Pout=5Kw输出电压纹波:电流纹波:开关频率: fs=100kHz相位裕度: 60幅值裕度: 10dB参照电压Vm=4VVref=5V一. Boost主电路设计:1.1 占空比 D 计算依据 Boost 变换器输入输出电压之间的关系求出占空比 D 的变化范围。

1.2 临界电感L 计算采纳 L>Lc,在此选 L=4uH1.3 临界电容 C 计算(取纹波Vpp<2.2V )采纳 C>Cc,在此选 C=100uF1.4 输出电阻阻值Boost 主电路传达函数 Gvd( s)占空比 d( t)到输出电压 Vo(t)的传达函数为:二 . Boost变换器开环解析2.1 PSIM 仿真电压仿真波形以以下图电压稳准时间大体 1.5 毫秒,稳固在 220V 左右电压稳固后的纹波以以下图电压稳固后的纹波大体为电流仿真波形以以下图电流稳准时间大体 2 毫秒,稳固在 22A 左右电流稳固后的纹波以以下图2.2 Matlab仿真频域特征设定参照电压为5V,则,系统的开环传达函数为,此中,由上图可得, Gvd(s)的低频增益为 -60dB,截止频率 fc=196KHz,相位裕度,相位裕度过小,高频段是 -20dB/dec。

系统不稳固,需要加控制电路调整。

1、开环传达函数在低频段的增益较小,会以致较大的稳态偏差2、中频段的剪切频率较小会影响系统的响应速度,使调理时间较大。

完整word版,BOOST电路设计及matlab仿真

完整word版,BOOST电路设计及matlab仿真

Boost升压电路及MATLAB仿真一、设计要求1.输入电压(VIN):12V2.输出电压(VO):18V3.输出电流(IN):5A4.电压纹波:0.1V5.开关频率设置为50KHz需设计一个闭环控制电路,输入电压在10—14V或负载电流在2—5A范围变化时,稳态输出能够保持在18V 。

根据设计要求很显然是要设计一个升压电路即Boost电路。

Boost电路又称为升压型电路,是一种开关直流升压电路,它可以是输出电压比输入电压高。

其工作过程包括电路启动时的瞬态工作过程和电路稳定后的稳态工作过程。

二、主电路设计图1主电路2.1 Boost电路的工作原理Boost升压电路电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁场能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成。

Boost升压电路的肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极的电压低,此时二极管反向截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端。

闭合开关会引起通过电感的电流增加。

打开开关会促使电流通过二极管流向输出电容因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。

接下来分两部分对Boost电路作具体介绍即充电过程和放电过程。

充电过程在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。

这时,输入电压流过电感。

二极管防止电容对地放电。

由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。

Boost变换器的设计与仿真

Boost变换器的设计与仿真

目录摘要 (3)第一章绪论 (4)1. 1研究背景 (4)1.2 boost变换器的国外研究现状 (6)1.3 Boost变换器的国内现状 (7)1.4 基于PID对Boost变换器的研究现状 (8)1.5与Boost变换器的控制方法 (10)1.6本文内容安排 (11)第二章DC-DC变换器基础 (11)引言 (11)2.1 Boost变换器的基本原理 (12)2.2 Boost变换器在CCM模式下的工作原理 (13)2.3 Boost变换器在DCM模式下的工作原理 (16)2.4 Boost变换器在CCM/DCM的临界条件 (18)2.5 PID控制的原理与分析 (19)2.6 本章小结 (21)第三章 Boost变换器设计 (23)引言 (23)3.1 Boost变换器性能指标 (23)3.2 Boost电路的参数设计 (23)第四章 Boost变换器的仿真及分析 (28)引言 (28)4.1 建立Boost变换器的仿真模型 (28)4.2 仿真结果 (28)4.3 本章小结 (31)第五章总结与展望 (32)致谢 (33)参考文献 (34)摘要科技在不断地发展,人们的生活水平也在不断地提高,人们的生活已经离不开电子产品。

所以对电源的性能要求也是越来越高。

但是能源危机也时日益严重。

为了解决这一问题,可再生的能源正在不断地发展与利用。

但是,在可以再生的能源中,输出的电压一般都会比较低,大约在20V-50V之间。

而我们用的电压则时在220V左右。

为了解决这一问题,就不得不用到升压变换器。

因此,对Boost 变换器的设计与分析是必不可少的。

本文主要是基于线性PID控制来进行对Boost DC-DC变换器的分析与设计。

通过设计Boost电路的参数,以及对PID的参数进行整定,并用MATLAB进行系统仿真。

从而验证PID控制对Boost变换器设计的可行性。

关键词: Boost变换器, PID控制, MATLAB仿真AbstractWith the continuous development of science and technology, people's living standards are also constantly improving, people's lives have been inseparable from electronic products. Therefore, the performance requirements of power supply are also getting higher and higher. But the energy crisis is getting worse. In order to solve this problem, renewable energy is constantly developing and utilizing. However, in renewable energy sources, the output voltage is generally low, about 20V-50V. The voltage we use is about 220V. In order to solve this problem, boost converter has to be used. Therefore, the design and analysis of Boost converter is indispensable.This paper mainly analyses and designs Boost DC-DC converter based on linear PID control. By designing the parameters of Boost circuit and setting the parameters of PID, the system simulation is carried out with MATLAB. The feasibility of the design of Boost converter based on PID control is verified.Key words: Boost converter, PID control, MATLAB simulation第一章绪论1. 1研究背景现如今,中国经济正在不断蓬勃发展,人们的生活质量与日俱增,在此背景下,多样化科学技术应运而生,使得各种不可再生资源的消耗急剧的增加,关于环境问题日益严重。

BOOST电路设计及仿真

BOOST电路设计及仿真

BOOST电路设计及仿真BOOST电路是一种升压电路,在电压电平较低的情况下,能够将输入电压提升到输出电压。

BOOST电路被广泛应用于电力电子领域,如电源、DC-DC转换器、光伏逆变器等。

BOOST电路的设计主要包括两个方面:拓扑结构设计和元件参数选择。

首先应选择合适的拓扑结构,BOOST电路拓扑结构多样,如单端输出、双绕绕制、双端输出等。

这里我们选择单端输出的BOOST电路拓扑结构。

BOOST电路的原理基于电感耦合和开关管的开关原理。

当电感L和二极管D恒定时,开关管S的导通和关闭会使电感L的磁场发生变化,从而使输出电压发生变化。

在导通状态下,能量储存在电感L中。

在关闭状态下,储存在电感L中的能量会传递到输出端,从而提高输出电压。

BOOST电路的关键参数:输入电压Vin:BOOST电路的输入电压是其工作的基础。

在选择拓扑结构时,需要明确输入电压的范围,以便选取合适的器件参数。

输出电压Vout:输出电压是BOOST电路的主要输出参数。

在设计时,需要确定输出电压所需的级数,以及负载电流的大小。

电感L:电感L是BOOST电路的关键元器件,负责储存能量。

在设计时需要选取合适的电感值和电感电流。

注意,电感L的选取也会对电路的效率产生影响。

开关管S:开关管是BOOST电路的关键元器件之一,主要负责电路的开关功能。

在设计时需要选取合适的开关管,考虑其最大电压和最大电流,并选择合适的开关频率。

设计和仿真步骤:1、确定电路参数设计之前首先需要明确电路所需的参数,如输入电压范围、输出电压、电感和电容等。

这些参数需要根据实际需求来确定。

2、选择拓扑结构BOOST电路拓扑结构多样,需要选择适合自己需求的拓扑结构。

选择单端输出的BOOST 电路拓扑结构。

3、选用元器件根据电路参数和选定的拓扑结构,选用合适的元器件,如电感、开关管、二极管、电容等。

4、绘制电路图根据选用的元器件和拓扑结构,绘制BOOST电路的电路图。

5、SIMULINK仿真利用MATLAB软件中的SIMULINK工具箱进行BOOST电路的仿真。

BOOST电路设计和matlab仿真

BOOST电路设计和matlab仿真

Boost升压电路及MATLAB仿真一、设计要求1.输入电压(VIN):12V2.输出电压(VO):18V3.输出电流(IN):5A4.电压纹波:0.1V5.开关频率设置为50KHz需设计一个闭环控制电路,输入电压在10—14V或负载电流在2—5A范围变化时,稳态输出能够保持在18V 。

根据设计要求很显然是要设计一个升压电路即Boost电路。

Boost电路又称为升压型电路,是一种开关直流升压电路,它可以是输出电压比输入电压高。

其工作过程包括电路启动时的瞬态工作过程和电路稳定后的稳态工作过程。

二、主电路设计图1主电路2.1 Boost电路的工作原理Boost升压电路电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁场能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成。

Boost升压电路的肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极的电压低,此时二极管反向截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端。

闭合开关会引起通过电感的电流增加。

打开开关会促使电流通过二极管流向输出电容因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。

接下来分两部分对Boost电路作具体介绍即充电过程和放电过程。

充电过程在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。

这时,输入电压流过电感。

二极管防止电容对地放电。

由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。

BOOST电路设计及仿真

BOOST电路设计及仿真

目录一. Boost主电路设计: (2)1.1占空比D计算 (2)1.2临界电感L计算 (2)1.3临界电容C计算(取纹波Vpp<2.2V) (2)1.4输出电阻阻值 (2)二. Boost变换器开环分析 (2)2.1 PSIM仿真 (2)2.2 Matlab仿真频域特性 (2)三. Boost闭环控制设计 (2)3.1闭环控制原理 (2)3.2 补偿网络的设计(使用SISOTOOL确定参数) (2)3.3 计算补偿网络的参数 (2)四.修正后电路PSIM仿真 (2)五.设计体会 (2)Boost变换器性能指标:输入电压:标准直流电压Vin=48V输出电压:直流电压Vo=220V 参考电压Vref=5V输出功率:Pout=5Kw输出电压纹波:Vpp=2.2V Vm=4V电流纹波:0.25A开关频率:fs=100kHz相位裕度:60幅值裕度:10dB一. Boost主电路设计:1.1占空比D计算根据Boost变换器输入输出电压之间的关系求出占空比D的变化围。

1.2临界电感L计算选取L>Lc,在此选L=4uH1.3临界电容C计算(取纹波Vpp<2.2V)选取C>Cc,在此选C=100uF1.4输出电阻阻值Boost主电路传递函数Gvd(s)占空比d(t)到输出电压Vo(t)的传递函数为:二. Boost变换器开环分析2.1 PSIM仿真电压仿真波形如下图电压稳定时间大约1.5毫秒,稳定在220V左右电压稳定后的纹波如下图电压稳定后的纹波大约为2.2V电流仿真波形如下图电流稳定时间大约2毫秒,稳定在22A左右电流稳定后的纹波如下图2.2 Matlab仿真频域特性设定参考电压为5V,则,系统的开环传递函数为,其中,由上图可得,Gvd(s)的低频增益为-60dB,截止频率fc=196KHz,相位裕度--84.4,相位裕度过小,高频段是-20dB/dec。

系统不稳定,需要加控制电路调整。

完整word版,BOOST电路设计及matlab仿真

完整word版,BOOST电路设计及matlab仿真

Boost升压电路及MATLAB仿真1. 输入电压(VIN):12V2. 输出电压(VO):18V3. 输出电流(IN):5A4. 电压纹波:0.1V5. 开关频率设置为50KHz 需设计一个闭环控制电路,输入电压在10—14V或负载电流在2—5A 范围变化时,稳态输出能够保持在18V 。

根据设计要求很显然是要设计一个升压电路即Boost电路。

Boost 电路又称为升压型电路,是一种开关直流升压电路,它可以是输出电压比输入电压高。

其工作过程包括电路启动时的瞬态工作过程和电路稳定后的稳态工作过程。

、主电路设计图 1 主电路2.1 Boost 电路的工作原理Boost升压电路电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭合后,电感将电能转换为磁场能储存起来,当MOS 断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁场能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成。

Boost 升压电路的肖特基二极管主要起隔离作用,即在MOS 开关管闭合时,肖特基二极管的正极电压比负极的电压低,此时二极管反向截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS 管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端。

闭合开关会引起通过电感的电流增加。

打开开关会促使电流通过二极管流向输出电容因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。

设计要求接下来分两部分对 Boost 电路作具体介绍即充电过程和放电过程。

充电过程在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线 代替。

这时,输入电压流过电感。

二极管防止电容对地放电。

由于输入是直流电,所以电感 上的电流以一定的比率线性增加, 这个比率跟电感大小有关。

BOOST电路设计及matlab仿真

BOOST电路设计及matlab仿真

Boost升压电路及MATLAB仿真一、设计要求1.输入电压(VIN):12V2.输出电压(VO):18V3.输出电流(IN):5A4.电压纹波:0.1V5.开关频率设置为50KHz需设计一个闭环控制电路,输入电压在10—14V或负载电流在2—5A范围变化时,稳态输出能够保持在18V 。

根据设计要求很显然是要设计一个升压电路即Boost电路。

Boost电路又称为升压型电路,是一种开关直流升压电路,它可以是输出电压比输入电压高。

其工作过程包括电路启动时的瞬态工作过程和电路稳定后的稳态工作过程。

二、主电路设计图1主电路2.1 Boost电路的工作原理Boost升压电路电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁场能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成。

Boost升压电路的肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极的电压低,此时二极管反向截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端。

闭合开关会引起通过电感的电流增加。

打开开关会促使电流通过二极管流向输出电容因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。

接下来分两部分对Boost电路作具体介绍即充电过程和放电过程。

充电过程在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。

这时,输入电压流过电感。

二极管防止电容对地放电。

由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。

Boost变换器设计及计算机仿真x

Boost变换器设计及计算机仿真x

《电力电子系统综合训练》任务书(第6组)2014年秋季学期摘要BOOST 电路又称为升压斩波电路,它在各类电力电子电路中的应用十分广泛,它将低压直流电变为高压直流电,为负载提供了稳定的直流电压。

升压斩波电路的PI和PID调节器的性能对输出的电压影响很大。

由于这种斩波电路工作于开关模式下,是一个强非线形系统。

采用matlab 仿真分析方法, 可直观、详细的描述BOOST 电路由启动到达稳态的工作过程, 并对其中各种现象进行细致深入的分析, 便于我们真正掌握BOOST 电路的工作特性。

【关键词】:Boost电路;直流电压;matlab仿真;目录摘要11概论11.1电力电子器件11.1.1电力电子器件概述11.1.2 直流-直流变换器(DC/DC)的应用21.2 MATLAB软件概述31.2.1 MATLAB介绍31.2.2 SIMULINK仿真基础51.2.3 MATLAB的GUI程序设计72升压式直流斩波电路102.1电路的结构及工作原理102.1.1电路结构102.1.2 工作原理102.1.3基本数量关系112.2升压斩波电路的典型应用113模型仿真133.1建立升压斩波电路模型133.2模型参数设置14总结20致谢21参考文献221概论1.1电力电子器件1.1.1电力电子器件概述1957年可控硅(晶闸管)的问世,为半导体器件应用于强电领域的自动控制迈出了重要的一步,电力电子开始登上现代电气传动技术舞台,这标志着电力电子技术的诞生。

20世纪60年代初已开始使用电力电子这个名词,进入70年代晶闸管开始派生各种系列产品,普通晶闸管由于其不能自关断的特点,属于半控型器件,被称作第一代电力电子器件。

随着理论研究和工艺水平的不断提高,以门极可关断晶闸管(GTO)、电力双极性晶体管(IGBT)和电力场效应晶体管(Power-IGBT)为代表的全控型器件迅速发展,被称作第二代电力电子器件。

80年代后期,以绝缘栅极双极型晶体管(IGBT)为代表的复合型第三代电力电子器件异军突起,而进入90年代电力电子器件开始朝着智能化、功率集成化发展,这代表了电力电子技术发展的一个重要方向。

Boost电路设计与仿真

Boost电路设计与仿真

2012下学期电力电子电路设计与仿真Boost电路设计与仿真一、设计要求:设计Boost电路,使其输入电压为40V。

输出电压为150V±3V,输出功率150w,选取输出电阻150Ω。

二、设计目的:1、通过对Boost 电路的设计,掌握Boost电路的工作原理,综运用所学知识,进行Boost电路和系统设计的能力。

2、根据给定指标,设计BOOST电路参数。

3、利用MATLAB仿真软件,做出MATLAB模型图及其MATLAB示波器的波形。

三、设计方案和电路图:(1)BOOST电路图:图(1)Boost电路原理图Boost基本工作原理:假设电路中电感L 值很大,电容C 值也很大。

当开关管处于通态时,电源E 向电感L 充电,充电电流基本恒定为i L ,同时C 上的电压向负载R 供电,因为C 也很大,基本保持输出电压为恒值U 0.设开关管通态时间为t on ,此阶段L 积蓄能量为 E i L t on 。

当开关管处于断态时E 和L 共同向C 充电,并向负载R 提供能量。

设开关管处于断态时间为t off ,则这期间电感L 释放能量为(U 0-E )i L t off .一周期T 中,电感L 积蓄的能量和释放的能量相等,即 E i L t on =(U 0-E )i L t off 化简得: U 0=T/ t off E(2)参数计算 (a )占空比计算U 0=T/ t off E……………………………………………………………………………○1 U 0=150U ,E=60U ………………………………………………………………………○2 由○1,○2有D=60% (b )电感参数计算电感的选取应满足公式L=)221(D D ITU S-……………………………………○3 其中L 为电感值,U 0为输出电压,I 0为输出电流,由输出功率150w ,输出电压150v ,可得输出电流A I 10=,T S 为开关管工作周期,开关频率越高,电感器的值就可以越小,体积就可以越小,但开关频率高了会加重开关管的负担,这理选开关频率为100kHzV V Di (min)0(max)min1-==0.58=TS105-L=7758.01(58.0*1*2*150)1025=--μH实际电路中L=1.5*L=116μH 这里选取150μH(c )电容参数计算电容的选取应满足公式VI T D os C ∆=0max…………………………………………○4 式中V 0∆为纹波电压62.01556011maxminmax=-=-=VV Do iC=11**62.0105-=6μF电容取得大滤波效果越好,这里取C=10μf(d )开关管的选择输入端电流Ii有公式IV I V ii**=所以输入电流为2.5A ,开关管导通和关断时的尖峰电流应大于此值,开关管导通时的允许电流应为此值的两倍,即≥Ip5A ,开关管的耐压值应为输出电压和二级管电压之和即150.7v ,开关管关断时漏源极电压为此值的两倍即300v 。

boost电路MATLAB仿真设计

boost电路MATLAB仿真设计

科技大学高新学院电力电子技术课程设计报告题目 BOOST电路的设计和仿真专业班级自动化0902 学号 0901030229 姓名宿亚指导教师周燕2012 年 7 月 11 日BOOST电路的设计与仿真摘要Boost升压电路是一种直流一直流变换电路,即是一种开关直流升压电路,它可以是输出电压比输入电压高。

可以分为充电过程和放电过程。

在充电过程中,IGBT导通,IGBT处用导线代替。

这时,输入电压流过电感。

二极管防止电容对地放电。

由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。

随着电感电流增加,电感里储存了一些能量。

在放电过程中,当IGBT截止时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。

而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。

设计由MATLAB软件对电路进行仿真得出各种模型图和波形。

【关键字】升压电路 Matlab IGBT一、设计要求:设计Boost 电路,使其输入电压为40v 。

输出电压为60v —120v 。

二、设计目的:1、通过对Boost 电路的设计,掌握Boost 电路的工作原理,综运用所学知识,进行Boost 电路和系统设计的能力。

2、根据给定指标,设计BOOST 电路参数。

3、利用MATLAB 仿真软件,做出MATLAB 模型图及其MATLAB 示波器的波形。

三、设计方案和电路图:(1)BOOST 电路图:图(1)Boost 电路原理图Boost 基本工作原理:假设电路中电感L 值很大,电容C 值也很大。

当V 处于通态时,电源E 向电感L 充电,充电电流基本恒定为i L ,同时C 上的电压向负载R 供电,因为C 也很大,基本保持输出电压为恒值U 0.设V 通态时间为t on ,此阶段L 积蓄能量为 Ei L ton。

当V处于断态时E和L共同向C充电,并向负载R提供能量。

boost电路matlab仿真开关电源《基于MatlabSimulink的BOOST电路仿真》

boost电路matlab仿真开关电源《基于MatlabSimulink的BOOST电路仿真》

boost电路matlab仿真开关电源《基于MatlabSimulink的BOOST电路仿真》导读:就爱阅读网友为您分享以下“开关电源《基于MatlabSimulink的BOOST电路仿真》”的资讯,希望对您有所帮助,感谢您对的支持!基于Matlab/Simulink的姓名:学号:班级:时间:2010年12月7日BOOST电路仿真1 引言BOOST 电路又称为升压型电路, 是一种直流- 直流变换电路, 其电路结构如图1 所示。

此电路在开关电源领域内占有非常重要的地位, 长期以来广泛的应用于各种电源设备的设计中。

对它工作过程的理解掌握关系到对整个开关电源领域各种电路工作过程的理解, 然而现有的书本上仅仅给出电路在理想情况下稳态工作过程的分析, 而没有提及电路从启动到稳定之间暂态的工作过程, 不利于读者理解电路的整个工作过程和升压原理。

采用matlab仿真分析方法, 可直观、详细的描述BOOST 电路由启动到达稳态的工作过程, 并对其中各种现象进行细致深入的分析, 便于我们真正掌握BOO ST 电路的工作特性。

图1 BOO ST 电路的结构2 电路的工作状态BOO ST 电路的工作模式分为电感电流连续工作模式和电感电流断续工作模式。

其中电流连续模式的电路工作状态如图2 (a) 和图2 (b) 所示, 电流断续模式的电路工作状态如图2 (a)、(b)、(c) 所示, 两种工作模式的前两个工作状态相同, 电流断续型模式比电流连续型模式多出一个电感电流为零的工作状态。

(a) 开关状态1 (S 闭合) (b) 开关状态2 (S 关断)(c) 开关状态3 (电感电流为零)图2 BOO ST 电路的工作状态3 matlab仿真分析matlab 是一种功能强大的仿真软件, 它可以进行各种各样的模拟电路和数字电路仿真,并给出波形输出和数据输出, 无论对哪种器件和哪种电路进行仿真, 均可以得到精确的仿真结果。

本文应用基于matlab软件对BOO ST 电路仿真, 仿真图如图3 所示, 其中IGBT作为开关, 以脉冲发生器脉冲周期T=0.2ms,脉冲宽度为50%的通断来仿真图2 中开关S 的通断过程。

(最新整理)BOOST电路设计及matlab仿真

(最新整理)BOOST电路设计及matlab仿真

(完整)BOOST电路设计及matlab仿真编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)BOOST电路设计及matlab仿真)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)BOOST电路设计及matlab仿真的全部内容。

Boost升压电路及MATLAB仿真一、设计要求1。

输入电压(VIN):12V2。

输出电压(VO):18V3.输出电流(IN):5A4.电压纹波:0.1V5。

开关频率设置为50KHz需设计一个闭环控制电路,输入电压在10—14V或负载电流在2—5A范围变化时,稳态输出能够保持在18V 。

根据设计要求很显然是要设计一个升压电路即Boost电路。

Boost电路又称为升压型电路,是一种开关直流升压电路,它可以是输出电压比输入电压高.其工作过程包括电路启动时的瞬态工作过程和电路稳定后的稳态工作过程.二、主电路设计图1主电路2.1 Boost电路的工作原理Boost升压电路电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁场能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成。

Boost升压电路的肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极的电压低,此时二极管反向截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端。

BOOST电路的设计与仿真

BOOST电路的设计与仿真

BOOST电路的设计与仿真摘要BOOST 电路又称为升压斩波电路,它在各类电力电子电路中的应用十分广泛,它将低压直流电变为高压直流电,为负载提供了稳定的直流电压。

升压斩波电路的PI和PID调节器的性能对输出的电压影响很大。

由于这种斩波电路工作于开关模式下,是一个强非线形系统。

采用matlab仿真分析方法, 可直观、详细的描述BOOST 电路由启动到达稳态的工作过程, 并对其中各种现象进行细致深入的分析, 便于我们真正掌握BOOST 电路的工作特性。

【关键词】:Boost电路直流电压 matlab仿真1.设计要求(1)输入电压:40v,输出电压:60v—120v(2)根据给定的指标,设计BOOST电路参数。

(3)利用MATLAB软件,对电路进行验证。

(4)通过仿真实验,验证仿真实验,验证电路参数是否正确。

(4)观察电路中主要波形,并记录(仿真,实验)。

2.设计目的(1)熟悉整流和触发电路的基本原理,能够运用所学的理论知识分析设计任务。

(2)掌握基本电路的数据分析、处理;描绘波形并加以判断。

(3)能正确设计电路,画出线路图,分析电路原理。

3. 设计方案和电路图3.1 Boost基本工作原理:假设电路中电感L值很大,电容C值也很大。

当V处于通态时,电源E向电感L 充电,充电电流基本恒定为I1,同时C上的电压向负载R供电,因为C也很大,基本保持输出电压为恒值U0.设V通态时间为ton,此阶段L积蓄能量为 E I1ton。

当V处于断态时E和L共同向C充电,并向负载R提供能量。

设V处于断态时间为toff,则这期间电感L释放能量为(U0-E)I1toff一周期T中,电感L积蓄的能量和释放的能量相等,即EI1ton=(U-E)I1toff(3-1)化简得:U0=T/toffE (3-2)式(3-2)中的T/ toff≥1,输出电压高于电源电压,故称改电路为升压斩波电路。

有的文献中直接采用其英文名称,称之为BOOST变换器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Boost升压电路及MATLAB仿真
一、设计要求
1.输入电压(VIN):300V(+-20%)
2.输出电压(VO):410V
3.输出功率(PO):10kw
4.电压纹波:≤1%
5.开关频率设置为10KHz
输入电压在240—360V范围变化时,稳态输出能够保持在410V。

根据设计要求表明需要设计一个升压电路即Boost电路。

Boost电路又称为升压型电路,是一种开关直流升压电路,它可以是输出电压比输入电压高。

其工作过程包括电路启动时的瞬态工作过程和电路稳定后的稳态工作过程。

同时,也需设计一个闭环控制电路,当输入电压变化时,能准确的跟踪电压变化,改变PWM 电压占空比,以稳定输出电压。

二、主电路设计
图1主电路
2.1 Boost电路的工作原理
Boost升压电路电感的作用:是将电能和磁场能相互转换的能量转换器件,当IGBT开关管闭合后,电感将电能转换为磁场能储存起来,当IGBT断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁场能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成。

Boost升压电路的二极管主要起隔离作用,即在IGBT开关管闭合时,肖特基二极管的正极电压比负极的电压低,此时二极管反向截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在IGBT管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端。

闭合开关会引起通过电感的电流增加。

打开开关会促使电流通过二极管流向输出电容因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。

接下来分两部分对Boost电路作具体介绍即充电过程和放电过程。

充电过程
在充电过程中,开关闭合(开关管导通),等效电路如图二,开关(三极管)处用导线代替。

这时,输入电压流过电感。

二极管防止电容对地放电。

由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。

随着电感电流增加,电感里储存了一些能量。

图2 充电原理图
放电过程
如图,这是当开关管断开时的等效电路。

当开关管断开时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。

而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。

升压完毕。

图3 放电原理图
参数计算
1. 占空比计算
由上图1、图2可知电感电流连续时,根据开通和关断期间储能和释能相等的原理
可得:
()(1)
(2)
s L on o in L off
on
V I t V V I t t D T
=-=
其中D 为占空比,有(1),(2)式可得故有1s
o
V D V =-
, 所以max 24010.415410D =-= ,min 360
10.122410
D =-= 2.
电感的设计
不妨设电感电流连续,最小负载电流min 0.10.1
2.44N
o N N
P I I A V ===
临界负载电流2(1)2O
OB
s
V I D D Lf =
-
,令min o OB I I ≥ ,得L≥1.24mH ,取L=1.5mH 。

3. 负载电阻计算
由于输出的电压为410V ,输出功率为10kw ,可得负载的电阻值为16.81欧姆即可满足设计要求。

4. 纹波电容的计算
因需要电压纹波≤0.01,则
11
0.01o o s V D V f RC
∆=≤,得C≥0.493m Ϝ,取C=500μϜ。

三、电路设计与仿真
3.1 开环boost 电路仿真
图4 开环电路图
电压、电流的仿真结果如下图。

图5 开环Boost 电路电压仿真结果
图6 开环Boost 电路电路仿真结果
3.2闭环Boost 电路仿真
3.2.1主传递函数计算
仅考虑输入电压波动时。

可由公式(5)得到传递函数。

2()022
'(1)'()|(5)()'g
O c
V s sL
D V V D R
g s L d s LCs s D R
=-
=
=
++
带入数据得:
2
()0223824'(1)'()|()'5.410108
5.4102104
g O c
V s sL
D V V D R
g s L d s LCs s D R
s s s =----
=
=
++-⨯+=-
⨯+⨯+ 只需在前面的开环电路中加入传递函数即可,如下所示。

图7 闭环电路图
开环伯德图如下:
图8 开环函数伯德图闭环伯德图如下:
图9 闭环函数伯德图整个闭环电路图可用如下一个逻辑方框图表示:
图10 电路逻辑方框图其仿真结果如下:
图11 方框图稳定电压输出波形四、仿真结果
最终的仿真结果为:
图10电压图
图11电流图。

相关文档
最新文档