2008年天津市初中毕业生学业考试数学试卷及参考答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年天津市初中毕业生学业考试试卷
数 学
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1页至第2页,第Ⅱ卷第3页至第10页.试卷满分120分.考试时间100分钟.考试结束后,将试卷和答题卡一并交回.
祝各位考生考试顺利!
第Ⅰ卷(选择题 共30分)
注意事项:
1.答第Ⅰ卷前,考生务必先将自己的姓名、准考证号,用蓝、黑色墨水的钢笔(签字笔)或圆珠笔填在“答题卡”上;用2B 铅笔将考试科目对应的信息点涂黑;在指定位置粘贴考试用条形码.
2.答案答在试卷上无效.每小题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点. 一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 60cos 的值等于( )
A .
2
1
B .22
C .23
D .1
2.对称现象无处不在,请你观察下面的四个图形,它们体现了中华民族的传统文化,
其中,可以看作是轴对称图形的有( ) A .1个
B .2个
C .3个
D .4个
3.边长为a 的正六边形的面积等于( ) A .
24
3a
B .2a
C .
2
2
33a D .233a
4.纳米是非常小的长度单位,已知1纳米=610 毫米,某种病毒的直径为100纳米,若将这种病毒排成1毫米长,则病毒的个数是( ) A .210个
B .410个
C .610个
D .810个
5.把抛物线22x y =向上平移5个单位,所得抛物线的解析式为( ) A .522+=x y
B .522-=x y
C .2)5(2+=x y
D .2)5(2-=x y
6.掷两枚质地均匀的硬币,则两枚硬币全部正面朝上的概率等于( )
A .1
B .
2
1 C .41 D .0
7.下面的三视图所对应的物体是( )
A .
B .
C .
D . 8.若440-=m ,则估计m 的值所在的范围是( ) A .21<<m
B .32<<m
C .43<<m
D .54<<m
9.在平面直角坐标系中,已知点A (0,2),B (32-,0),C (0,2-),D (32,0),则以这四个点为顶点的四边形ABCD 是( ) A .矩形
B .菱形
C .正方形
D .梯形
10.在平面直角坐标系中,已知点A (4-,0),B (2,0),若点C 在一次函数22
1
+-=x y 的图象上,且△ABC 为直角三角形,则满足条件的点C 有( ) A .1个 B .2个
C .3个
D .4个
A
G E
H F
J
I B
C 第(15)题
第(14)题
2008年天津市初中毕业生学业考试试卷
数 学
第Ⅱ卷(非选择题 共90分)
注意事项:
1.答第Ⅱ卷前,考生务必将密封线内的项目和试卷第3页左上角的“座位号”填写清
楚.
2.第Ⅱ卷共8页,用蓝、黑色墨水的钢笔(签字笔)或圆珠笔直接答在试卷上.
二、填空题:本大题共8小题,每小题3分,共24分.请将答案直接填在题中横线上. 11.不等式组322(1)841x x x x +>-⎧⎨
+>-⎩

的解集为 .
12.若2
19x x ⎛⎫+= ⎪⎝⎭,则2
1x x ⎛
⎫- ⎪⎝
⎭的值为 .
13.已知抛物线322--=x x y ,若点P (2-,5)与点Q 关于该抛物线的对称轴对称,则点Q 的坐标是 .
14.如图,是北京奥运会、残奥会赛会志愿者 申请人来源的统计数据,请你计算:志愿者申 请人的总数为 万;其中“京外省区市” 志愿者申请人数在总人数中所占的百分比约 为 %(精确到0.1%),它所对应的 扇形的圆心角约为 (度)(精确到度). 15.如图,已知△ABC 中,EF ∥GH ∥IJ ∥BC , 则图中相似三角形共有 对.
16.如图,在正方形ABCD 中,E 为AB 边的中点,G ,F 分别为AD ,BC 边上的点,若1=AG ,
2=BF ,︒=∠90GEF ,则GF 的长为 .
17.已知关于x 的函数同时满足下列三个条件: ①函数的图象不经过第二象限; ②当2<x 时,对应的函数值0<y ;
③当2<x 时,函数值y 随x 的增大而增大.
你认为符合要求的函数的解析式可以是: (写出一个即可).
第(16)题
A
D
C B F
G
18.如图①,1O ,2O ,3O ,4O 为四个等圆的圆心,A ,B ,C ,D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是 ;如图②,1O ,2O ,3O ,4O ,5O 为五个等圆的圆心,A ,B ,C ,D ,E 为切点,请你在图中画出一条直线,将这五个圆分成面积相等的两部分,并说明这条直线经过的两个点是 .
三、解答题:本大题共8小题,共66分.解答应写出文字说明、演算步骤或证明过程.
19.(本小题6分) 解二元一次方程组3582 1.x y x y +=⎧⎨-=⎩

20.(本小题8分)
已知点P (2,2)在反比例函数x
k
y =(0≠k )的图象上, (Ⅰ)当3-=x 时,求y 的值; (Ⅱ)当31<<x 时,求y 的取值范围.
第(18)题图① 第(18)题图②
如图,在梯形ABCD 中,AB ∥CD ,⊙O 为内切圆,E 为切点, (Ⅰ)求AOD ∠的度数;
(Ⅱ)若8=AO cm ,6=DO cm ,求OE 的长.
22.(本小题8分)
下图是交警在一个路口统计的某个时段来往车辆的车速情况(单位:千米/时).
请分别计算这些车辆行驶速度的平均数、中位数和众数(结果精确到0.1).
A
B
D C
E O
热气球的探测器显示,从热气球看一栋高楼顶部的仰角为︒30,看这栋高楼底部的俯角为︒60,热气球与高楼的水平距离为66 m ,这栋高楼有多高?(结果精确到0.1 m ,参考数据:73.13≈)
24.(本小题8分)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路,填写表格,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填写表格,只需按照解答题的一般要求,进行解答即可.
天津市奥林匹克中心体育场——“水滴”位于天津市西南部的奥林匹克中心内,某校九年级学生由距“水滴”10千米的学校出发前往参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度.
(Ⅰ)设骑车同学的速度为x 千米/时,利用速度、时间、路程之间的关系填写下表. (要求:填上适当的代数式,完成表格)
(Ⅱ)列出方程(组),并求出问题的解.
C A B
C A B E
F M N 图① C
A
B E F M N 图②
已知Rt △ABC 中,︒=∠90ACB ,CB CA =,有一个圆心角为︒45,半径的长等于CA 的扇形CEF 绕点C 旋转,且直线CE ,CF 分别与直线AB 交于点M ,N .
(Ⅰ)当扇形CEF 绕点C 在ACB ∠的内部旋转时,如图①,求证:222BN AM MN +=; 思路点拨:考虑222BN AM MN +=符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM 沿直线CE 对折,得△DCM ,连DN ,只需证BN DN =,︒=∠90MDN 就可以了.
请你完成证明过程:
(Ⅱ)当扇形CEF 绕点C 旋转至图②的位置时,关系式222BN AM MN +=是否仍然成立?
若成立,请证明;若不成立,请说明理由.
已知抛物线c bx ax y ++=232,
(Ⅰ)若1==b a ,1-=c ,求该抛物线与x 轴公共点的坐标;
(Ⅱ)若1==b a ,且当11<<-x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围;
(Ⅲ)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当1
0<<x 时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.
2008年天津市初中毕业生学业考试
数学参考答案及评分标准
评分说明:
1.各题均按参考答案及评分标准评分.
2.若考生的非选择题答案与参考答案不完全相同但言之有理,可酌情评分,但不得超过该题所分配的分数.
一、选择题:本大题共10小题,每小题3分,共30分. 1.A 2.D 3.C 4.B 5.A 6.C 7.A 8.B
9.B
10.D
二、填空题:本大题共8小题,每小题3分,共24分. 11.34<<-x
12.5
13.(4,5)
14.112.6;25.9,︒93
15.6
16.3
17.2-=x y (提示:答案不惟一,如652-+-=x x y 等)
18.1O ,3O ,如图① (提示:答案不惟一,过31O O 与42O O 交点O 的任意直线都能将四个圆分成面积相等的两部分);
5O ,O ,如图② (提示:答案不惟一,如4AO ,3DO ,2EO ,1CO 等均可).
三、解答题:本大题共8小题,共66分. 19.本小题满分6分.
解 ∵3582 1.x y x y +=⎧⎨-=⎩
,①②
由②得12-=x y ,③ ·················································································· 2分
将③代入①,得8)12(53=-+x x .解得1=x .代入③,得1=y .
∴原方程组的解为11.x y =⎧⎨=⎩

··············································································· 6分
20.本小题满分8分.
解 (Ⅰ)∵点P (2,2)在反比例函数x
k
y =的图象上, ∴2
2k
=
.即4=k . ······················································································ 2分
第(18)题图②
∴反比例函数的解析式为x
y 4=. ∴当3-=x 时,3
4
-
=y . ··············································································· 4分 (Ⅱ)∵当1=x 时,4=y ;当3=x 时,3
4
=y , ·············································· 6分 又反比例函数x
y 4
=
在0>x 时y 值随x 值的增大而减小, ······································ 7分 ∴当31<<x 时,y 的取值范围为
43
4
<<y . ·
······················································ 8分 21.本小题满分8分. 解(Ⅰ)∵AB ∥CD ,
∴︒=∠+∠180ADC BAD . ··········································································· 1分 ∵⊙O 内切于梯形ABCD ,
∴AO 平分BAD ∠,有BAD DAO ∠=∠2
1

DO 平分ADC ∠,有ADC ADO ∠=∠2
1

∴︒=∠+∠=∠+∠90)(2
1
ADC BAD ADO DAO .
∴︒=∠+∠-︒=∠90)(180ADO DAO AOD . ·························································· 4分 (Ⅱ)∵在Rt △AOD 中,8=AO cm ,6=DO cm ,
∴由勾股定理,得1022=+=DO AO AD cm . ·················································· 5分 ∵E 为切点,∴AD OE ⊥.有︒=∠90AEO . ······················································· 6分 ∴AOD AEO ∠=∠.
又OAD ∠为公共角,∴△AEO ∽△AOD . ····················································· 7分 ∴
AD AO OD OE =,∴8.4=⋅=AD
OD
AO OE cm . ·
·························································· 8分 22.本小题满分8分. 解 观察直方图,可得
车速为50千米/时的有2辆,车速为51千米/时的有5辆, 车速为52千米/时的有8辆,车速为53千米/时的有6辆, 车速为54千米/时的有4辆,车速为55千米/时的有2辆,
车辆总数为27, ·························································································· 2分 ∴这些车辆行驶速度的平均数为
4.52)255454653852551250(27
1
≈⨯+⨯+⨯+⨯+⨯+⨯. ·
······································· 4分 ∵将这27个数据按从小到大的顺序排列,其中第14个数是52,
B
∴这些车辆行驶速度的中位数是52. ····························································· 6分 ∵在这27个数据中,52出现了8次,出现的次数最多,
∴这些车辆行驶速度的众数是52. ····································································· 8分 23.本小题满分8分.
解 如图,过点A 作BC AD ⊥,垂足为D ,
根据题意,可得︒=∠30BAD ,︒=∠60CAD ,66=AD . ······································ 2分 在Rt △ADB 中,由AD
BD
BAD =
∠tan , 得3223
3
6630tan 66tan =⨯=︒⨯=∠⋅=BAD AD BD . 在Rt △ADC 中,由AD
CD
CAD =
∠tan , 得36636660tan 66tan =⨯=︒⨯=∠⋅=CAD AD CD . ········································ 6分 ∴2.152388366322≈=+=+=CD BD BC .
答:这栋楼高约为152.2 m . ·································································· 8分 24.本小题满分8分. 解
··················································· 3分 (Ⅱ)根据题意,列方程得
3
1
21010+=x x . ·
······················································· 5分 解这个方程,得15=x . ··········································································· 7分 经检验,15=x 是原方程的根. 所以,15=x .
答:骑车同学的速度为每小时15千米. ···························································· 8分 25.本小题满分10分.
(Ⅰ)证明 将△ACM 沿直线CE 对折,得△DCM ,连DN ,
则△DCM ≌△ACM . ············································································· 1分
C
A
B
D
C
A
B
E
F
D
M
N
C
A
B
E F
M
N G
有CA CD =,AM DM =,ACM DCM ∠=∠,A CDM ∠=∠. 又由CB CA =,得 CB CD =. ··································· 2分 由DCM DCM ECF DCN ∠-︒=∠-∠=∠45, ACM ECF ACB BCN ∠-∠-∠=∠ ACM ACM ∠-︒=∠-︒-︒=454590,
得BCN DCN ∠=∠. ······················································································ 3分 又CN CN =,
∴△CDN ≌△CBN . ··············································································· 4分 有BN DN =,B CDN ∠=∠.
∴︒=∠+∠=∠+∠=∠90B A CDN CDM MDN . ···················································· 5分 ∴在Rt △MDN 中,由勾股定理,
得222DN DM MN +=.即222BN AM MN +=. ················································ 6分 (Ⅱ)关系式222BN AM MN +=仍然成立. ···················································· 7分 证明 将△ACM 沿直线CE 对折,得△GCM ,连GN , 则△GCM ≌△ACM . ············································· 8分 有CA CG =,AM GM =,
ACM GCM ∠=∠,CAM CGM ∠=∠.
又由CB CA =,得 CB CG =.
由︒+∠=∠+∠=∠45GCM ECF GCM GCN ,
ACM ACM ECF ACN ACB BCN ∠+︒=∠-∠-︒=∠-∠=∠45)(90.
得BCN GCN ∠=∠. ··················································································· 9分 又CN CN =, ∴△CGN ≌△CBN .
有BN GN =, 45=∠=∠B CGN ,︒=∠-︒=∠=∠135180CAB CAM CGM , ∴ 9045135=-=∠-∠=∠CGN CGM MGN . ∴在Rt △MGN 中,由勾股定理,
得222GN GM MN +=.即222BN AM MN +=. ················································ 10分 26.本小题满分10分.
解(Ⅰ)当1==b a ,1-=c 时,抛物线为1232-+=x x y , 方程01232=-+x x 的两个根为11-=x ,3
1
2=
x .
∴该抛物线与x 轴公共点的坐标是()10-,和1
03⎛⎫ ⎪⎝⎭
. ········································· 2分 (Ⅱ)当1==b a 时,抛物线为c x x y ++=232,且与x 轴有公共点.
对于方程0232=++c x x ,判别式c 124-=∆≥0,有c ≤31
. ·································· 3分
①当31=
c 时,由方程031232=++x x ,解得3
121-==x x . 此时抛物线为31
232+
+=x x y 与x 轴只有一个公共点103⎛⎫- ⎪⎝⎭
,. ···························· 4分 ②当3
1
<
c 时, 11-=x 时,c c y +=+-=1231, 12=x 时,c c y +=++=5232.
由已知11<<-x 时,该抛物线与x 轴有且只有一个公共点,考虑其对称轴为31
-=x ,
应有1200.
y y ⎧⎨
>⎩≤, 即1050.c c +⎧⎨+>⎩≤,
解得51c -<-≤. 综上,3
1
=
c 或51c -<-≤. ····································································· 6分 (Ⅲ)对于二次函数c bx ax y ++=232,
由已知01=x 时,01>=c y ;12=x 时,0232>++=c b a y , 又0=++c b a ,∴b a b a c b a c b a +=++++=++22)(23. 于是02>+b a .而c a b --=,∴02>--c a a ,即0>-c a .
∴0>>c a . ···························································································· 7分 ∵关于x 的一元二次方程0232=++c bx ax 的判别式
0])[(412)(4124222>+-=-+=-=∆ac c a ac c a ac b ,
∴抛物线c bx ax y ++=232与x 轴有两个公共点,顶点在x 轴下方. ························· 8分 又该抛物线的对称轴a
b
x 3-
=, 由0=++c b a ,0>c ,02>+b a , 得a b a -<<-2,

3
2331<-<a b . 又由已知01=x 时,01>y ;12=x 时,02>y ,观察图象,
可知在10<<x 范围内,该抛物线与x 轴有两个公共点. ····································· 10分。

相关文档
最新文档