北京师范大学附属第二中学高二物理上学期精选试卷检测题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京师范大学附属第二中学高二物理上学期精选试卷检测题
一、第九章静电场及其应用选择题易错题培优(难)
1.如图所示,y轴上固定有两个电荷量相等的带正电的点电荷,且关于坐标原点O对称。

某同学利用电场的叠加原理分析在两电荷连线的中垂线(x轴)上必定有两个场强最强的点A、'A,该同学在得到老师的肯定后又在此基础上作了下面的推论,你认为其中正确的是()
A.若两个点电荷的位置不变,但电荷量加倍,则x轴上场强最大的点仍然在A、'A两位置
B.如图(1),若保持两个点电荷的距离不变、并绕原点O旋转90°后对称的固定在z轴上,则x轴上场强最大的点仍然在A、'A两位置
C.如图(2),若在yoz平面内固定一个均匀带正电圆环,圆环的圆心在原点O。

直径与(1)图两点电荷距离相等,则x轴上场强最大的点仍然在A、'A两位置
D.如图(3),若在yoz平面内固定一个均匀带正电薄圆板,圆板的圆心在原点O,直径与(1)图两点电荷距离相等,则x轴上场强最大的点仍然在A、'A两位置
【答案】ABC
【解析】
【分析】
【详解】
A.可以将每个点电荷(2q)看作放在同一位置的两个相同的点电荷(q),既然上下两个点电荷(q)的电场在x轴上场强最大的点仍然在A、A'两位置,两组点电荷叠加起来的合电场在x轴上场强最大的点当然还是在A、A'两位置,选项A正确;
B.由对称性可知,保持两个点电荷的距离不变、并绕原点O旋转90°后对称的固定在z轴上,则x轴上场强最大的点仍然在A、'A两位置,选项B正确;
C.由AB可知,在yOz平面内将两点电荷绕O点旋转到任意位置,或者将两点电荷电荷量任意增加同等倍数,在x轴上场强最大的点都在A、A'两位置,那么把带电圆环等分成一些小段,则关于O点对称的任意两小段的合电场在x轴上场强最大的点仍然还在A、A'两位置,所有这些小段对称叠加的结果,合电场在x轴上场强最大的点当然还在A、A'两位置,选项C正确;
D.如同C选项,将薄圆板相对O点对称的分割成一些小块,除了最外一圈上关于O点对称的小段间距还是和原来一样外,靠内的对称小块间距都小于原来的值,这些对称小块的合电场在x轴上场强最大的点就不再在A、A'两位置,则整个圆板的合电场在x轴上场强最大的点当然也就不再在A、A'两位置,选项D错误。

故选ABC。

2.如图所示,内壁光滑的绝缘半圆容器静止于水平面上,带电量为q A 的小球a 固定于圆心O 的正下方半圆上A 点;带电量为q ,质量为m 的小球b 静止于B 点,其中∠AOB =30°。

由于小球a 的电量发生变化,现发现小球b 沿容器内壁缓慢向上移动,最终静止于C 点(未标出),∠AOC =60°。

下列说法正确的是( )
A .水平面对容器的摩擦力向左
B .容器对小球b 的弹力始终与小球b 的重力大小相等
C .出现上述变化时,小球a 的电荷量可能减小
D .出现上述变化时,可能是因为小球a 的电荷量逐渐增大为32(2
3)A q
【答案】BD
【解析】
【分析】
【详解】
A .对整体进行受力分析,整体受到重力和水平面的支持力,两力平衡,水平方向不受力,所以水平面对容器的摩擦力为0,故A 错误;
B .小球b 在向上缓慢运动的过程中,所受的外力的合力始终为0,如图所示
小球的重力不变,容器对小球的弹力始终沿半径方向指向圆心,无论小球a 对b 的力如何变化,由矢量三角形可知,容器对小球的弹力大小始终等于重力大小,故B 正确; C .若小球a 的电荷量减小,则小球a 和小球b 之间的力减小,小球b 会沿半圆向下运动,与题意矛盾,故C 错误;
D .小球a 的电荷量未改变时,对b 受力分析可得矢量三角形为顶角为30°的等腰三角形,此时静电力为
2
2sin15A qq mg k
L ︒= a 、b 的距离为 2sin15L R =︒
当a 的电荷量改变后,静电力为
2A qq mg k
L '='
a 、
b 之间的距离为 L R '=
由静电力
122
'q q F k
L = 可得 3
223A A q q -=
-'() 故D 正确。

故选BD 。

3.如图所示,质量相同的A 、B 两物体放在光滑绝缘的水平面上,所在空间有水平向左的匀强电场,场强大小为E ,其中A 带正电,电荷量大小为q ,B 始终不带电。

一根轻弹簧一端固定在墙面上,另一端与B 物体连接,在电场力作用下,物体A 紧靠着物体B ,一起压缩弹簧,处于静止状态。

现在A 物体上施加一水平向右的恒定外力F 。

弹簧始终处于弹性限度范围内,下列判断正确的是( )
A .若F = qE ,则弹簧恢复到原长时A 、
B 两物体分离
B .若F = qE ,则弹簧还未恢复到原长时A 、B 两物体分离
C .若F > qE ,则弹簧还未恢复到原长时A 、B 两物体分离
D .若F < q
E ,则A 、B 两物体不能分离,且弹簧一定达不到原长位置
【答案】AC
【解析】
【分析】
【详解】
AB .若F = qE ,A 物体所受合力为0,在弹簧处于压缩状态时,B 物体由于弹簧的作用向右加速运动,而A 物体将被迫受到B 物体的作用力以相同的加速度一起向右加速运动,A 、B 两物体未能分离,当弹簧恢复到原长后,B 物体在弹簧的作用下做减速运动,A 物体做匀速直线运动,则B 物体的速度小于A 物体的速度,A 、B 两物体将分离,故A 正确,B 错误;
C .若F > qE ,A 物体将受到水平向右恒力F A = F − qE 的作用,弹簧在恢复到原长之前,对B 物体的弹力逐渐减小,则B 物体的加速度逐渐减小,当A 、B 两物体刚要分离时,A 、B 两物体接触面的作用力刚好为0,此时弹簧对B 物体的作用力所产生的加速度与恒力F A 对A 物体产生的加速度相等(a B = a A ≠ 0),此时弹簧还未恢复到原长,故C 正确;
D.若F < qE,A物体将受到水平向左恒力F A = qE− F的作用,如果F A比较小,那么A、B 两物体还是可以分离的,并且在超过弹簧原长处分离,故D错误。

故选AC。

4.如图所示,在光滑水平面上相距x=6L的A、B两点分别固定有带正电的点电荷Q1、
Q2,与B点相距2L的C点为AB连线间电势的最低点.若在与B点相距L的D点以水平向左的初速度
v释放一个质量为m、带电荷量为+q的滑块(可视为质点),设滑块始终在A、B 两点间运动,则下列说法中正确的是()
A.滑块从D→C运动的过程中,动能一定越来越大
B.滑块从D点向A点运动的过程中,加速度先减小后增大
C.滑块将以C点为中心做往复运动
D.固定在A、B两点处的点电荷的电荷量之比为2
1
4:1
Q Q=

【答案】ABD
【解析】
【详解】
A.A和B两点分别固定正点电荷Q1与Q2,C点为连线上电势最低处;类比于等量同种点电荷的电场的特点可知,AC之间的电场强度的方向指向C,BC之间的电场强度指向C;滑块从D向C的运动过程中,电荷受到的电场力的方向指向C,所以电场力先做正功做加速运动,动能一定越来越大,故A正确;
B.由同种正电荷的电场分布可知C点的场强为零,从D到A的场强先减小后增大,由
qE
a
m
=可得加速度向减小后增大,B正确;
D.x=4L处场强为零,根据点电荷场强叠加原理有
22
(4)(2)
A B
Q Q
k k
L L
=,
解得
4
1
A
B
Q
Q
=,
故D正确.
C.由于两正电荷不等量,故滑块经过C点后向左减速到零的位移更大,往复运动的对称点在C点左侧,C错误。

故选ABD。

【点睛】
本题考查场强的叠加与库仑定律的运用,在解题时合适地选择类比法和对称性,运用牛顿第二定律分析即可求解。

5.真空中相距L的两个固定点电荷E、F所带电荷量大小分别是Q E和Q F,在它们共同形成的电场中,有一条电场线如图中实线所示,实线上的箭头表示电场线的方向.电场线上标出了M、N两点,其中N点的切线与EF连线平行,且∠NEF>∠NFE.则()
A.E带正电,F带负电,且Q E >Q F
B.在M点由静止释放一带正电的检验电荷,检验电荷将沿电场线运动到N点
C.过N点的等势面与EF连线垂直
D.负检验电荷在M点的电势能大于在N点的电势能
【答案】C
【解析】
【分析】
【详解】
根据电场线的指向知E带正电,F带负电;N点的场强是由E、F两电荷在N点产生场强的叠加,电荷E在N点电场方向沿EN向上,电荷F在N点产生的场强沿NF向下,合场强水平向右,可知F电荷在N点产生的场强大于E电荷在N点产生的场强,而,所
以由点电荷场强公式知,A错误;只有电场线是直线,且初速度为0或初
速度的方向与电场平行时,带电粒子的运动轨迹才与电场线重合.而该电场线是一条曲线,所以运动轨迹与电场线不重合.故在M点由静止释放一带正电的检验电荷,不可能沿电场线运动到N点,B错误;因为电场线和等势面垂直,所以过N点的等势面与过N点的切线垂直,C正确;沿电场线方向电势逐渐降低,,再根据,q为负电荷,知,D错误;故选C.
【点睛】
只有电场线是直线,且初速度为0或初速度的方向与电场平行时,带电粒子的运动轨迹才与电场线重合.电场线和等势面垂直.N点的切线与EF连线平行,根据电场线的方向和场强的叠加,可以判断出E、F的电性及电量的大小.先比较电势的高低,再根据,比较电势能.
6.如图所示,MON是固定的光滑绝缘直角杆,MO沿水平方向,NO沿竖直方向,
A B、为两个套在此杆上的带有同种电荷的小球,用水平向右的力F作用在A球上,使两球
、两球连线与水平方向成 角。

下列说法正确的是()
均处于静止状态,已知A B

A.杆MO对A球的弹力大小为tan

B.杆NO对B球的弹力大小为sin

C.B球的重力大小为tan

D.A B、两球间的库仑力大小为cos
【答案】C
【解析】
【详解】
对A球受力分析,设A的质量为m、拉力F、支持力N1,两球间的库仑力大小为F1,如图,根据平衡条件,有
x方向
F=F1cosθ①
y方向
N1=mg+F1sinθ②
再对B球受力分析,受重力Mg、静电力F1、杆对其向左的支持力,如图,根据平衡条件,有
x方向
F1cosθ=N2③
y方向
F1sinθ=M g ④
有上述四式得到
Mg=F tanθ
1F
F
cosθ
=
N1=mg+Mg
N2=F
可知由于不知道A的质量,所以不能求出A受到的弹力N1。

故ABD错误,C正确;
故选C。

7.如图所示,M、N为两个等量同种电荷,在其连线的中垂线上的P点放一静止的点电荷q(负电荷),不计重力,下列说法中正确的是()
A.点电荷从P到O是匀加速运动,O点速度达最大值
B.点电荷在从P到O的过程中,电势能增大,速度越来越大
C.点电荷在从P到O的过程中,加速度越来越大,速度也越来越大
D.点电荷一定能够返回到P点.
【答案】D
【解析】
试题分析:点电荷在从P到O的过程中,所受的电场力方向竖直向下,因场强大小不断变化,电场力不断变化,故做变加速运动,所以速度越来越大,到达C点后向下运动,受电场力向上而作减速运动,故O点速度达最大值,越过O点后,负电荷q做减速运动,速度越来越小,速度减到零后反向运动,返回到P点,选项A错误,D正确;点电荷在从P到O的过程中,电场力做正功,故电势能减小,选项B错误;因为从O向上到无穷远,电场强度先增大后减小,P到O的过程中,电场强度大小变化不能确定,所以电场力无法确定,加速度不能确定.故C错误.故选D.
考点:带电粒子在电场中的运动.
8.如图所示,小球A、B质量均为m,初始带电荷量均为+q,都用长为L的绝缘细线挂在绝缘的竖直墙上O点,A球紧靠绝缘的墙壁且其悬线刚好竖直,球B悬线偏离竖直方向θ角而静止.如果保持B球的电荷量不变,使小球A的电荷量缓慢减小,当两球间距缓慢
变为原来的1
3
时,下列判断正确的是()
A .小球
B 受到细线的拉力增大
B .小球B 受到细线的拉力变小
C .两球之间的库仑力大小不变
D .小球A 的电荷量减小为原来的127
【答案】D
【解析】
【详解】 AB.小球B 受力如图所示,两绝缘线的长度都是L ,则△OAB 是等腰三角形,如果保持B 球的电量不变,使A 球的电量缓慢减小,当两球间距缓慢变为原来的13
时,θ变小,F 减小; 线的拉力T 与重力G 相等,G =T ,即小球B 受到细线的拉力不变;对物体A :
cos()22
A A T G F πθ
=+- 则θ变小,T A 变小;故AB 错误;
CD.小球静止处于平衡状态,当两球间距缓慢变为原来的1/3时,由比例关系可知,库仑力变为原来的1/3,因保持B 球的电量不变,使A 球的电量缓慢减小,由库仑定律
2A B Q Q F k
r = 解得:球A 的电量减小为原来的127
,故C 错误,D 正确;
9.用长为1.4m 的轻质柔软绝缘细线,拴一质量为1.0×10-2kg 、电荷量为2.0×10-8C 的小球,细线的上端固定于O 点.现加一水平向右的匀强电场,平衡时细线与铅垂线成370,如图所示.现向左拉小球使细线水平且拉直,静止释放,则(sin370=0.6)
A .该匀强电场的场强为3.75×107N/C
B .平衡时细线的拉力为0.17N
C .经过0.5s ,小球的速度大小为6.25m/s
D .小球第一次通过O 点正下方时,速度大小为7m/s
【答案】C
【解析】
【分析】
【详解】
AB .小球在平衡位置时,由受力分析可知:qE=mgtan370,解得
2681.010100.75/ 3.7510/2.010
E N C N C --⨯⨯⨯==⨯⨯,细线的拉力:T=20 1.010100.125cos370.8
mg T N N ⨯⨯===-,选项AB 错误; C .小球向左被拉到细线水平且拉直的位置,释放后将沿着电场力和重力的合力方向做匀加速运动,其方向与竖直方向成370角,加速度大小为
222
0.125/12.5/1.010T a m s m s m =
==⨯-,则经过0.5s ,小球的速度大小为v=at=6.25m/s ,选项C 正确; D .小球从水平位置到最低点的过程中,若无能量损失,则由动能定理:
212
mgL qEL mv +=,带入数据解得v=7m/s ;因小球从水平位置先沿直线运动,然后当细绳被拉直后做圆周运动到达最低点,在绳子被拉直的瞬间有能量的损失,可知到达最低点时的速度小于7m/s ,选项D 错误.
10.如图所示,一倾角为30︒的粗糙绝缘斜面固定在水平面上,在斜面的底端A 和顶端B 分别固定等量的同种负电荷。

质量为m 、带电荷量为−q 的物块从斜面上的P 点由静止释放,物块向下运动的过程中经过斜面中点O 时速度达到最大值v m ,运动的最低点为Q (图中没有标出),则下列说法正确的是( )
A .P 、Q 两点场强相同
B .U PO = U OQ
C .P 到Q 的过程中,物体先做加速度减小的加速,再做加速度增加的减速运动
D .物块和斜面间的动摩擦因数12
μ=
【答案】C
【解析】
【分析】
【详解】 ABD .物块在斜面上运动到O 点时的速度最大,加速度为零,又电场强度为零,所以有
sin30cos300mg mg μ︒-︒=
所以物块和斜面间的动摩擦因数为
3tan μθ==
由于运动过程中 sin30cos300mg mg μ︒-︒=
所以物块从P 点运动到Q 点的过程中受到的合外力为电场力,因此最低点Q 与释放点P 关于O 点对称,根据等量的异种点电荷周围电势的对称性可知,P 、Q 两点的电势相等,则有U OP = U OQ ,根据等量的异种点电荷产生的电场特征可知,P 、Q 两点的场强大小相等,方向相反,故ABD 错误;
C .根据点电荷的电场特点和电场的叠加原理可知,沿斜面从B 到A 电场强度先减小后增大,中点O 的电场强度为零。

设物块下滑过程中的加速度为a ,根据牛顿第二定律有
qE ma =
物块下滑的过程中电场力qE 先方向沿斜面向下逐渐减少后沿斜面向上逐渐增加,所以物块的加速度大小先减小后增大,所以P 到O 电荷先做加速度减小的加速运动,O 到Q 电荷做加速度增加的减速运动,故C 正确。

故选C 。

11.如图所示,三个质量均为m 的带电小球(球A 、球B 和球C )被三根不可伸长的绝缘细绳(绳①、绳②和绳③)系于O 点,三球平衡时绳②处于竖直方向,且悬点O 、球A 、球B 和球C 所在位置正好组成一个边长为a 的正方形。

已知球A 、球B 和球C 均带正电,
电荷量分别为1q 、2q 和3q ,若212kq mg a
=,静电力常量为k ,重力加速度为g ,则下列说法正确的是( )
A .1q 和3q 可以不相等
B .绳①和绳②的拉力之比为1:
C .绳②的拉力为2mg
D .122:1q q =: 【答案】B 【解析】 【分析】 【详解】
A .因②竖直,可知两边电荷AC 对
B 的库仑力相等,因距离相等可知A
C 带电量必然相等,选项A 错误;
BC .因为2
12kq mg a
=,且13q q =,则
1
2CA F mg =
= 对A 受力分析可知绳①的拉力
1132
cos 45cos 4524
T mg mg mg =
+= 对ABC 整体受力分析可得
212cos 453T T mg +=
解得
23
2
T mg =

12T T =:选项B 正确,C 错误;
D .对球B ,设A 对B 以及C 对B 的库仑力均为F ,则
22cos 45T mg F =+
解得
F =

12
24
q q k
F a
== 结合2
12kq mg a
=可得
12q q =:
选项D 错误。

故选B。

12.两个等量异种电荷A、B固定在绝缘的水平面上,电荷量分别为+Q和-Q,俯视图如图所示。

一固定在水平桌面的足够长的光滑绝缘管道与A、B的连线垂直,且到A的距离小于到B的距离,管道内放一个带负电小球P(可视为试探电荷),现将电荷从图示C点静止释放,C、D两点关于O点(管道与A、B连线的交点)对称。

小球P从C点开始到D点的运动过程中,下列说法正确的是()
A.先做减速运动,后做加速运动
B.经过O点的速度最大,加速度也最大
C.O点的电势能最小,C、D两点的电势相同
D.C、D两点受到的电场力相同
【答案】C
【解析】
【分析】
【详解】
A.根据电场分布和力与运动的关系可知带电小球先做加速运动,后做减速运动,选项A 错误;
B.经过O点的速度最大,沿着光滑绝缘管道方向上的加速度为零,选项B错误;
C.带电小球P在O点的电势能最小,C、D两点的电势相同,选项C正确;
D.C、D两点受到的电场力方向不同,故电场力不同,选项D错误。

故选C。

二、第十章静电场中的能量选择题易错题培优(难)
13.如图所示,A、B、C、D是真空中一正四面体的四个顶点,每条棱长均为l.在正四面体的中心固定一电荷量为-Q的点电荷,静电力常量为k,下列说法正确的是
A.A、B两点的场强相同
B .A 点电场强度大小为
2
83kQ
l C .A 点电势高于C 点电势
D .将一正电荷从A 点沿直线移动到B 点的过程中,电场力一直不做功 【答案】B 【解析】
由于点电荷在正四面体的中心,由对称性可知,A 、B 两点的场强大小相等,但是方向不同,故A 错误;由立体几何知识,可知正四面体的中心到顶点的距离为
6
4
l ,由222836KQ KQ kQ
E r l l =
==⎛⎫
⎪⎝⎭
,故B 正确;电势为标量,由对称性可知A 点电势等于C 点电势,故C 错误;从A 点沿直线移动到B 点的过程中电势先降低再升高,对于正电荷而言,其电势能先变小再变大,所以电场力先做正功,再做负功,故D 错误.
14.一带电粒子在电场中仅受静电力作用,做初速度为零的直线运动,取该直线为x 轴,起始点O 为坐标原点,其电势能E P 与位移x 的关系如图所示,下列图象中合理的是( )
A .电场强度与位移关系
B .粒子动能与位移关系
C .粒子速度与位移关系
D .粒子加速度与位移关系
【答案】D 【解析】
试题分析:粒子仅受电场力作用,做初速度为零的加速直线运动;根据功能关系得到Ep ﹣x 图象的斜率的含义,得出电场力的变化情况;然后结合加速度的含义判断加速度随着位移的变化情况.
解:粒子仅受电场力作用,做初速度为零的加速直线运动,电场力做功等于电势能的减小量,故:F=|
|,即Ep ﹣x 图象上某点的切线的斜率表示电场力;
A 、Ep ﹣x 图象上某点的切线的斜率表示电场力,故电场力逐渐减小,根据E=,故电场强度也逐渐减小;故A 错误;
B 、根据动能定理,有:F•△x=△Ek ,故Ek ﹣x 图线上某点切线的斜率表示电场力;由于电场力逐渐减小,与B 图矛盾,故B 错误;
C 、题图v ﹣x 图象是直线,相同位移速度增加量相等,又是加速运动,故增加相等的速度需要的时间逐渐减小,故加速度逐渐增加;而电场力减小导致加速度减小;故矛盾,故C 错误;
D 、粒子做加速度减小的加速运动,故D 正确; 故选D .
【点评】本题切入点在于根据Ep ﹣x 图象得到电场力的变化规律,突破口在于根据牛顿第二定律得到加速度的变化规律,然后结合动能定理分析;不难.
15.有一电场强度方向沿x 轴的电场,其电势ϕ随x 的分布满足0sin 0.5(V)x ϕϕπ=,如图所示。

一质量为m ,带电荷量为+q 的粒子仅在电场力作用下,以初速度v 0从原点O 处进入电场并沿x 轴正方向运动,则下列关于该粒子运动的说法中不正确...
的是
A .粒子从x =1处运动到x =3处的过程中电势能逐渐减小
B .若v 00q m ϕ0
6q m
ϕ
C .欲使粒子能够到达x =4处,则粒子从x =0处出发时的最小速度应为
2q m
ϕ0
D .若0
065q v m
ϕ=,则粒子能运动到0.5处,但不能运动到4处
【答案】B 【解析】 【分析】
仅有电场力做功,电势能和动能相互转化;根据正电荷在电势高处电势能大,在电势低处电势能小,判断电势能的变化。

粒子如能运动到1处,就能到达4处。

粒子运动到1处电势能最大,动能最小,由能量守恒定律求解最小速度。

【详解】
A .从1到3处电势逐渐减小,正电荷电势能逐渐减小,故A 正确;
B .粒子在运动过程中,仅有电场力做功,说明电势能和动能相互转化,粒子在1处电势能最大,动能最小,从0到1的过程中,应用能量守恒定律:
220011
(0)22
mv q mv ϕ=-+ 解得:0
2q v m
ϕ=
,故B 错误; C .根据上述分析,电势能和动能相互转化,粒子能运动到1处就一定能到达4处,所以粒子从0到1处根据能量守恒定律:
2
0112
q mv ϕ=
解得:0
12q v m
ϕ=
,故C 正确; D .根据0sin 0.5(V)x ϕϕπ=粒子在0.5处的电势为102
(V)ϕϕ=,从0到0.5处根据能量守恒定律:
22020211(
0)22
q mv mv ϕ-+= 可知:0
22q v m
ϕ0<<,所以粒子能到达0.5处,但不能运动到4处,故D 正确。

【点睛】
根据电势ϕ随x 的分布图线和粒子的电性,结合能量守恒定律判断电势能和动能的变化。

16.一平行板电容器中存在匀强电场,电场沿竖直方向.两个比荷(即粒子的电荷量与质量之比)不同的带正电的粒子和,从电容器的点(如图)以相同的水平速度射入两
平行板之间.测得和与电容极板的撞击点到入射点之间的水平距离之比为1:2.若不计
重力,则和的比荷之比是
A .1:2
B .1:8
C .2:1
D .4:1
【答案】D 【解析】
两带电粒子都做类平抛运动,水平方向匀速运动,有,垂直金属板方向做初速度为
零的匀加速直线运动,有,电荷在电场中受的力为
,根据牛顿第二定律

,整理得
,因为两粒子在同一电场中运动,E 相同,初速度相同,
侧位移相同,所以比荷与水平位移的平方成反比.所以比荷之比为,D 正确.
【易错提醒】表达式的整理过程易出现问题.
【学科网备考提示】带电粒子在电场中的加速和偏转是高考的重点考查内容.
17.如图所示,绝缘水平面上O 处放质量为m 、电荷量为q 的带负电荷的小物体.劲度系数为k 的绝缘轻弹簧的一端固定在墙上,另一端与小物体接触(未固定),弹簧水平且无形变.O 点左侧有竖直向下的匀强电场,电场强度为2mg
E q
=
.用水平力F 缓慢向右推动物体,在弹性限度内弹簧被压缩了x 0,此时物体静止.撤去F 后,物体开始向左运动,运动的最大距离为4x 0,物体与水平面间的动摩擦因数为µ,重力加速度为g .则( )
A .撤去F 后,物体回到O 点时速度最大
B .撤去F 后,物体刚运动时的加速度大小为0
kx g m
μ- C 03gx μ D .撤去F 后系统产生的内能为4µmgx 0 【答案】BC 【解析】 【详解】
A. 撤去F 后,物体回到O 之前水平方向上受到弹簧的弹力和滑动摩擦力,滑动摩擦力不变,而弹簧的弹力随着压缩量的减小而减小,加速度先减小后增大,物体先做变加速运动,再做变减速运动,当弹簧的弹力与滑动摩擦力的合力大小相等、方向相反时,加速度为零,速度最大。

故A 错误。

B. 撤去F 后,物体水平方向上受到弹簧的弹力和滑动摩擦力,由牛顿第二定律得:物体的加速度为
00
kx mg kx F f a g m m m
μμ--=
==- 故B 正确。

C. 物块进入电场区域后,受到的电场力:
1
22
mg F qE q mg q ==⋅
= 所以在竖直方向上,物块受到的支持力:
1122
N F mg F mg mg mg '
=-=-=
此时物体受到的摩擦力:
1
0.52
N f F mg mg μμμ''==⋅=
物块此时的加速度:
0.5f a g m
μ'
'
==
物块进入电场的区域后竖直方向的摩擦力不变,物块做匀减速直线运动,位移为:
x =4x 0-x 0=3x 0
由运动学的公式:
22
02ax v v -=-
可得物体离开弹簧时速率为:
000220.533v ax g x gx μμ==⨯⨯=
故C 正确。

D. 物块进入电场前受到的摩擦力:f mg μ= ,物块进入电场区域后受到的摩擦力:
0.5f mg μ'= ,所以撤去F 后系统产生的内能为:
00•• 2.5Q f x f x mgx μ=+'=
故D 错误。

18.一个电子在电场力作用下做直线运动(不计重力)。

从0时刻起运动依次经历0t 、
02t 、03t 时刻。

其运动的v t -图象如图所示。

对此下列判断正确的是( )
A .0时刻与02t 时刻电子在同一位置
B .0时刻、0t 时刻、03t 时刻电子所在位置的电势分别为0ϕ、1ϕ、3ϕ,其大小比较有
103ϕϕϕ>>
C .0时刻、0t 时刻、03t 时刻电子所在位置的场强大小分别为0E 、1E 、3E ,其大小比较有301E E E <<
D .电子从0时刻运动至0t 时刻,连续运动至03t 时刻,电场力先做正功后做负功 【答案】AC 【解析】 【分析】 【详解】
A .电子只受电场力作用沿直线运动,该直线为一条电场线。

结合其v t -图象知其运动情景如图所示。

则0时刻与02t 时刻电子在同一位置。

所以A 正确;
B .电子受电场力向左,则场强方向向右,沿电场线方向电势逐渐降低,则有
103ϕϕϕ<<
所以B 错误;
C .v t -图象的斜率为加速度。

由图象知00t →过程加速度增大,003t t →过程加速度减小。

又有
qE ma =
则有
301E E E <<
所以C 正确;
D .由图象知00t →过程速度减小,003t t →过程速度增大,则其动能先减小、后增大。

由动能定理知电场力先做负功,后做正功。

所以D 错误。

故选AC 。

19.如图所示,ABC 是处于竖直平面内的光滑、绝缘斜劈,30C ∠=︒、60B ∠=︒,D 为AC 中点;质量为m 带正电的小滑块沿AB 面由A 点静止释放,滑到斜面底端B 点时速度为
0v ,若空间加一与ABC 平面平行的匀强电场,滑块仍由静止释放,沿AB 面滑下,滑到斜
面底端B 02v ,若滑块由静止沿AC 面滑下,滑到斜面底端C 点时速度为
03v ,则下列说法正确的是( )。

相关文档
最新文档