八年级数学上册 全等三角形 单元测试题(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形单元测试题(一)
一、选择题:
1.已知△A1B1C1,△A2B2C2的周长相等,现有两个判断:
①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2;
②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2,
对于上述的两个判断,下列说法正确的是()
A.①正确,②错误
B.①错误,②正确
C.①,②都错误
D.①,②都正确
2.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()
A.20°B.30° C.35° D.40°
3.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为()
A.PN<3 B.PN>3 C.PN≥3 D.PN≤3
4.如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()
A.330°B.315°C.310°D.320°
5.如图,AE=AF,AB=AC,EC与BF交于点O,∠A=60°,∠B=25°,则∠EOB的度数为()
A.60°B.70° C.75° D.85°
6.如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()
A.1个B.2个C.3个D.4个
7.如图,已知OQ平分∠AOB,点P为OQ上任意一点,点N为OA上一点,点M为OB上一点,若
∠PNO+∠PMO=180°,则PM和PN的大小关系是()
A.PM>PN
B.PM<PN
C.PM=PN
D.不能确定
8.△ABC≌△DEF,AB=2,AC=4,若△DEF的周长为偶数,则EF的取值为()
A.3 B.4 C.5 D.3或4或5
9.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形个数是()
A.1
B.2
C.3
D.4
10.如图,△ABC的面积为1cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()
A.0.4cm2
B.0.5cm2
C.0.6cm2
D.0.7cm2
11.如图,P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于CD,则CD()P点到∠AOB两边距离之和.
A.小于 B.大于 C.等于 D.不能确定
12.如图所示,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α
的度数为()
A.80° B.100° C.60° D.45°
二、填空题:
13.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=度.
14.如图,在△ABC中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC的中点,则图中共有全等三角形对.
15.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30cm2,AB=18cm,BC=12cm,则
DE=cm.
16.在△ABC中,AB=8,AC=10,则BC边上的中线AD的取值范围是.
17.在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC与△ABO全等,则点C坐标为.
18.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;
②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有(填序号).
三、解答题:
19.如图,点A,B,C,D在一条直线上,△ABF≌△DCE.你能得出哪些结论?(请写出三个以上的结论)
20.如图,已知△EFG≌△NMH,∠F与∠M是对应角.
(1)写出相等的线段与角.
(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.
21.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.
(1)求证:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的长.
22.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B
23.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.
24.如图1,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形,并将添加
的全等条件标注在图上.
请你参考这个作全等三角形的方法,解答下列问题:
(1)如图2,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC和∠BCA的平分线,AD、CE 相交于点F,求∠EFA的度数;
(2)在(1)的条件下,请判断FE与FD之间的数量关系,并说明理由;
(3)如图3,在△ABC中,如果∠ACB不是直角,而( 1 )中的其他条件不变,试问在(2)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
参考答案
1.D
2.B
3.C
4.B
5.B
6.B
7.C
8.B
9.C
10.B
11.B
12.A
13.答案为:∠AED=50度.
14.答案为:4
15.答案为:2.
16.答案为:1<AD<9.
17.答案为:(-2,0),(-2,4),(2,4);
18.答案为:①②③.
19.【解答】解:∵△ABF≌△DCE
∴∠BAF=∠CDE,∠AFB=∠DEC,∠ABF=∠DCE,AB=DC,BF=CE,AF=DE;
∴AF∥ED,AC=BD,BF∥CE.
20.【解答】解:(1)∵△EFG≌△NMH,∠F与∠M是对应角,
∴EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM,
∴FH=GM,∠EGM=∠NHF;
(2)∵EF=NM,EF=2.1cm,∴MN=2.1cm;
∵FG=MH,FH+HG=FG,FH=1.1cm,HM=3.3cm,
∴HG=FG﹣FH=HM﹣FH=3.3﹣1.1=2.2cm.
21.【解答】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);
(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.
22.证明:延长AC至E,使CE=CD,连接ED
∵AB=AC+CD ∴AE=AB
∵AD平分∠CAB ∴∠EAD=∠BAD
∴AE=AB ∠EAD=∠BAD AD=AD ∴△ADE≌△ADB
∴∠E=∠B 且∠ACD=∠E+∠CDE,CE=CD
∴∠ACD=∠E+∠CDE=2∠E=2∠B
即∠C=2∠B
23.证明:过点D作DE⊥BC于E,过点D作DF⊥AB交BA的延长线于F,
∵BD平分∠ABC,∴DE=DF,∠DEC=∠F=90°,
在RtCDE和Rt△ADF中,,∴Rt△CDE≌Rt△ADF(HL),
∴∠FAD=∠C,∴∠BAD+∠C=∠BAD+∠FAD=180°.
24.解:(1)如图2,∵∠ACB=90°,∠B=60°.∴∠BAC=30°.
∵AD、CE分别是∠BAC和∠BCA的平分线,
∴∠DAC=0.5∠BAC=15°,∠ECA=0.5∠ACB=45°.
∴∠EFA=∠DAC+∠ECA=15°+45°=60°.
(2)FE=FD.如图2,在AC上截取AG=AE,连接FG.
∵AD是∠BAC的平分线,∴∠EAF=∠GAF,
在△EAF和△GAF中∵∴△EAF≌△GAF(SAS),
∴FE=FG,∠EFA=∠GFA=60°.∴∠GFC=180°﹣60°﹣60°=60°.
又∵∠DFC=∠EFA=60°,∴∠DFC=∠GFC.
在△FDC和△FGC中∵∴△FDC≌△FGC(ASA),∴FD=FG.∴FE=FD.
(3)(2)中的结论FE=FD仍然成立.同(2)可得△EAF≌△HAF,
∴FE=FH,∠EFA=∠HFA.
又由(1)知∠FAC=0.5∠BAC,∠FCA=0.5∠ACB,
∴∠FAC+∠FCA=0.5(∠BAC+∠ACB)=0.5=60°.
∴∠AFC=180°﹣(∠FAC+∠FCA)=120°.
∴∠EFA=∠HFA=180°﹣120°=60°.
同(2)可得△FDC≌△FHC,∴FD=FH.∴FE=FD.。

相关文档
最新文档