固体物理第一章习题解答
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、什么是布喇菲格子?画出氯化钠晶体的结点所构成的布格子。说明基元代表点构成的格子是面心立方晶体,每个原胞包含几个格点。
答:布喇菲格子(或布喇菲点阵)是格点在空间中周期性重复排列所构成的阵列。布喇菲格子是一种数学抽象,即点阵的总体,其特点是每个格点周围的情况完全相同。实际工作中,常是以具体的粒子(原子、离子等)做格点,如果晶体由完全相同的一种原子组成,则由这些原子所组成的格子,称为布喇菲格子。
解:
7、闪锌矿的密度 ,锌的原子量 ,硫的原子量 ,求闪锌矿结构的点阵常数。
解:[解]一个晶胞中有4个 和4个 ,
一个晶胞的质量为
所以可以求得其体积
晶格常数为
点阵常数为
8、已知锗是金刚石结构,锗单晶的密度 ,原子量 ,
求锗的点阵常数及最近邻、次近邻距离。
解:金刚石结构一个晶胞内有8个锗
一个晶胞的质量为
所以可以求得其体积
NaCl晶体的结点构成的布格子实际上就是面心立方格子。每个原胞中包含一个格点。
3、指出下列各种格子是简单格子还是复式格子。
(1)底心六角(在六角格子原胞底面中心存在一个原子)
(2)底心立方(3)底心四方
(4)面心四方(5)侧心立方
(6)边心立方
并指出它们分别属于十四种布拉菲格子中的哪一种?
答:要决定一个晶体是简单格子还是复式格子,首先要找到该晶体的基元,如果基元只包含一个原子则为简单格子。反之,则为复式格子。
若 (i=1,2,3)全为奇数;则点阵矢量 可以写为
由 所定义的也是一个点阵常数为2的sc点阵,但相对于上面一个sc点阵位移了一个矢量 ,这个点正好位于立方体得体心位置,上面两个sc点阵穿套起来正好是一个bcc点阵,故 或全取偶数或全取奇数所定义的是一个bcc点阵.
(2)要求 为偶数。即要求 为偶数,其中N为整数。这时,点阵矢量为
(1)底心六角的原胞为AIBKEJFL所表示,它具有一个垂直于底面的四度旋转轴,它的原胞形状如图所示,是简单格子,属于单斜晶系。
(2)底心立方如下图所示,它的底面原子的排列情况可看出每个原子的周围情况都是相同的,因而都是等价的,所以它的基元也由一个原子组成,是简单格子,属于四角晶系。
(3)底心四方如下图所示,每个原子的周围情况完全相同,基元中只有一个原子,属于简单格子,属于四角晶系。
(2)对体心立方晶体,任一原子有8个最近邻,体心的原子与8个顶角的原子球相切。因为晶胞空间对角线的长度为
晶胞中包含2个原子,所以
(3)对面心立方晶体,任一原子有12个最近邻,顶角的原子与相邻的3个面心原子相切。因为
一个晶胞内含有4个原子,所以
(4)对六角密积结构,任一原子有12个最近邻,如果原子以刚性球堆积,第二层的一个原子将与第一层和第三层的原子相切,构成两个对顶的正四面体,第二层的这个原子在正四面体的顶角上。四面体的边长为a,高为
1、简述晶态、非晶态、准晶态、单晶、多晶的特征和性质。
答:晶态:内部质点在三维空间呈周期性重复排列的固体为晶体。其特征是原子排列具有周期性,表现为既有长程取向有序又有平移对称性。晶态的共性质:(1)长程有序;(2)自限性和晶面角守恒;(3)各向异性;(4)固定熔点。
非晶态特点:不具有长程序。具有短程序。短程序包括:(1)近邻原子的数目和种类;(2)近邻原子之间的距离(键长);(3)近邻原子配置的几何方位(键角)。
准晶态是一种介于晶态与非晶态之间的新的状态。准晶态结构的特点:(1)具有长程的取向序而没有长程的平移对称序(周期性);(2)取向序具有周期性所不能容许的点群对称;(3)沿取向序对称轴的方向具有准周期性,由两个或两个以上不可公度的特征长度按着特定的序列方式排列。
晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。
C=BA
不改变这个轴,因此只能是一个绕垂直2和2’的轴的转动。V的转角可以这样求出:2轴在操作A中显然未动,经操作B将转到图中虚线所示2’’的位置,2和2’’的夹角是2 ,表明C的转角是2 。因为C也必须是点群操作之一,2 只能等于60°,90°,120°,180°。从而我们得到结论,任何点群中两个二重轴之间的夹角只能是30°,45°,60°,90°。
体ຫໍສະໝຸດ Baidu立方
面心立方
六角密排
金刚石
证明:设想晶体是由刚性原子球堆积而成。一个晶胞中刚性原子球所占的体积
与晶胞体积的比值x称为结构的致密度。
设n为一个晶胞中的刚性原子数,r表示刚性原子球半径,V表示晶胞体积,则致密度为:
(1)对简立方晶体,任一原子有6个最近邻,若原子以刚性球堆积,中心在顶角的原子球将相切。因为 ,晶胞中包含1个原子, 为立方边的边长,则
晶格常数为
点阵常数为
最近邻原子距离为
次近邻原子距离为
9、试证明金刚石结构原子的键间角与立方体的体对角线间的夹角相同,都是109028’.
证明:如下图所示:设BC=a
BC是金刚石的晶格常数,AB是金刚石晶格的面对角线,AC是金刚石晶格的体对角线。E是AC的1/4点,F是AB的中点
则有AE=ED,AF=BF
因为晶胞空间对角线的长度为晶胞中包含2个原子所以3对面心立方晶体任一原子有12个最近邻顶角的原子与相邻的3一个晶胞内含有4个原子所以4对六角密积结构任一原子有12个最近邻如果原子以刚性球堆积第二74层的一个原子将与第一层和第三层的原子相切构成两个对顶的正四面体第二层的这个原子在正四面体的顶角上
固体物理学第一章习题解答
(4)面心四方就是体心四角格子,是简单格子,属于四角晶系。
(5)侧心立方如下图所示,从图中可知立方体的四个顶角原子是等价的,而处于两个相对的侧面中心的原子是等价的,因此基元应包含三个不等价的原子,所以它是一个复式格子,其中每个不等价原子各自构成一个简立方的子晶格,整个晶体是由三个简立方的子晶格套构而成。所以是复式格子,属于立方晶系。
可得EF//BD
所以∠a=∠b
△ABD中,AD=BD= AB=
由余弦定理可求得:∠a=109°28′
10、求证:任何点群中两个二重旋转轴之间的夹角只能是300、450、600、和900.
证明:设想一个群包含两个二重轴2和2’,如图所示,它们之间的夹角用 表示。
考虑先后绕2和2’转动 ,称它们为A操作和B操作。显然,与它们垂直的轴上的任意点N,先转到N’,最后又转回到原来的位置N,这表明B、A相乘得到的操作:
侧心立方
(6)边心立方如图所示,从图中可以看出立方体的四个顶角原子都相互等价,而相互平行的四条边上的边心原子相互等价,因此晶体中有四类不等价的原子,每个基元有四个不等价原子组成,所以它是一个复式格子,它的布拉菲格子是简立方格子,整个晶体由四个简立方的子晶格套构而成。属于立方晶系。
4、基矢为 , , 的晶体为何种结构?若 ,又为何种结构?为什么?
其中c为六角密积的高,晶胞体积为
一个晶胞中包含两个原子,所以
(5)对金刚石结构,任一原子有4个最近邻中心在空间对角线四分之一处的原子与最靠近的顶角原子以及最靠近的三个面心原子相切,所以有
晶胞体积为
一个晶胞内包含8个原子,所以
6、试求面心立方结构(110)和(111)晶面族的原子数面密度,设晶格常数为a。
11、在六角晶系中,晶面常用四个指数(hkil)表示,如图所示,前三个指数表示晶面族中最靠近原点的晶面族在互成1200的共面轴 上的截距为 ,第四个指数表示该晶面在六重轴c上的截距为 。
求证:
并将下列用(hkl)表示的晶面用(hkil)表示: 。
证明:
解:为清楚起见图中给出了六角格子底面的格点排列情况,假设有一晶面与底面的交线为AB,它在基矢 上的截距分别为 ,假设直线AB的法线方向为 ,则
答:由所给的基矢可以求出晶体的原胞体积为
从原胞的体积判断,晶体结构为体心立方。而原胞的取法不止一种,我们
可以根据线性变换的条件,构造三个新的矢量:
正是体心立方结构的常见的基矢的表达式。
若 , ,仍为体心立方结构。
5、如果将等体积球分别排成下列结构,设x表示刚球所占体积与总体积之比,求证:
结构x
简单立方π/6≈0.52
令
则有
又令 ,n仍为整数,则
比较面心立方的原胞基矢,可见上述格矢定义的是一个点阵常数a=2的fcc点阵。
13、
(1)证明理想的六角密堆积结构(hcp)的轴比 是 ;
(2)钠在23K附近从bcc结构转变为hcp结构(马氏体相变),假如在此相变过程中保持密度不变,求hcp相的点阵常数a。已知bcc相的点阵常数是 ,且hcp相的 比值与理想值相同。
解:[解]对于面心立方结构的(110)晶面,其面积为 ,其中a为立方边的边长,即晶格常数。在此晶面上有2个原子,一个是 在上下边,一个是 在顶角。因此,(110)晶面族的原子数面密度为
对于面心立方结构的(111)晶面,其面积为 。在此晶面上有2个原子:面心原子 个,顶角原子 。因此,(111)晶面族的原子数面密度为
式中d为原点0至直线AB的距离,由上式可得
而且 ,代入上式,得
综上可得:
即
表示成 分别为
12、具有笛卡尔坐标 的所有点形成什么样的布拉菲点阵?如果
(1) 或全为奇数,或全为偶数;
(2)要求 为偶数。
解:(1)若 (i=1,2,3)全为偶数;则点阵矢量 可以写为
其中l,m,n为整数,于是有
显然由 所定义的是一个点阵常数为2的sc点阵。
答:布喇菲格子(或布喇菲点阵)是格点在空间中周期性重复排列所构成的阵列。布喇菲格子是一种数学抽象,即点阵的总体,其特点是每个格点周围的情况完全相同。实际工作中,常是以具体的粒子(原子、离子等)做格点,如果晶体由完全相同的一种原子组成,则由这些原子所组成的格子,称为布喇菲格子。
解:
7、闪锌矿的密度 ,锌的原子量 ,硫的原子量 ,求闪锌矿结构的点阵常数。
解:[解]一个晶胞中有4个 和4个 ,
一个晶胞的质量为
所以可以求得其体积
晶格常数为
点阵常数为
8、已知锗是金刚石结构,锗单晶的密度 ,原子量 ,
求锗的点阵常数及最近邻、次近邻距离。
解:金刚石结构一个晶胞内有8个锗
一个晶胞的质量为
所以可以求得其体积
NaCl晶体的结点构成的布格子实际上就是面心立方格子。每个原胞中包含一个格点。
3、指出下列各种格子是简单格子还是复式格子。
(1)底心六角(在六角格子原胞底面中心存在一个原子)
(2)底心立方(3)底心四方
(4)面心四方(5)侧心立方
(6)边心立方
并指出它们分别属于十四种布拉菲格子中的哪一种?
答:要决定一个晶体是简单格子还是复式格子,首先要找到该晶体的基元,如果基元只包含一个原子则为简单格子。反之,则为复式格子。
若 (i=1,2,3)全为奇数;则点阵矢量 可以写为
由 所定义的也是一个点阵常数为2的sc点阵,但相对于上面一个sc点阵位移了一个矢量 ,这个点正好位于立方体得体心位置,上面两个sc点阵穿套起来正好是一个bcc点阵,故 或全取偶数或全取奇数所定义的是一个bcc点阵.
(2)要求 为偶数。即要求 为偶数,其中N为整数。这时,点阵矢量为
(1)底心六角的原胞为AIBKEJFL所表示,它具有一个垂直于底面的四度旋转轴,它的原胞形状如图所示,是简单格子,属于单斜晶系。
(2)底心立方如下图所示,它的底面原子的排列情况可看出每个原子的周围情况都是相同的,因而都是等价的,所以它的基元也由一个原子组成,是简单格子,属于四角晶系。
(3)底心四方如下图所示,每个原子的周围情况完全相同,基元中只有一个原子,属于简单格子,属于四角晶系。
(2)对体心立方晶体,任一原子有8个最近邻,体心的原子与8个顶角的原子球相切。因为晶胞空间对角线的长度为
晶胞中包含2个原子,所以
(3)对面心立方晶体,任一原子有12个最近邻,顶角的原子与相邻的3个面心原子相切。因为
一个晶胞内含有4个原子,所以
(4)对六角密积结构,任一原子有12个最近邻,如果原子以刚性球堆积,第二层的一个原子将与第一层和第三层的原子相切,构成两个对顶的正四面体,第二层的这个原子在正四面体的顶角上。四面体的边长为a,高为
1、简述晶态、非晶态、准晶态、单晶、多晶的特征和性质。
答:晶态:内部质点在三维空间呈周期性重复排列的固体为晶体。其特征是原子排列具有周期性,表现为既有长程取向有序又有平移对称性。晶态的共性质:(1)长程有序;(2)自限性和晶面角守恒;(3)各向异性;(4)固定熔点。
非晶态特点:不具有长程序。具有短程序。短程序包括:(1)近邻原子的数目和种类;(2)近邻原子之间的距离(键长);(3)近邻原子配置的几何方位(键角)。
准晶态是一种介于晶态与非晶态之间的新的状态。准晶态结构的特点:(1)具有长程的取向序而没有长程的平移对称序(周期性);(2)取向序具有周期性所不能容许的点群对称;(3)沿取向序对称轴的方向具有准周期性,由两个或两个以上不可公度的特征长度按着特定的序列方式排列。
晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。
C=BA
不改变这个轴,因此只能是一个绕垂直2和2’的轴的转动。V的转角可以这样求出:2轴在操作A中显然未动,经操作B将转到图中虚线所示2’’的位置,2和2’’的夹角是2 ,表明C的转角是2 。因为C也必须是点群操作之一,2 只能等于60°,90°,120°,180°。从而我们得到结论,任何点群中两个二重轴之间的夹角只能是30°,45°,60°,90°。
体ຫໍສະໝຸດ Baidu立方
面心立方
六角密排
金刚石
证明:设想晶体是由刚性原子球堆积而成。一个晶胞中刚性原子球所占的体积
与晶胞体积的比值x称为结构的致密度。
设n为一个晶胞中的刚性原子数,r表示刚性原子球半径,V表示晶胞体积,则致密度为:
(1)对简立方晶体,任一原子有6个最近邻,若原子以刚性球堆积,中心在顶角的原子球将相切。因为 ,晶胞中包含1个原子, 为立方边的边长,则
晶格常数为
点阵常数为
最近邻原子距离为
次近邻原子距离为
9、试证明金刚石结构原子的键间角与立方体的体对角线间的夹角相同,都是109028’.
证明:如下图所示:设BC=a
BC是金刚石的晶格常数,AB是金刚石晶格的面对角线,AC是金刚石晶格的体对角线。E是AC的1/4点,F是AB的中点
则有AE=ED,AF=BF
因为晶胞空间对角线的长度为晶胞中包含2个原子所以3对面心立方晶体任一原子有12个最近邻顶角的原子与相邻的3一个晶胞内含有4个原子所以4对六角密积结构任一原子有12个最近邻如果原子以刚性球堆积第二74层的一个原子将与第一层和第三层的原子相切构成两个对顶的正四面体第二层的这个原子在正四面体的顶角上
固体物理学第一章习题解答
(4)面心四方就是体心四角格子,是简单格子,属于四角晶系。
(5)侧心立方如下图所示,从图中可知立方体的四个顶角原子是等价的,而处于两个相对的侧面中心的原子是等价的,因此基元应包含三个不等价的原子,所以它是一个复式格子,其中每个不等价原子各自构成一个简立方的子晶格,整个晶体是由三个简立方的子晶格套构而成。所以是复式格子,属于立方晶系。
可得EF//BD
所以∠a=∠b
△ABD中,AD=BD= AB=
由余弦定理可求得:∠a=109°28′
10、求证:任何点群中两个二重旋转轴之间的夹角只能是300、450、600、和900.
证明:设想一个群包含两个二重轴2和2’,如图所示,它们之间的夹角用 表示。
考虑先后绕2和2’转动 ,称它们为A操作和B操作。显然,与它们垂直的轴上的任意点N,先转到N’,最后又转回到原来的位置N,这表明B、A相乘得到的操作:
侧心立方
(6)边心立方如图所示,从图中可以看出立方体的四个顶角原子都相互等价,而相互平行的四条边上的边心原子相互等价,因此晶体中有四类不等价的原子,每个基元有四个不等价原子组成,所以它是一个复式格子,它的布拉菲格子是简立方格子,整个晶体由四个简立方的子晶格套构而成。属于立方晶系。
4、基矢为 , , 的晶体为何种结构?若 ,又为何种结构?为什么?
其中c为六角密积的高,晶胞体积为
一个晶胞中包含两个原子,所以
(5)对金刚石结构,任一原子有4个最近邻中心在空间对角线四分之一处的原子与最靠近的顶角原子以及最靠近的三个面心原子相切,所以有
晶胞体积为
一个晶胞内包含8个原子,所以
6、试求面心立方结构(110)和(111)晶面族的原子数面密度,设晶格常数为a。
11、在六角晶系中,晶面常用四个指数(hkil)表示,如图所示,前三个指数表示晶面族中最靠近原点的晶面族在互成1200的共面轴 上的截距为 ,第四个指数表示该晶面在六重轴c上的截距为 。
求证:
并将下列用(hkl)表示的晶面用(hkil)表示: 。
证明:
解:为清楚起见图中给出了六角格子底面的格点排列情况,假设有一晶面与底面的交线为AB,它在基矢 上的截距分别为 ,假设直线AB的法线方向为 ,则
答:由所给的基矢可以求出晶体的原胞体积为
从原胞的体积判断,晶体结构为体心立方。而原胞的取法不止一种,我们
可以根据线性变换的条件,构造三个新的矢量:
正是体心立方结构的常见的基矢的表达式。
若 , ,仍为体心立方结构。
5、如果将等体积球分别排成下列结构,设x表示刚球所占体积与总体积之比,求证:
结构x
简单立方π/6≈0.52
令
则有
又令 ,n仍为整数,则
比较面心立方的原胞基矢,可见上述格矢定义的是一个点阵常数a=2的fcc点阵。
13、
(1)证明理想的六角密堆积结构(hcp)的轴比 是 ;
(2)钠在23K附近从bcc结构转变为hcp结构(马氏体相变),假如在此相变过程中保持密度不变,求hcp相的点阵常数a。已知bcc相的点阵常数是 ,且hcp相的 比值与理想值相同。
解:[解]对于面心立方结构的(110)晶面,其面积为 ,其中a为立方边的边长,即晶格常数。在此晶面上有2个原子,一个是 在上下边,一个是 在顶角。因此,(110)晶面族的原子数面密度为
对于面心立方结构的(111)晶面,其面积为 。在此晶面上有2个原子:面心原子 个,顶角原子 。因此,(111)晶面族的原子数面密度为
式中d为原点0至直线AB的距离,由上式可得
而且 ,代入上式,得
综上可得:
即
表示成 分别为
12、具有笛卡尔坐标 的所有点形成什么样的布拉菲点阵?如果
(1) 或全为奇数,或全为偶数;
(2)要求 为偶数。
解:(1)若 (i=1,2,3)全为偶数;则点阵矢量 可以写为
其中l,m,n为整数,于是有
显然由 所定义的是一个点阵常数为2的sc点阵。