初中中考数学应用题集锦

合集下载

初中应用题大全及答案

初中应用题大全及答案

初中应用题大全及答案1. 应用题:小明的爸爸给他买了一辆自行车,原价为500元,现在打八折出售,请问小明的爸爸实际支付了多少钱?答案:原价为500元,打八折后的价格为500元× 0.8 = 400元。

所以小明的爸爸实际支付了400元。

2. 应用题:一个班级有40名学生,其中男生占60%,女生占40%,现在要选出10%的学生参加学校的运动会,请问需要选出多少名男生和女生?答案:班级总人数为40人,选出10%的学生参加运动会,即40人× 10% = 4人。

男生占60%,所以需要选出的男生人数为4人× 60% = 2.4人,取整数为2人。

女生占40%,所以需要选出的女生人数为4人× 40% = 1.6人,取整数为1人。

因此,需要选出2名男生和1名女生。

3. 应用题:一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,求这个长方体的体积。

答案:长方体的体积可以通过长、宽、高的乘积来计算,即体积 = 长× 宽× 高 = 10厘米× 8厘米× 6厘米 = 480立方厘米。

4. 应用题:一个工厂生产了100个零件,其中有2%是次品,合格的零件有多少个?答案:次品占总零件数的2%,即100个零件× 2% = 2个。

所以合格的零件数为100个 - 2个 = 98个。

5. 应用题:一个水池,每小时流入4立方米的水,同时每小时流出3立方米的水,如果水池原本有20立方米的水,那么5小时后水池里有多少水?答案:每小时流入4立方米的水,流出3立方米的水,所以每小时净增加1立方米的水。

5小时后,水池净增加的水为5小时× 1立方米/小时 = 5立方米。

原本有20立方米的水,所以5小时后水池里的水量为20立方米 + 5立方米 = 25立方米。

6. 应用题:小华在书店买了3本书,每本书的价格是30元,书店正在进行满100元减20元的优惠活动,请问小华实际支付了多少钱?答案:3本书的总价为3本× 30元/本 = 90元,未达到满100元减20元的优惠条件,所以小华实际支付了90元。

中考数学试卷真题应用题

中考数学试卷真题应用题

1. 下列各数中,有理数是()A. √2B. πC. -3D. 2/32. 已知数列 {an} 的前n项和为 Sn,且 S1=2,S2=5,S3=12,则数列 {an} 的通项公式是()A. an=3n-1B. an=3nC. an=3n+1D. an=3n-23. 已知 a,b,c 成等差数列,且 a+b+c=0,则 b 的值是()A. 0B. -1C. 1D. 24. 在△ABC中,∠A=45°,∠B=30°,则△ABC是()A. 等腰三角形B. 等边三角形C. 直角三角形D. 钝角三角形5. 已知二次函数 y=ax^2+bx+c(a≠0)的图象与x轴的交点坐标为(-2,0)和(1,0),则该函数的解析式是()A. y=x^2-2x-2B. y=x^2+2x-2C. y=x^2-2x+2D. y=x^2+2x+2二、填空题6. 若 a,b,c 成等差数列,且 a+b+c=0,则 b 的值是______。

7. 已知二次函数 y=ax^2+bx+c(a≠0)的图象与x轴的交点坐标为(-2,0)和(1,0),则该函数的解析式是______。

8. 在△ABC中,∠A=45°,∠B=30°,则△ABC是______。

9. 已知数列 {an} 的前n项和为 Sn,且 S1=2,S2=5,S3=12,则数列 {an} 的通项公式是______。

三、解答题10. (15分)已知 a,b,c 成等差数列,且 a+b+c=0,求证:b=0。

证明:由题意得:a+b+c=0。

又因为 a,b,c 成等差数列,所以有 2b=a+c。

将 a+b+c=0 代入上式得:2b+2b=0,即 4b=0。

因此,b=0。

证毕。

11. (15分)已知二次函数 y=ax^2+bx+c(a≠0)的图象与x轴的交点坐标为(-2,0)和(1,0),求该函数的解析式。

解:设该二次函数的解析式为 y=ax^2+bx+c。

初三年级数学应用题

初三年级数学应用题

初三年级数学应用题题目一:速度与时间问题小华骑自行车从家到学校,如果以每小时15公里的速度行驶,他需要40分钟。

现在小华决定加快速度,以每小时20公里的速度行驶,求他需要多少时间才能到达学校。

解答:首先,我们需要将40分钟转换为小时,即40分钟 = 40/60 = 2/3小时。

已知速度v1 = 15公里/小时,时间t1 = 2/3小时。

根据速度、时间和距离的关系:距离 = 速度× 时间,我们可以求出小华家到学校的距离:距离= v1 × t1 = 15 × (2/3) = 10公里。

现在,小华以v2 = 20公里/小时的速度行驶,我们可以求出他需要的时间t2:t2 = 距离 / v2 = 10 / 20 = 1/2小时。

将1/2小时转换为分钟,即1/2 × 60 = 30分钟。

所以,小华以20公里/小时的速度行驶,需要30分钟到达学校。

题目二:成本与利润问题一家工厂生产一种商品,每件商品的成本是50元,如果以每件100元的价格出售,工厂每天可以卖出200件。

现在工厂决定降价销售,每件商品降价10元,求降价后每天的利润和销量。

解答:首先,我们计算原来的利润和销量:每件商品的利润 = 售价 - 成本 = 100 - 50 = 50元。

每天的总利润 = 每件商品的利润× 销量= 50 × 200 = 10000元。

现在,每件商品降价10元,新的售价为90元。

每件商品的新利润 = 新售价 - 成本 = 90 - 50 = 40元。

假设降价后销量增加到x件,我们可以根据利润不变的原则建立方程:原来的总利润 = 新的总利润10000 = 40 × x解得 x = 10000 / 40 = 250件。

所以,降价后每天的利润仍然是10000元,但是销量增加到了250件。

题目三:浓度问题一个容器内装有100升的盐水,其中盐的浓度为5%。

现在向容器中加入50升的纯水,求混合后的盐水浓度。

中考应用题精选(含答案)

中考应用题精选(含答案)

中考应用题精选(含答案)中考应用题精选(含答案)一、小明购买水果小明去水果店购买了一些苹果和橙子,苹果的单价为5元/斤,橙子的单价为4元/斤。

小明共购买了9斤水果,支付了43元。

1. 请问小明购买了多少斤苹果,多少斤橙子?解答:设小明购买的苹果为x斤,橙子为y斤,则由题意可得以下方程组:x + y = 9 (1)5x + 4y = 43 (2)(1)式乘以4,再与(2)式相减可得:4x + 4y - 5x - 4y = 36 - 43 => -x = -7 => x = 7所以小明购买了7斤苹果,9 - 7 = 2斤橙子。

2. 小明购买水果总共需要支付多少金额?解答:设小明购买的苹果总价为a元,橙子总价为b元,由题意可得以下方程组:a +b = 43 (3)5a + 4b = 9 * 5 (4)将(3)式乘以4,再与(4)式相减可得:4a + 4b - 5a - 4b = 172 - 45 => -a = 127 => a = -127(舍去)所以小明购买水果总共需要支付43元。

二、小明的年龄问题小明的爷爷今年87岁,小明今年10岁。

已知小明的爸爸在小明出生时是小明年龄的2倍,现在的爸爸年龄是小明年龄的3倍。

1. 请问小明的爸爸今年多少岁?解答:设小明的爸爸今年为x岁,则可得以下方程:10 - x = 2(x - 10) (5)将(5)式化简,得:10 - x = 2x - 203x = 30x = 10所以小明的爸爸今年10岁。

2. 请问小明的爷爷今年多少岁?解答:根据题意,小明的爷爷今年是小明爸爸的3倍,而小明爸爸今年是10岁,所以小明的爷爷今年87岁。

三、小明和小红的比例题小明和小红一起种植蔬菜,小明每天需要花费2小时来照料蔬菜园,小红每天需要花费3小时来照料蔬菜园。

已知小明比小红每天多照料蔬菜园1小时,两人一共照料蔬菜园13天。

1. 请问小明独自照料蔬菜园需要多少天才能完成任务?解答:设小明独自照料蔬菜园需要x天才能完成任务。

初中数学应用题目大全

初中数学应用题目大全

初中数学应用题目大全
一、整数运算
1. 某车间今年共生产了-1200辆汽车,明年计划生产2400辆汽车,问两年内共生产了多少辆汽车?
-1200 + 2400 = 1200
2. 甲数温度计的度数比乙数温度计的度数少45℃,已知乙数温度计的度数是-8℃,问甲数温度计的度数是多少?
-8 + 45 = 37
二、百分数
1. 某项商品原价为200元,现在打8折出售,问现价为多少?
200 × 0.8 = 160
2. 小明考试得了85分,班级总分为400分,班级平均分为80分,问小明的成绩相对于平均分高几个百分点?
85 - 80 = 5
三、利率问题
1. 某银行存款年利率为5%,小明存了2000元,请问3年后小明将获得多少利息?
2000 × 0.05 × 3 = 300
2. 甲行存款年利率为3%,乙行存款年利率为2%,小刚同时在两家银行存了5000元,问一年后他能获得多少利息?
(5000 × 0.03) + (5000 × 0.02) = 250
四、几何问题
1. 一个直角三角形的直角边长分别为3cm和4cm,求斜边长。

斜边长= √(3^2 + 4^2) = 5
2. 某房子的地面是一个长方形,长为8m,宽为6m,求地面的面积。

面积 = 8 × 6 = 48
以上是初中数学应用题目大全,希望能帮到你!。

初三数学应用题大全及答案

初三数学应用题大全及答案

初三数学应用题大全及答案例1、今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元。

假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3500(B.2500(1+x)2=3500C.2500(1+x%)2=3500D.2500(1+x)+2500(1+x)2=3500【解答】解:设增长率为x,根据题意得2500×(1+x)2=3500,故选B.例2、为落实素质教育要求,促进学生全面发展,某市某中学2009年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2011年投资18.59万元。

则该学校为新增电脑投资的年平均增长率是,从2009年到2011年,该中学三年为新增电脑共投资万元。

【解答】解:设该学校为新增电脑投资的年平均增长率是x11(1+x)2=18.59x=30%(则该学校为新增电脑投资的年平均增长率是30%11×(1+30%)=14.3万元11+14.3+18.59=43.89万元故答案为:30%;43.89练习1、股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停。

已知一只股票某天跌停,之后两天时间又涨回到原价。

若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2=B.(1+x)2=C.1+2x=D.1+2x=【解答】解:设平均每天涨x,则90%(1+x)2=1,即(1+x)2=,故选B。

(2、某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为()A.20%B.40%C.﹣220%D.30%【解答】解:设每年投资的增长率为x,根据题意,得:5(1+x)2=7.2解得:x1=0.2=20%,x2=﹣2.2(舍去),故每年投资的增长率为为20%,故选:A3、随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆。

九年级中考数学应用题专练

九年级中考数学应用题专练

中考冲刺应用专题1.六•一前夕,某幼儿园园长到厂家选购A、B两种品牌的儿童服装,每套A品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B种服装数量的2倍.(1)求A、B两种品牌服装每套进价分别为多少元?(2)该服装A品牌每套售价为130元,B品牌每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A品牌的服装多少套?2.某公司用6000元购进A,B两种电话机25台,购买A种电话机与购买B种电话机的费用相等.已知A种电话机的单价是B种电话机单价的1.5倍.(1)求A,B两种电话机的单价各是多少?(2)若计划用不超过8000元的资金再次购进A,B两种话机共30台,已知A,B两种电话机的进价不变,求最多能购进多少台A种电话机?3.2020年2月22日深圳地铁10号线华南城站试运行,预计今年6月正式开通。

在地铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元;已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元。

(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由。

4.某县积极响应国家优先发展教育事业的重大部署,对通往某偏远学校的一段全长为1200米的道路进行了改造,铺设柏油路面,铺设400米后,为了尽快完成道路改造,后来每天的工作效率比原计划提高25%,结果共用13天完成道路改造任务.(1)求原计划每天铺设路面多少米?(2)若承包商原来每天支付工人工资为1500元,提高工作效率后每天支付给工人的工资为2000元,完成整个工程后承包商共支付工人工资多少元?5. 某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?6. 某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?7.某单位计划购买甲、乙两种品牌的消毒剂,乙种品牌消毒剂每瓶的价格比甲种品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲种品牌消毒剂的数量与用400元购买乙种品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该单位从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙种品牌消毒剂?8.某中学为了创设“书香校园”,准备购买A,B两种书架,用于放置图书.在购买时发现,A种书架的单价比B种书架的单价多20元,用600元购买A种书架的个数与用480元购买B种书架的个数相同.(1)求A,B两种书架的单价各是多少元?(2)学校准备购买A,B两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个A种书架?9.甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路500m,甲队比乙队少用5天.(1)求甲,乙两支工程队每天各修路多少米?(2)我市计划修建长度为3600m的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0.5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天?10.某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?11.资中某学校为了改善办学条件,计划购置一批电子白板和台式电脑.经招投标,购买一台电子白板比购买2台台式电脑多3000元,购买2台电子白板和3台台式电脑共需2.7万元.(1)求购买一台电子白板和一台台式电脑各需多少元?(2)根据该校实际情况,购买电子白板和台式电脑的总台数为24,并且台式电脑的台数不超过电子白板台数的3倍.问怎样购买最省钱?12.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?13.某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A 种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司5月份运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B 货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?14.某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?(2)根据中学的实际情况,需从体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?15.为建设“生态园林城市”吉安市绿化提质改造工程正如火如荼地进行,某施工队计划购买甲、乙两种树苗共400棵对某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?参考答案1、解:(1)设A 品牌服装每套进价为x 元,则B 品牌服装每套进价为(x ﹣25)元,由题意得:=×2,解得:x =100,经检验:x =100是原分式方程的解,x ﹣25=100﹣25=75,答:A 、B 两种品牌服装每套进价分别为100元、75元;(2)设购进A 品牌的服装a 套,则购进B 品牌服装(2a+4)套,由题意得:(130﹣100)a+(95﹣75)(2a+4)>1200,解得:a >16,答:至少购进A 品牌服装的数量是17套.2、解:(1)设B 种电话机的单价是x 元,则A 种电话机的单价是1.5x 元,依题意,得:+=25, 解得:x =200,经检验,x =200是原方程的解,且符合题意,∴1.5x =300.答:A 种电话机的单价是300元,B 种电话机的单价是200元.(2)设购进m 台A 种电话机,则购进(30﹣m )台B 种电话机,依题意,得:300m+200(30﹣m )≤8000,解得:m ≤20.答:最多能购进20台A 种电话机.3、解:(1)设甲工程队单独完成这项工程需要x 天,则乙工程队单独完成这项工程需要1.5x 天,依题意,得:12x +121.5x=1, 解得:x =20,经检验,x =20是原分式方程的解,且符合题意,∴1.5x =30.答:甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,依题意,得:12y+12(y﹣250)=27720,解得:y=1280,∴y﹣250=1030.甲工程队单独完成共需要费用:1280×20=25600(元),乙工程队单独完成共需要费用:1030×30=30900(元).∵25600<30900,∴甲工程队单独完成需要的费用低,应选甲工程队单独完成.4、解:(1)设原计划每天铺设路面x米,则提高工作效率后每天铺设路面(1+25%)x米,依题意,得:+=13,解得:x=80,经检验,x=80是原方程的解,且符合题意.答:原计划每天铺设路面80米.(2)1500×+2000×(13﹣)=23500(元).答:完成整个工程后承包商共支付工人工资23500元.5、解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.6、解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,=x=15,。

初三数学应用题大全及答案

初三数学应用题大全及答案

初三数学应用题大全及答案
初三数学应用题大全及答案
1. 小珠旅游团里有男生9人,女生3人。

他们分为三个组,每组男生
和女生的比例相同,每组人数为4人。

请问小珠团里有几组?
答案:小珠团里有3组。

2. 一班有20名学生,其中10名男生,10名女生,两人两人一组,每
个组一个男生一个女生,每组都不一样,写出所有可能的组合方式。

答案:男生女生组合方式为:1男1女,2男2女,3男3女,4男4女,5男5女,6男6女,7男7女,8男8女,9男9女,10男10女。

3. 一条条形码共有32位,每8位作为一组,每组有多少个?
答案:一条条形码共有32位,每8位作为一组,则一共有4组。

4. 一家餐馆有4桌正在用餐,每桌客人人数相同,共有28人,请问每桌客人数有多少?
答案:每桌客人数有7人。

5. 有3把锁,组合为ABC,其中A、B、C代表3种颜色,则有多少种组合方式?
答案:有6种组合方式,分别为:ABC、ACB、BAC、BCA、CAB、CBA。

初三数学上册应用题试卷

初三数学上册应用题试卷

一、选择题(每题5分,共50分)1. 一辆汽车从甲地开往乙地,每小时行驶60千米。

如果汽车提前1小时出发,那么汽车需要多少小时才能到达乙地?A. 3小时B. 4小时C. 5小时D. 6小时2. 一个长方形的长是10厘米,宽是6厘米,它的周长是多少厘米?A. 26厘米B. 24厘米C. 22厘米D. 28厘米3. 一个数加上它的两倍等于36,这个数是多少?A. 12B. 18C. 20D. 244. 一个班级有男生和女生共50人,男生人数是女生的3倍,男生和女生各有多少人?A. 男生30人,女生20人B. 男生40人,女生10人C. 男生45人,女生5人D. 男生50人,女生0人5. 一个正方形的边长增加了10%,那么它的面积增加了多少?A. 10%B. 20%C. 21%D. 30%6. 一辆自行车以每小时15千米的速度行驶,行驶了3小时后,自行车行驶了多少千米?A. 45千米B. 50千米C. 60千米D. 75千米7. 一个长方体的长、宽、高分别是6厘米、4厘米、3厘米,它的体积是多少立方厘米?A. 72立方厘米B. 96立方厘米C. 108立方厘米D. 120立方厘米8. 一个班级有学生60人,其中参加篮球比赛的有20人,参加足球比赛的有30人,同时参加篮球和足球比赛的有10人,那么至少有多少人既没有参加篮球比赛也没有参加足球比赛?A. 10人B. 15人C. 20人D. 25人9. 一个等腰三角形的底边长为8厘米,腰长为6厘米,那么这个三角形的面积是多少平方厘米?A. 24平方厘米B. 30平方厘米C. 36平方厘米D. 42平方厘米10. 一个数的十分之一加上它的二分之一等于7,这个数是多少?A. 10B. 14C. 16D. 18二、填空题(每题5分,共50分)1. 如果一个数的平方等于36,那么这个数是_________。

2. 一个长方形的面积是24平方厘米,如果它的长是6厘米,那么它的宽是_________厘米。

数学中考应用题及答案

数学中考应用题及答案

数学中考应用题及答案1. 某工厂生产一种产品,原计划每天生产100件,实际每天生产120件。

若原计划生产时间为30天,实际生产时间为25天,求实际生产效率比原计划提高了百分之几?答案:解:首先计算原计划和实际的生产总量。

原计划生产总量 = 100件/天× 30天 = 3000件实际生产总量 = 120件/天× 25天 = 3000件接下来计算提高的百分比。

提高的百分比 = [(实际生产量 - 原计划生产量) / 原计划生产量] × 100%提高的百分比 = [(3000 - 3000) / 3000] × 100% = 0%答:实际生产效率与原计划相比没有提高。

2. 某商店购进一批商品,进价为每件20元,若按每件30元出售,可售出500件。

若每件商品提价1元,销售量将减少20件。

求该商店为获得最大利润,每件商品应定价多少元?答案:解:设每件商品提价x元,则每件商品的售价为(30+x)元,销售量为(500-20x)件。

利润函数为:y = (30+x-20)(500-20x) = -20x^2 + 300x + 5000这是一个开口向下的二次函数,对称轴为x = 7.5。

当x = 7.5时,y取得最大值,此时售价为30 + 7.5 = 37.5元。

答:每件商品应定价为37.5元,此时利润最大。

3. 某校组织学生去春游,若租用45座客车,则有15人没有座位;若租用同样数量的60座客车,则多出一辆,其余车刚好坐满。

求该校共有多少名学生?答案:解:设租用45座客车x辆,则学生总数为45x + 15。

根据题意,租用60座客车时,有(x-1)辆坐满,一辆空着,所以学生总数为60(x-1)。

将两个表达式相等,得到方程:45x + 15 = 60(x-1)解方程得:45x + 15 = 60x - 6015 + 60 = 60x - 45x75 = 15xx = 5所以,学生总数为:45 × 5 + 15 = 240人。

数学中考实际应用题选择题

数学中考实际应用题选择题

数学中考实际应用题选择题1. 题目:小明家的果园里有苹果树和梨树,共有100棵树。

已知苹果树有30棵,那么梨树有多少棵?选项:A. 70棵 B. 80棵 C. 90棵 D. 100棵2. 题目:小华有20元钱,他想买一些水果。

苹果每千克10元,梨每千克8元。

如果他买2千克苹果和1千克梨,他还需要带多少钱?选项:A. 5元 B. 10元 C. 15元 D. 20元3. 题目:小明的妈妈买了一箱牛奶,共有24盒。

如果每盒牛奶需要3元,那么这箱牛奶一共多少钱?选项:A. 72元 B. 66元 C. 60元 D. 54元4. 题目:一辆公交车从A地出发,以每分钟60米的速度向B地行驶。

如果B地距离A地有2400米,那么公交车到达B地需要多少时间?选项:A. 40分钟 B. 30分钟 C. 20分钟 D. 10分钟5. 题目:一个长方形的长是8厘米,宽是5厘米。

求这个长方形的面积。

选项:A. 40平方厘米 B. 32平方厘米 C. 20平方厘米 D. 16平方厘米6. 题目:小华有一些糖果,如果他每天吃2颗,那么糖果可以吃6天。

如果他每天吃3颗,那么糖果可以吃几天?选项:A. 4天 B. 5天 C. 6天 D. 7天7. 题目:一个正方形的边长是10厘米,求这个正方形的对角线长度。

选项:A. 14厘米 B. 12厘米 C. 10厘米 D. 8厘米8. 题目:小王有一些铅笔,如果他每天用3支,那么铅笔可以用来12天。

如果他每天用5支,那么铅笔可以用来几天?选项:A. 8天 B. 6天 C. 4天 D. 3天9. 题目:一个圆的半径是5厘米,求这个圆的面积。

选项:A. 78.5平方厘米 B. 75平方厘米 C. 70平方厘米 D. 65平方厘米10. 题目:一辆自行车以每小时15公里的速度行驶,如果行驶了3小时,那么它一共行驶了多少公里?选项:A. 45公里 B. 30公里 C. 15公里 D. 20公里11. 题目:一个三角形的底是8厘米,高是5厘米。

中考数学应用题(各类应用题汇总练习)

中考数学应用题(各类应用题汇总练习)

中考数学应用题(各类应用题汇总练习)中考数学应用题是考察学生在解决实际问题中应用数学知识和思维方法的能力。

这类题目通常涉及到数学与日常生活、生产劳动、科学技术等方面的联系,要求学生能够理解问题背景,运用数学知识去解决问题。

一、人民币兑换问题题目要求学生计算将一种货币兑换成另一种货币的数目。

例如,将人民币兑换成美元,或者将美元兑换成欧元等。

题目可设计如下:甲有5000人民币,最近他打算去美国旅行,需要将人民币兑换成美元。

已知1美元兑换成6.5人民币,甲打算兑换多少美元?二、购物打折问题题目要求学生计算购物时的打折优惠,例如满减、折扣等。

题目可设计如下:小明去商场购买一条裤子,这条裤子原价280元,商场正在举行活动,凡是购买满300元的商品都可以打8折。

小明购买这条裤子需要支付多少钱?三、完全平方数问题题目要求学生判断一个数是否为完全平方数,并计算它的平方根。

题目可设计如下:已知某个数的平方根是16,请计算这个数是多少?四、速度和距离问题题目要求学生根据给定的速度和时间,计算距离。

题目可设计如下:甲以每小时60千米的速度骑自行车,乙以每小时80千米的速度骑自行车,他们同时从相距200千米的地方出发相向而行。

请问他们相遇需要多少时间?五、平均数问题题目要求学生计算一组数的平均数,并应用平均数解决实际问题。

题目可设计如下:小明参加了五次考试,分别得到60分、70分、80分、90分和100分,请问他的平均分是多少?以上是中考数学应用题中的一些常见类型。

通过解答这些问题,学生们可以理解数学知识在实际生活中的应用,培养数学思维和解决问题的能力。

中考数学应用题汇编及解析

中考数学应用题汇编及解析

一、代数应用题:1、农科所向农民推荐渝江Ⅰ号和渝江Ⅱ号两种新型良种稻谷.在田间管理和土质相同的条件下,Ⅱ号稻谷单位面积的产量比Ⅰ号到谷低20%,但Ⅱ号稻谷的米质好,价格比Ⅰ号高.已知Ⅰ号稻谷国家的收购价是1.6元/千克.(1) 当Ⅱ号稻谷的国家收购价是多少时,在田间管理、图纸和面积相同的两块田丽分别种植Ⅰ号、Ⅱ号稻谷的收益相同?(2) 去年小王在土质、面积相同的两块田里分别种植Ⅰ号、Ⅱ号稻谷,且进行了相同的田间管理.收获后,小王把稻谷全部卖给国家.卖给国家时,Ⅱ号稻谷的国家收购价定为2.2元/千克,Ⅰ号稻谷国家的收购价未变,这样小王卖Ⅱ号稻谷比卖Ⅰ号稻谷多收入1040元,那么小王去年卖给国家的稻谷共有多少千克?[解析] (1)由题意,得1.62120%=-(元); (2)设卖给国家的Ⅰ号稻谷x 千克,根据题意,得(120%) 2.2 1.61040x x -⨯=+. 解得,6500x =(千克)(120%) 1.811700x x x +-==(千克)答:(1)当Ⅱ号稻谷的国家收购价是2元时,种植Ⅰ号、Ⅱ号稻谷的收益相同; (2)小王去年卖给国家的稻谷共为11700千克.2、机械加工需要拥有进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量进行攻关.(1) 甲车间通过技术革新后,加工一台大型机械设备润滑用油量下降到70千克,用油的重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?(2) 乙车间通过技术革新后,不仅降低了润滑用油量,同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油量每减少1千克,用油量的重复利用率将增加1.6%. 这样乙车间加工一台大型机械设备的实际耗油量下降到12千克. 问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克?用油的重复利用率是多少?[解析](1)由题意,得70(160%)7040%28⨯-=⨯=(千克) (2)设乙车间加工一台大型机械设备润滑用油量为x 千克, 由题意,得[1(90) 1.6%60%]12x x ⨯--⨯-= 整理,得2657500x x --=部门经理解得:1275,10x x ==-(舍去)(9075) 1.6%60%84%-⨯+=答:(1)技术革新后,甲车间加工一台大型机械设备的实际耗油量是28千克.(2)技术革新后,乙车间加工一台大型机械设备润滑用油量是75千克?用油的重复利用率是84%.3、某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:(1(2中位数为 元,众数为(3问题,并指出用(2实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y (结果保留整数),并判断y 能否反映该公司员工的月工资实际水平.[解析] (1)由表中数据知有16名;(2)由表中数据知中位数为1700;众数为1600;(3)这个经理的介绍不能反映该公司员工的月工资实际水平.用1700元或1600元来介绍更合理些.(说明:该问中只要写对其中一个数据或相应统计量(中位数或众数)也可以) (4)250050210008400346y ⨯--⨯=≈1713(元).y 能反映.4、某旅游胜地欲开发一座景观山.从山的侧面进行堪测,迎面山坡线ABC 由同一平面内的两段抛物线组成,其中AB 所在的抛物线以A 为顶点、开口向下,BC 所在的抛物线以C 为顶点、开口向上.以过山脚(点C )的水平线为x 轴、过山顶(点A )的铅垂线为y 轴建立平面直角坐标系如图(单位:百米).已知AB 所在抛物线的解析式为8412+-=x y ,BC 所在抛物线的解析式为2)8(41-=x y ,且已知)4,(m B . (1)设),(y x P 是山坡线AB 上任意一点,用y 表示x ,并求点B 的坐标;(2)从山顶开始、沿迎面山坡往山下铺设观景台阶.这种台阶每级的高度为20厘米,长度因坡度的大小而定,但不得小于20厘米,每级台阶的两端点在坡面上(见图).①分别求出前三级台阶的长度(精确到厘米); ②这种台阶不能一直铺到山脚,为什么?(3)在山坡上的700米高度(点D )处恰好有一小块平地,可以用来建造索道站.索道的起点选择在山脚水平线上的点E 处,1600=OE (米).假设索道DE 可近似地看成一段以E 为顶点、开口向上的抛物线,解析式为2)16(281-=x y .试求索道的最大悬空..高度.[∴8412+-=x y ,0≥x , (…2分) ∴)8(42y x -=,y x -=82(…3分) ∵)4,(m B ,∴482-=m =4,∴)4,4(B(…4分)(2)在山坡线AB 上,y x -=82,)8,0(A①令80=y ,得00=x ;令998.7002.081=-=y ,得08944.0002.021≈=x ∴第一级台阶的长度为08944.001=-x x (百米)894≈(厘米)(…6分)同理,令002.0282⨯-=y 、002.0383⨯-=y ,可得12649.02≈x 、15492.03≈x ∴第二级台阶的长度为03705.012=-x x (百米)371≈(厘米) (…7分) 第三级台阶的长度为02843.023=-x x (百米)284≈(厘米)(…8分)②取点)4,4(B ,又取002.04+=y ,则99900.3998.32≈=x∵002.0001.099900.34<=-∴这种台阶不能从山顶一直铺到点B ,从而就不能一直铺到山脚 (…10分)(注:事实上这种台阶从山顶开始最多只能铺到700米高度,共500级.从100米高度到700米高度都不能铺设这种台阶.解题时取点具有开放性) ②另解:连接任意一段台阶的两端点P 、Q ,如图 ∵这种台阶的长度不小于它的高度 ∴︒≤∠45PQR当其中有一级台阶的长大于它的高时, ︒<∠45PQR(…9分)在题设图中,作OA BH ⊥于H则︒=∠45ABH ,又第一级台阶的长大于它的高∴这种台阶不能从山顶一直铺到点B ,从而就不能一直铺到山脚 (…10分)(3))7,2(D 、)0,16(E 、)4,4(B 、)0,8(C由图可知,只有当索道在BC 上方时,索道的悬空..高度才有可能取最大值(…11分) 索道在BC 上方时,悬空..高度2)16(281-=x y 2)8(41--x )96403(1412-+-=x x 38)320(1432+--=x (…13分)当320=x 时,38m ax =y∴索道的最大悬空..高度为3800米. 5、有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.图11是反映所挖河渠长度y (米)与挖掘时间x (时)之间关系的部分图象.请解答下列问题: (1)乙队开挖到30米时,用了_____小时.开挖6小时时,甲队比乙队多挖了______米; (2)请你求出: ①甲队在0≤x ≤6的时段内,y 与x 之间的函数关系式; ②乙队在2≤x ≤6的时段内,y 与x 之间的函数关系式; ③开挖几小时后,甲队所挖掘河渠的长度开始超过乙队?PQR时)(3)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?[解析] (1)2;10;(2)①设甲队在0≤x ≤6的时段内y 与x 之间的函数关系式为y =k 1x ,由图可知,函数图象过点(6,60), ∴6 k 1=60,解得k 1=10, ∴y =10x .②设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为y =k 2x +b ,由图可知,函数图象过点(2,30)、(6,50),∴22230,650.k b k b +=⎧⎨+=⎩ 解得25,20.k b =⎧⎨=⎩∴y =5x +20.③由题意,得10x >5x +20,解得x >4.所以,4小时后,甲队挖掘河渠的长度开始超过乙队.(说明:通过观察图象并用方程来解决问题,正确的也给分) (3)由图可知,甲队速度是:60÷6=10(米/时).设甲队从开挖到完工所挖河渠的长度为z 米,依题意,得6050.1012z z --=解得 z =110.答:甲队从开挖到完工所挖河渠的长度为110米.6、利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7. 5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x (元),该经销店的月利润为y (元). (1)当每吨售价是240元时,计算此时的月销售量;(2)求出y 与x 的二次函数关系式(不要求写出x 的取值范围);(3)请把(2)中的二次函数配方成2()y a x h k =-+的形式,并据此说明,该经销店要获得最大月利润,售价应定为每吨多少元;(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.[解析] (1)5.71024026045⨯-+=60(吨).(2)260(100)(457.5)10xy x -=-+⨯,化简得: 23315240004y x x =-+-.(3)24000315432-+-=x x y 23(210)90754x =--+.利达经销店要获得最大月利润,材料的售价应定为每吨210元.(4)我认为,小静说的不对.理由:方法一:当月利润最大时,x 为210元,而对于月销售额)5.71026045(⨯-+=xx W 23(160)192004x =--+来说, 当x 为160元时,月销售额W 最大. ∴当x 为210元时,月销售额W 不是最大. ∴小静说的不对.方法二:当月利润最大时,x 为210元,此时,月销售额为17325元;而当x 为200元时,月销售额为18000元.∵17325<18000, ∴当月利润最大时,月销售额W 不是最大. ∴小静说的不对.(说明:如果举出其它反例,说理正确,也相应给分)二、几何应用题:8、图10—1是某学校存放学生自行车的车棚的示意图(尺寸如图所示),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图10—2是车棚顶部截面的示意图, AB 所在圆的圆心为O . 车棚顶部是用一种帆布覆盖的,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留π).[解析]连结OB ,过点O 作OE ⊥AB ,垂足为E ,交 AB 于F ,如图1.…………(1分)由垂径定理,可知: E 是AB 中点,F 是 AB 中点,∴EF 是弓形高 .∴AE ==AB 2123,EF =2. …………(2分) 设半径为R 米,则OE =(R -2)米.在Rt △AOE 中,由勾股定理,得 R 2=22)32()2(+-R .解得 R =4. ……………………………………………………………………(5分)O BA·图10—2图10—1图1∵sin ∠AOE =23=OA AE , ∴ ∠AOE =60°, ………………………………(6分)∴∠AOB =120°. ∴ AB 的长为1804120π⨯=38π.………………………(7分) ∴帆布的面积为38π×60=160π(平方米). …………………………………(8分)(说明:本题也可以由相交弦定理求圆的半径的长.对于此种解法,请参照此评分标准相应给分)9、图14-1至图14-7的正方形霓虹灯广告牌ABCD 都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O .如图14-1,有一个边长为6个单位长的正方形EFGH 的对称中心也是点O ,它以每秒1个单位长的速度由起始位置向外扩大(即点O 不动,正方形EFGH 经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;……),直到充满正方形ABCD ,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.另有一个边长为6个单位长的正方形MNPQ 从如图14-1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD 的内侧边缘按A →B →C →D →A 移动(即正方形MNPQ 从点P 与点A 重合位置开始,先向左平移,当点Q 与点B 重合时,再向上平移,当点M 与点C 重合时,再向右平移,当点N 与点D 重合时,再向下平移,到达起始位置后仍继续按上述方式移动).正方形EFGH 和正方形MNPQ 从如图14-1的位置同时开始运动,设运动时间为x 秒,它们的重叠部分面积为y 个平方单位.(1)请你在图14-2和图14-3中分别画出x 为2秒、18秒时,正方形EFGH 和正方形MNPQ 的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;(2)①如图14-4,当1≤x ≤3.5时,求y 与x 的函数关系式;②如图14-5,当3.5≤x ≤7时,求y 与x 的函数关系式; ③如图14-6,当7≤x ≤10.5时,求y 与x 的函数关系式; ④如图14-7,当10.5≤x ≤13时,求y 与x 的函数关系式. (3)对于正方形MNPQ 在正方形ABCD 各边上移动一周的过程,请你根据重叠部分面积y 的变化情况,指出y 取得最大值和最小值时,相对应的x 的取值情况,并指出最大值和最小值分别是多少.(说明:问题(3)是额外加分题,加分幅度为1~4分)图14-6D 图14-2 图14-3 D D 图14-4D图14-1 (P ) D N 图14-5 D图14-7DP[解析](1)相应的图形如图2-1,2-2.当x =2时,y =3; 当x =18时,y =18.(2)①当1≤x ≤3.5时,如图2-3,延长MN 交AD 于K ,设MN 与HG 交于S ,MQ 与FG 交于T ,则MK =6+x ,SK =TQ =7-x ,从而MS =MK -SK =2x -1,MT =MQ -TQ =6-(7-x )= x -1. ∴y=MT ·MS =(x -1)(2x -1)=2x 2-3x +1.②当3.5≤x ≤7时,如图2-4,设FG 与MQ 交于T ,则 TQ =7-x ,∴MT =MQ -TQ =6-(7-x )=x -1. ∴y=MN ·MT =6(x -1)=6x -6.③当7≤x ≤10.5时,如图2-5,设FG 与MQ 交于T ,则 TQ=x -7,∴MT =MQ -TQ =6-(x -7)=13-x . ∴y = MN ·MT =6(13-x )=78-6x .④当10.5≤x ≤13时,如图2-6,设MN 与EF 交于S ,NP 交FG 于R ,延长NM 交BC 于K ,则MK =14-x ,SK =RP =x -7,∴SM =SK -MK=2x -21,从而SN =MN -SM =27-2x ,NR =NP -RP =13-x . ∴y=NR ·SN =(13-x )(27-2x )=2x 2-53x +351.(说明:以上四种情形,所求得的y 与x 的函数关系式正确的,若不化简不扣分) (3)对于正方形MNPQ ,①在AB 边上移动时,当0≤x ≤1及13≤x ≤14时,y 取得最小值0;当x =7时,y 取得最大值36.②在BC 边上移动时,当14≤x ≤15及27≤x ≤28时,y 取得最小值0;当x =21时,y 取得最大值36. ③在CD 边上移动时,当28≤x ≤29及41≤x ≤42时,y 取得最小值0;当x =35时,y 取得最大值36.④在DA 边上移动时,当42≤x ≤43及55≤x ≤56时,y 取得最小值0; 当x =49时,y 取得最大值36.图2-4 D 图2-5D P图2-6D图2-3 DQ P 图2-2D 图2-1D Q P。

中考数学专题复习应用题行程问题

中考数学专题复习应用题行程问题

中考数学专题复习应用题
行程问题
Prepared on 21 November 2021
行程问题应用题
1.一列队伍长120米,在队伍行进时,通讯员从队尾赶到队首又立即返回队尾,若这段时间内队伍向前进了288米,队伍及通讯员速度始终不变,那么这段时间通讯员行走路程是多少
2.某铁路桥长1000米,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用1分钟,整列火车完全在桥上的时间共40S,求火车的速度和长度。

3.甲乙二人分别从AB两地同时出发,相向而行,他们第一次相遇时距离A地60千米,然后两人继续前行,分别到达BA后调头继续前行。

当他们第二次相遇时距离B地30千米。

问AB两地的距离是多少
4.在复线铁路上,快车和慢车分别从两个车站开出,相向而行。

快车车身长是180米,速度为每秒钟9米;慢车车身长210米,车速为每秒钟6米。

从两车头相遇到两车的尾部离开,需要几秒钟
5.甲、乙二人分别从A、B两地同时相向而行,甲每小时行5千米,乙每小时行4千米。

二人第一次相遇后,都继续前进,分别到达B、A两地后又立即按原速度返回。

从开始走到第二次相遇,共用了6小时。

A、B两地相距多少千米
6.一排解放军从驻地出发去执行任务,每小时行5千米。

离开驻地3千米时,排长命令通讯员骑自行车回驻地取地图。

通讯员以每小时10千米的速度回到驻地,取了地图立即返回。

通讯员从驻地出发,几小时可以追上队伍。

中考数学应用题专项练习

中考数学应用题专项练习

中考数学应用题专项练习1. 某生态农业有限公司帮助和指导当地车厘子种植基地种植和销售车厘子,已知该车厘子的成本是12元/千克,规定销售价格不高于成本的2倍。

经市场调查发现,该车厘子的销售量y(千克)与销售价格x(元/千克)之间的函数关系如图所示:(1) 求y与x的函数关系式;(2) 当销售价格为多少时,销售车厘子所获的利润W最大?并求出此时的最大利润。

2. 某网店销售一种消毒用紫外线灯很畅销,该网店店主结合店铺数据发现日销量y(件)是售价x(元/件)的一次函数,其售价、日销售量、日销售纯利润W(元)的四组对应值如表:已知该商品进价是100元/件,该网店每日的固定成本折算下来为2000元。

注:日销售纯利润=日销售量×(售价-进价)-每日固定成本。

(1) 求y与x的函数关系式;(2) 当售价x(元/件)定为多少时,日销售纯利润W(元)最大?求出最大纯利润。

3. 某乡镇的主要经济作物为茶叶,该地政府为了推进乡村振兴战略,解决当地茶农卖茶困难的问题,决定在新茶上市30天内,帮助茶农集中销售.根据销售记录发现:第1天销售量为42斤,后面每天比前一天增加2斤;前10天的价格为500元/斤,后20天价格每天比前一天降低10元,设第x天(x为整数)的售价为y(元/斤),日销售额为w(元)。

(1) 求y与x的函数关系式;(2) 当第几天时日销售额w最大?求最大的日销售额。

4. 作为全球三大黄肉型猕猴桃种植地之一,成都市蒲江县是世界上少有、成都唯一的红、黄、绿三色齐聚的猕猴桃产地.某水果经销商到猕猴桃种植基地采购一种红心猕猴桃,经销商一次性采购红心猕猴桃的采购单价y(元/千克)与采购量x(千克)之间的函数关系如图所示。

(1) 求y与x的函数关系式;(2) 若红心猕猴桃的种植成本为6元/千克,某经销商一次性采购红心猕猴桃的采购量不超过200千克,求当采购量是多少时,猕猴桃种植基地获利最大?求最大利润。

5. 端午节前,某商店用8000元购进一批粽子礼盒,很快售完,于是商店又用20000元购进了第二批粽子礼盒,所购数量是第一批购进量的两倍,但每个礼盒的进价贵了20元。

中考初中数学应用题经典练习题

中考初中数学应用题经典练习题

中考初中数学应用题经典练习题中考初中数学应用题经典练题一、综合题(共8题;共85分)1.(10分)(2015•深圳)下表为深圳市居民每月用水收费标准,(单位:元/m3)。

根据表格,当用水量不超过22立方米时,每立方米的水费为a元,超过22立方米后,每立方米的水费为1.5元。

1) 已知某用户用水10立方米,共交水费23元,求a的值。

解:设a为每立方米的水费。

当用水量不超过22立方米时,总用水量为10立方米,总水费为10a元。

当用水量超过22立方米时,总用水量为0立方米,总水费为0元。

因此,总水费为10a元,根据题意,有10a+12(1.5)=23,解得a=1.05.2) 在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?解:当用水量不超过22立方米时,总用水量为x立方米,总水费为xa元。

当用水量超过22立方米时,总用水量为5月份用水量减去22立方米,总水费为(5月份用水量-22)×1.5元。

因此,总水费为xa+(5月份用水量-22)×1.5元,根据题意,有xa+(5月份用水量-22)×1.5=71,代入a=1.05,解得5月份用水量为34立方米。

2.(10分)XXX要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜,若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元。

1) 求每个A型放大镜和每个B型放大镜各多少元?设每个A型放大镜的价格为x元,每个B型放大镜的价格为y元。

根据题意,有8x+5y=220,4x+6y=152.解得x=12,y=28,因此每个A型放大镜12元,每个B 型放大镜28元。

2) XXX决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?设购买A型放大镜的数量为m,购买B型放大镜的数量为n。

根据题意,有mx+ny≤1180,m+n=75.要求购买的A型放大镜数量最多,即要求x/m的值最小。

中考数学应用题练习题库及答案

中考数学应用题练习题库及答案

中考数学应用题练习题库及答案在下面的文章中,我将提供一些中考数学应用题的练习题库及答案。

文章将根据合适的格式书写,以确保信息的清晰呈现。

请阅读以下内容:题目:中考数学应用题练习题库及答案一、选择题:1. 一根铁丝长2米,要将它剪成两段,使得其中一段是另一段的3倍,求两段铁丝各有多长?A. 1米和1米B. 0.8米和1.2米C. 0.6米和1.4米D. 0.5米和1.5米答案:C2. 如果一个等差数列的首项是3,公差是4,那么它的第8项是多少?A. 27B. 28C. 29D. 30答案:C3. 一块面积为64平方厘米的正方形纸板,从中剪掉一个面积为36平方厘米的小正方形纸板,剩下的形状是什么?A. 长方形B. 正方形C. 圆形D. 梯形答案:A二、填空题:1. 已知正方形边长为5厘米,求其周长是多少?答案:20厘米2. 某商品原价为100元,现以8折优惠出售,打完折后的价格是多少元?答案:80元3. 若两根相交线段的长度分别为5厘米和12厘米,求它们的夹角的正弦值。

答案:0.8三、解答题:1. 一连数的和是12345,已知这个连数有45个数,第一个数和最后一个数依次为a和b,求a和b的大小。

答案:a=1,b=45解析:连续数的和等于首项和末项乘以项数的一半,即(a+b) * 45/2 = 12345。

解方程得到a=1,b=45。

2. 高为15厘米的三角形与高为12厘米的梯形的面积相等,那么这两个多边形底边之间的长度差是多少?答案:4厘米解析:三角形的面积为底边乘以高的一半,梯形的面积为上底加下底再乘以高的一半。

用等式表示为(15 * 底边) / 2 = (12 * (上底 + 下底)) / 2。

整理得底边 = 上底 + 下底 - 4。

以上是一些中考数学应用题的练习题库及答案,希望对你的学习有所帮助。

九年级上册一元二次方程应用题

九年级上册一元二次方程应用题

九年级上册一元二次方程应用题一、面积问题。

1. 用一块长80cm,宽60cm的薄钢片,在四个角上截去四个相同的小正方形,然后做成底面积为1500cm²的无盖的长方体盒子,求截去的小正方形的边长。

- 解析:设小正方形的边长为x cm。

- 那么长方体盒子底面的长为(80 - 2x)cm,宽为(60 - 2x)cm。

- 根据长方体底面积公式S =长×宽,可得到方程(80 - 2x)(60 - 2x)=1500。

- 展开方程得4800-160x - 120x+4x^2=1500。

- 整理得4x^2-280x + 3300 = 0,两边同时除以4得x^2-70x+825 = 0。

- 分解因式得(x - 15)(x - 55)=0。

- 解得x_1=15,x_2=55。

- 因为60 - 2x>0,80 - 2x>0,当x = 55时,60-2x=60 - 110=- 50<0(舍去)。

- 所以截去的小正方形的边长为15cm。

2. 一个直角三角形的两条直角边的和是14cm,面积是24cm²,求两条直角边的长。

- 解析:设一条直角边为x cm,则另一条直角边为(14 - x)cm。

- 根据直角三角形面积公式S=(1)/(2)×一条直角边×另一条直角边,可得方程(1)/(2)x(14 - x)=24。

- 去分母得x(14 - x)=48。

- 展开得14x-x^2=48,整理得x^2-14x + 48 = 0。

- 分解因式得(x - 6)(x - 8)=0。

- 解得x_1=6,x_2=8。

- 当x = 6时,14 - x = 8;当x = 8时,14 - x = 6。

- 所以两条直角边的长分别为6cm和8cm。

二、增长率问题。

3. 某公司前年缴税40万元,今年缴税48.4万元。

该公司缴税的年平均增长率为多少?- 解析:设该公司缴税的年平均增长率为x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程应用知识点: 1.等积变形问题2.市场经济问题3.数字问题4、行程问题5、工程问题列一元一次方程解应用题的一般步骤(1〕审题:弄清题意;(2〕找出等量关系 :找出能够表示此题含义的相等关系;(3〕设出未知数,列出方程:表示出有关的含字母的式子,然后利用已找出的等量关系列出方程;(4〕解方程:解所列的方程,求出未知数的值,(5〕检验,写答案 :检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案。

知识点一、等积变形问题常见的几何图形的面积、体积、周长计算公式,依据形虽变,但体积或面积不变。

(1〕(2〕(3〕圆柱体体积公式: V= 底面积×高 =sh= r2h圆锥体的体积的公式: V=13×底面积×高 =13 sh=13πr2例1.在底面直径为 12cm,高为 20cm 的圆柱形容器中注满水,倒入底面是边长为 10cm 的正方形的长方体容器,正好注满。

这个长方体容器的高是多少?例2.将一罐满水的直径为 40 厘米,高为 60 厘米的圆柱形水桶里的水全部灌于另一半径为30 厘米的圆柱形水桶里,问这时水的高度是多少?例 3、用直径为 4cm 的圆钢〔截面为圆形的实心长条钢材〕铸造 3 个直径为 2cm,高为 16cm 的圆柱形零件,那么需要截取多长的圆钢?例 4、某铜铁厂要锻造长、宽、高分别为 260mm、150 mm、130 mm 的长方体毛坯,需要截取截面积为 130 mm2 的方钢多长?-例5、在圆柱形容器甲中注满水,倒入圆柱形容器乙中,正好注满。

圆柱形容器乙的高是圆柱形容器甲的高的一半,那么圆柱形容器乙的底面积与圆柱形容器甲的底面积之比是几比几?知识点二、市场经济问题(1〕商品利润 = 商品售价 -商品本钱价(2〕商品利润率 = 商品本钱价商品利润×100%(3〕商品的销售额 = 商品的单价×销售数量(4〕商品的销售利润 = 〔售价 -本钱〕×销售量(5〕商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售即按原价的百分之八十出售。

例1、某商场对一种商品作调价,按原价的8 折出售,仍可获利10%,此商品的原价是 2200元,那么商品进价?-例 2、某商店有两个进价不同的计算器都卖了 80 元,其中一个赢利60%,另一个亏本 20%,在这次买卖中,这家商店最后是赚了还是赔了?赚了多少或赔了多少?例3、苏宁电器圣诞节促销,将某品牌彩电按原价提高40%,然后在广告上写“圣诞大酬宾,八折优惠〞,结果每台彩电仍获利270 元,那么每台彩电原价是多少元?例4、学校艺术节要印制节目单,有两个印刷厂前来联系业务,他们的报价相同,甲厂的优惠条件是:按每份定价 1.5 元的八折收费,另收 900元制版费;乙厂的优惠条件是:每份定价元的价格不变,而900 元的制版费那么六折优惠 .问:〔1〕学校印制多少份节目单时两个印刷厂费用是相同的?〔2〕学校要印制 1500份节目单,选哪个印刷厂所付费用少?-例5、一家商店因换季将某种服装打折出售,每件服装如果按标价的 5 折出售将亏本 20 元,而按标价的的 8 折出售将赚 40 元;问:〔1〕每件服装的标价是多少元?(2〕每件服装的本钱是多少元?(3〕为保证不亏本,最多能打几折?例6、商场购进某种商品m 件,每件按进价加价30 元售出全部商品的65%,然后将售价下降l0%,这样每件仍可以获利18 元,又售出了全部商品的 25%。

(1)试求该商品的进价和第一次的售价。

(2)为了确保这批商品总的利润不低于 25%,剩余商品的售价应不低于多少元 ?例7、为了节约能源,某电力管理单位按以下规定收取每月电费:用电不超过140 度,按每度元收费;如果超过140 度,超过的局部按每度元收费.假设某用户五月份的电费平均每度0.5 元.问该用户五月份应交电费多少元 ?-例 8、某地出租汽车收费标准:起步价10 元,可乘 3 千米, 3 千米到5 千米,每千米元, 5 千米以后,每千米是 2.7 元。

假设某人乘坐了 x(x>5)千米的路程,请写出他应该支付的费用。

假设他支付的费用是 19 元,请你算出他乘坐的路程。

知识点三、数字问题一般可设个位数字为 a,十位数字为 b,百位数字为 c 两位数可表示为 10b+a,三位数可表示为 100c+10b+a.然后抓住数字间或新数与原数之间的关系找到等量关系列方程。

例 1、一个两位数,十位上的数字是个位上数字的 2 倍,如果把个位上的数与十位上的数对调得到的数比原数小 36,求原来的两位数 .与个位上的数字的和是这个两位数的1/4, 求这个两位数。

例3、一个三位数,三个数位上的数字的和是17,百位上的数字比十位上的数字大7,个位上的数字是十位上的数字的3 倍,求这个三位数。

例 4、有一个三位数,个位数字为百位数字的 2 倍,十位数字比百位数字大 1,假设将此数个位与百位顺序对调〔个位变百位〕所得的新数比原数的 2 倍少 49,求原数例 5、一个五位数最高位上的数字是 2,如果把这个数字移到个位数字的右边,那么所得的数比原来的数的 3 倍多 489,求原数。

知识点四、行程问题(1〕相遇问题:快行距 + 慢行距 = 原距(2〕追击问题:快行距 -慢行距 = 原距(3〕航行问题:顺水〔风〕速度 = 静水〔风〕速度 + 水〔风〕速逆水〔风〕速度 = 静水〔风〕速度 -水〔风〕速例 1、小明每天早上要赶到距家 1200 米的学校上学 .一天,他以 80 米/ 分的速度出发, 5 分钟后,小明的爸爸发现他忘了带语文书,爸爸以180 米/ 分的速度去追小明,并且在途中追上了他。

(1〕爸爸用了多少时间?(2〕追上小明时,距离学校还有多远?例2、2021 年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到 30 千米远的郊区进行抢修。

维修工骑摩托车先走, 15分钟后,抢修车装载所需材料出发,结果两车同时到达抢修点。

抢修车的速度是摩托车速度的 1.5 倍,求两种车的速度。

例 3、一架飞机在两城市之间飞行,风速为24 千米 / 小时,顺风飞行需 2 小时 50 分,逆风飞行需要 3 小时。

⑴求无风时飞机的飞行速度。

-例4、轮船在静水中速度为每小时 20km, 水流速度为每小时 4km, 从甲码头顺流航行到乙码头, 再返回甲码头, 共用5 小时(不计停留时间), 求甲、乙两码头的距离 .例5、如下图 , 甲、乙两人在环形跑道上练习跑步 , 环形跑道一圈长400 米, 乙每秒钟跑 6 米, 甲的速度是乙的113倍.(1)如果甲、乙在跑道上相距8 米处同时反向出发 , 那么经过多少秒两人首次相遇 ?(2)如果甲在乙前面8 米处同时同向出发 , 那么经过多少秒两人首次相遇 ?例6、甲乙两地相距 240 千米,从甲站开出一列慢车,速度为每小-(1〕假设两车同时开出,背向而行,经过多长时间两车相距 540千米 ?(2〕假设两车同时开出,同向而行〔快车在后〕,经过多长时间快车可追上慢车 ?(3〕假设两车同时开出,同向而行〔慢车在后〕,经过多长时间两车相距 300 千米 ?例7、甲、乙两地的火车路线比汽车路线长40km,汽车从甲地先出发,速度 40km/h,半小时后,火车也从甲地开出,速度为 60km/h,结果汽车仅比火车晚 1 小时到达乙地,那么甲、乙两地的汽车路线长是多少?例 8、星期天,小强骑自行车到郊外与同学一起游玩.从家出发2小时到达目的地,游玩 3 小时后按原路以原速返回,小强离家 4 小时40 分钟后,妈妈驾车沿相同路线迎接小强,以下图是他们离家的路程 y(千米 )与时间 x(时)的函数图象.小强骑车的速度为 15 千米 /时,妈妈驾车的速度为60 千米 / 时.⑵妈妈出发多长时间与小强相遇?7.工程问题工作量 = 工作效率×工作时间完成某项工作的各工作量的和= 总工作量 =1例1、某地为了打造风光带,将一段长为 360m 的河道整治任务交给甲、乙两个工程队先后接力完成,共用20 天,甲工程队每天整治24m,乙工程队每天整治16 m.求甲、乙两个工程队分别整治了多长的河道 .例2、一项工程甲单独做要 20 小时,乙单独做要 12 小时。

现在先由甲单独做 5 小时,然后乙参加进来合做。

完成整个工程一共需要多少小时?-例3、一件工作,甲单独做 15 小时完成,乙单独做 10 小时完成.甲先单独做 9 小时,后因甲有其它任务调离,余下的任务由乙单独完成.那么乙还需要多少小时才能完成?例4、甲、乙两个工程队共同承当一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用 10 天.且甲队单独施工45 天和乙队单独施工 30 天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)假设甲、乙两队共同工作了3 天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度,甲队的工作效率提高到原来盼 2 倍,要使甲队总的工作量不少于乙队工作量的 2 倍,那么甲队至少再单独施工多少天?例5、某单位现有 480 套旧桌椅要请木工师傅进行修理,甲师傅单独修理这批桌椅比乙师傅多用 10天。

乙师傅每天比甲师傅多修 8 套,甲师傅每天修理费为 80 元,乙师傅每天修理费 120元,请问:〔1〕甲、乙两个木工师傅每天各修理桌椅多少套?〔2〕在修理桌椅过程中,单位要指派一名工作人员进行质量监督,并发给每天 10 元的交通补助,现有以下三种修理方案供选择:①由-甲单独修理②由乙单独修理③由甲、乙合作修理。

你认为哪种方案既省时,又省钱?试比拟说明。

课后练习1、某工厂锻造直径为 60 毫米,高 20 毫米的圆柱形瓶内装水,再将瓶内的水倒入一个底面直径 6 厘米、高 10 厘米的圆柱形玻璃杯中,能否完全装下?假设装不下,那么瓶内水面还有多高?假设未能装满,求杯内水面离杯口的距离。

2、一个两位数,十位上的数字比个位上的数字的平方小9,如果把个位数字与十位数字对调,得到的两位数比原来的两位数小27,求原来的这个两位数。

3、一件服装标价 200 元,假设以 6 折销售 ,仍可获利 20%,那么这件服装的进价是多少。

4、一商场对某款羊毛衫进行换季打折销售 .假设这款羊毛衫每件按原销售价的 8 折(即按原销售价的 80%)销售 ,售价为 120元,那么这款羊毛衫每件的原销售价为多少元 .-5、2021年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到 30 千米远的郊区进行抢修。

维修工骑摩托车先走, 15 分钟后,抢修车装载所需材料出发,结果两车同时到达抢修点。

抢修车的速度是摩托车速度的 1.5 倍,求两种车的速度。

相关文档
最新文档