Highperformancec...
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Highperformancec...
High performance columnar-like Fe2O3@carbon composite anode via yolk@shell structural design Zhiming Zheng; Pei Li; Jason Huang; Haodong Liu; Yi Zao; Zhongli Hu; Li Zhang; Huixin Chen; Ming-Sheng Wang; Dong-Liang Peng; Qiaobao Zhang 【期刊名称】《能源化学:英文版》
【年(卷),期】2020(029)002
【摘要】Conversion-type reaction anode materials with high specific capacity are attractive candidates to improve lithium ion batteries(LIBs), yet the rapid capacity fading and poor rate capability caused by drastic volume change and low electronic conductivity greatly hinder their practical applications. To circumvent these issues, the successful design of yolk@shell Fe2 O3@C hybrid composed of a columnar-like Fe2O3 core within a hollow cavity completely surrounded by a thin, self-supported carbon(C) shell is presented as an anode for high-performance LIBs. This yolk@shell structure allows each Fe2O3 core to swell upon lithiation without deforming the carbon shell. This preserves the structural and electrical integrity against pulverization, as revealed by in situ transmission electron microscopy(TEM) measurement. Benefiting from these structural advantages, the resulting electrode exhibits a high reversible capacity(1013 m Ah g-1 after80 cycles at 0.2 A g-1), outstanding rate capability(710 m Ah g-1 at 8 A g-1) and superior cycling stability(800 m Ah g-1 after 300 cycles at 4 A g-1). A Li-ion full