八年级上册期末试卷测试卷附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册期末试卷测试卷附答案

一、八年级数学全等三角形解答题压轴题(难)

1.(1)已知△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A等于60°(如图①).求证:EB=AD;

(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变(如图②),(1)的结论是否成立,并说明理由.

【答案】(1)证明见解析(2)证明见解析

【解析】

试题分析:(1)作DF∥BC交AC于F,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,证明△ABC是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF是等边三角形,∠DFC=120°,得出AD=DF,由已知条件得出∠FDC=∠DEC,ED=CD,由AAS证明

△DBE≌△CFD,得出EB=DF,即可得出结论;

(2)作DF∥BC交AC的延长线于F,同(1)证出△DBE≌△CFD,得出EB=DF,即可得出结论.

试题解析:(1)证明:如图,作DF∥BC交AC于F,

则△ADF为等边三角形

∴AD=DF,又∵∠DEC=∠DCB,

∠DEC+∠EDB=60°,

∠DCB+∠DCF=60°,

∠EDB=∠DCA ,DE=CD,

在△DEB和△CDF中,

120

EBD DFC

EDB DCF

DE CD

∠=∠=︒

∠=∠

⎪=

∴△DEB≌△CDF,

∴BD=DF,

∴BE=AD .

(2).EB=AD成立;

理由如下:作DF∥BC交AC的延长线于F,如图所示:

同(1)得:AD=DF,∠FDC=∠ECD,∠FDC=∠DEC,ED=CD,

又∵∠DBE=∠DFC=60°,

∴△DBE≌△CFD(AAS),

∴EB=DF,

∴EB=AD.

点睛:此题主要考查了三角形的综合,考查等边三角形的判定与性质,全等三角形的判定与性质,等腰三角形的判定与性质,等腰直角三角形的判定与性质,平行线的性质等知识,综合性强,有一定的难度,证明三角形全等是解决问题的关键.

2.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.

(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E

三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.

【答案】(1)见解析(2)成立(3)△DEF为等边三角形

【解析】

解:(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=900.

∵∠BAC=900,∴∠BAD+∠CAE=900.

∵∠BAD+∠ABD=900,∴∠CAE=∠ABD.

又AB="AC" ,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.

∴DE="AE+AD=" BD+CE.

(2)成立.证明如下:

∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=1800—α.∴∠DBA=∠CAE . ∵∠BDA=∠AEC=α,AB=AC ,∴△ADB ≌△CEA (AAS ).∴AE=BD ,AD=CE .

∴DE=AE+AD=BD+CE .

(3)△DEF 为等边三角形.理由如下:

由(2)知,△ADB ≌△CEA ,BD=AE ,∠DBA =∠CAE ,

∵△ABF 和△ACF 均为等边三角形,∴∠ABF=∠CAF=600.

∴∠DBA+∠ABF=∠CAE+∠CAF .∴∠DBF=∠FAE .

∵BF=AF ,∴△DBF ≌△EAF (AAS ).∴DF=EF ,∠BFD=∠AFE .

∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600.

∴△DEF 为等边三角形.

(1)因为DE=DA+AE ,故由AAS 证△ADB ≌△CEA ,得出DA=EC ,AE=BD ,从而证得DE=BD+CE .

(2)成立,仍然通过证明△ADB ≌△CEA ,得出BD=AE ,AD=CE ,所以DE=DA+AE=EC+BD . (3)由△ADB ≌△CEA 得BD=AE ,∠DBA =∠CAE ,由△ABF 和△ACF 均等边三角形,得∠ABF=∠CAF=600,FB=FA ,所以∠DBA+∠ABF=∠CAE+∠CAF ,即∠DBF=∠FAE ,所以△DBF ≌△EAF ,所以FD=FE ,∠BFD=∠AFE ,再根据∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600得到△DEF 是等边三角形.

3.如图1,在长方形ABCD 中,AB=CD=5 cm , BC=12 cm ,点P 从点B 出发,以2cm/s 的速度沿BC 向点C 运动,设点P 的运动时间为ts .

(1)PC=___cm ;(用含t 的式子表示)

(2)当t 为何值时,△ABP ≌△DCP ?.

(3)如图2,当点P 从点B 开始运动,此时点Q 从点C 出发,以vcm/s 的速度沿CD 向点D 运动,是否存在这样的v 值,使得某时刻△ABP 与以P ,Q ,C 为顶点的直角三角形全等?若存在,请求出v 的值;若不存在,请说明理由.

【答案】(1)()122t -;(2)3t =;(3)存在,2v =或53

v =

【解析】

【分析】

(1)根据P 点的运动速度可得BP 的长,再利用BC 的长减去BP 的长即可得到PC 的长; (2)先根据三角形全等的条件得出当BP=CP ,列方程求解即得;

(3)先分两种情况:当BP=CQ ,AB=PC 时,△ABP ≌△PCQ ;或当BA=CQ ,PB=PC 时,△ABP ≌△QCP ,然后分别列方程计算出t 的值,进而计算出v 的值.

【详解】

解:(1)当点P 以2cm/s 的速度沿BC 向点C 运动时间为ts 时2BP tcm =

相关文档
最新文档