郑州市初一上学期数学期末试卷带答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
郑州市初一上学期数学期末试卷带答案
一、选择题
1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )
A .垂线段最短
B .经过一点有无数条直线
C .两点之间,线段最短
D .经过两点,有且仅有一条直线
2.如图,将线段AB 延长至点C ,使1
2
BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )
A .4
B .6
C .8
D .12
3.如图,C 为射线AB 上一点,AB =30,AC 比BC 的
1
4
多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =
1
2
BQ 时,t =12,其中正确结论的个数是( )
A .0
B .1
C .2
D .3 4.在0,1-, 2.5-,3这四个数中,最小的数是( ) A .0
B .1-
C . 2.5-
D .3
5.有一个数值转换器,流程如下:
当输入x 的值为64时,输出y 的值是( ) A .2
B .2
C 2
D 326.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )
A.97B.102C.107D.112
7.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()
A.132°B.134°C.136°D.138°
8.如果a﹣3b=2,那么2a﹣6b的值是()
A.4 B.﹣4 C.1 D.﹣1
9.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm,根据题意,可得方程为()
A.2(x+10)=10×4+6×2 B.2(x+10)=10×3+6×2
C.2x+10=10×4+6×2 D.2(x+10)=10×2+6×2
10.下列调查中,最适合采用全面调查(普查)的是( )
A.对广州市某校七(1)班同学的视力情况的调查
B.对广州市市民知晓“礼让行人”交通新规情况的调查
C.对广州市中学生观看电影《厉害了,我的国》情况的调查
D.对广州市中学生每周课外阅读时间情况的调查
11.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是()A.513 B.﹣511 C.﹣1023 D.1025
12.下列计算正确的是()
A.3a+2b=5ab B.4m2n-2mn2=2mn
C.-12x+7x=-5x D.5y2-3y2=2
二、填空题
13.如图,线段AB被点C,D分成2:4:7三部分,M,N分别是AC,DB的中点,若
MN=17cm,则BD=__________cm.
14.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__.
15.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.
16.把53°24′用度表示为_____.
17.36.35︒=__________.(用度、分、秒表示)
18.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________
19.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.
20.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______. 21.五边形从某一个顶点出发可以引_____条对角线.
22.﹣2
25
ab π是_____次单项式,系数是_____.
23.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.
24.若2a ﹣b=4,则整式4a ﹣2b+3的值是______.
三、解答题
25.为引导学生“爱读书,多读书,读好书”,某校七(2)班决定购买A 、B 两种书籍.若购买A 种书籍1本和B 种书籍3本,共需要180元;若购买A 种书籍3本和B 种书籍1本,共需要140元.
(1)求A 、B 两种书籍每本各需多少元?
(2)该班根据实际情况,要求购买A 、B 两种书籍总费用不超过700元,并且购买B 种书籍的数量是A 种书籍的
3
2
,求该班本次购买A 、B 两种书籍有哪几种方案? 26.先化简,再求值:(
)(
)
2
2
3a 4ab 2a ab ---,其中a 2=-,1b 2
=
. 27.在11•11期间,掀起了购物狂潮,现有两个商场开展促销优惠活动,优惠方案如下表所示; 商场 优惠方案
甲全场按标价的六折销售
乙单件商品实行“满100元减50元的优惠”(比如:某顾客购买了标价分别为240元和170元的两件商品,她实际付款分别是140元和120元.
根据以上信息,解决以下问题
(1)两个商场同时出售一件标价290元的上衣和一条标价270元的裤子,小明妈妈想以最少的钱购买这一套衣服,她应该选择哪家商场?完成下表并做出选择.
商场甲商场乙商场
实际付款/元
(2)小明爸爸发现:在甲、乙商场同时出售的一件标价380的上衣和一条标价300多元的裤子,在两家商场的实际付款钱数是一样的,请问:这条裤子的标价是多少元?
28.已知线段m、n.
(1)尺规作图:作线段AB,满足AB=m+n(保留作图痕迹,不用写作法);
(2)在(1)的条件下,点O是AB的中点,点C在线段AB上,且满足AC=m,当m=5,n=3时,求线段OC的长.
29.全民健身运动已成为一种时尚,为了解揭阳市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷内容包括五个项目:
A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.
以下是根据调查结果绘制的统计图表的一部分,
运动形式A B C D E
人数1230m549
请你根据以上信息,回答下列问题:
()1接受问卷调查的共有人,图表中的m=,n= .
()2统计图中,A类所对应的扇形的圆心角的度数是度.
()3揭阳市环岛路是市民喜爱的运动场所之一,每天都有“暴走团”活动,若某社区约有
1500人,请你估计一下该社区参加环岛路“暴走团”的人数.
30.如图,C 为线段AD 上一点,点B 为CD 的中点,且AD =9,BD =2.
(1)求AC 的长;
(2)若点E 在直线AD 上,且EA =1,求BE 的长.
四、压轴题
31.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.
(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求
α.
32.已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足|a +24|+|b +10|+(c -10)2=0;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒.
(1)求a 、b 、c 的值;
(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;
(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒2个单位的速度向C 点运动,Q 点到达C 点后.再立即以同样的速度返回,运动到终点A ,在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为8?请说明理由.
33.已知数轴上三点A ,O ,B 表示的数分别为6,0,-4,动点P 从A 出发,以每秒6个单位的速度沿数轴向左匀速运动.
(1)当点P 到点A 的距离与点P 到点B 的距离相等时,点P 在数轴上表示的数是______; (2)另一动点R 从B 出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P 、R 同时出发,问点P 运动多少时间追上点R ?
(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN 的长度.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.C 解析:C 【解析】 【详解】
用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,
∴线段AB 的长小于点A 绕点C 到B 的长度,
∴能正确解释这一现象的数学知识是两点之间,线段最短, 故选C . 【点睛】
根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB 的长小于点A 绕点C 到B 的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.
2.C
解析:C 【解析】 【分析】
根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可. 【详解】
解:根据题意可得: 设BC x =,
则可列出:()223x x +⨯= 解得:4x =,
1
2
BC AB =
, 28AB x ∴==. 故答案为:C. 【点睛】 本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.
3.C
解析:C 【解析】 【分析】
根据AC比BC的1
4
多5可分别求出AC与BC的长度,然后分别求出当P与Q重合时,此
时t=30s,当P到达B时,此时t=15s,最后分情况讨论点P与Q的位置.【详解】
解:设BC=x,
∴AC=1
4
x+5
∵AC+BC=AB
∴x+1
4
x+5=30,
解得:x=20,
∴BC=20,AC=10,
∴BC=2AC,故①成立,∵AP=2t,BQ=t,
当0≤t≤15时,
此时点P在线段AB上,∴BP=AB﹣AP=30﹣2t,∵M是BP的中点
∴MB=1
2
BP=15﹣t
∵QM=MB+BQ,
∴QM=15,
∵N为QM的中点,
∴NQ=1
2
QM=
15
2
,
∴AB=4NQ,
当15<t≤30时,
此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,
∴BP=AP﹣AB=2t﹣30,
∵M是BP的中点
∴BM=1
2
BP=t﹣15
∵QM=BQ﹣BM=15,∵N为QM的中点,
∴NQ=1
2
QM=
15
2
,
∴AB=4NQ,当t>30时,
此时点P在Q的右侧,∴AP=2t,BQ=t,
∴BP=AP﹣AB=2t﹣30,∵M是BP的中点
∴BM=1
2
BP=t﹣15
∵QM=BQ﹣BM=15,∵N为QM的中点,
∴NQ=1
2
QM=
15
2
,
∴AB=4NQ,
综上所述,AB=4NQ,故②正确,
当0<t≤15,PB=1
2
BQ时,此时点P在线段AB上,
∴AP=2t,BQ=t
∴PB=AB﹣AP=30﹣2t,
∴30﹣2t=1
2
t,
∴t=12,
当15<t≤30,PB=1
2
BQ时,此时点P在线段AB外,且点P在Q的左侧,
∴AP=2t,BQ=t,
∴PB=AP﹣AB=2t﹣30,
∴2t﹣30=1
2
t,
t=20,
当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,
∴PB=AP﹣AB=2t﹣30,
∴2t﹣30=1
2
t,
t=20,不符合t>30,
综上所述,当PB=1
2
BQ时,t=12或20,故③错误;
故选:C.
【点睛】
本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P与Q重合时的时间,涉及分类讨论的思想.
4.C
解析:C
【解析】
【分析】
由题意先根据有理数的大小比较法则比较大小,再选出选项即可.
【详解】
-<1-<0<3,
解:∵ 2.5
-,
∴最小的数是 2.5
故选:C.
【点睛】
本题考查有理数的大小比较的应用,主要考查学生的比较能力,注意正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.
5.C
解析:C
【解析】
【分析】
把64代入转换器,根据要求计算,得到输出的数值即可.
【详解】
,是有理数,
∴继续转换,
,是有理数,
∴继续转换,
∵2,是无理数,
∴输出,
故选:C.
【点睛】
本题考查的是算术平方根的概念和性质,一个正数的平方根有两个,正的平方根是这个数的算术平方根;注意有理数和无理数的区别.
6.B
解析:B
【解析】
【分析】
观察图形,正确数出个数,再进一步得出规律即可.
【详解】
摆成第一个“H”字需要2×3+1=7个棋子,
第二个“H”字需要棋子2×5+2=12个;
第三个“H”字需要2×7+3=17个棋子;
第n个图中,有2×(2n+1)+n=5n+2(个).
∴摆成第 20 个“H”字需要棋子的个数=5×20+2=102个.
故B.
【点睛】
通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为各个图形中两竖行棋子的个数均为2n+1,横行棋子的个数为n.7.B
解析:B
【解析】
过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.
解:
过E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠C=∠FEC,∠BAE=∠FEA,
∵∠C=44°,∠AEC为直角,
∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,
∴∠1=180°﹣∠BAE=180°﹣46°=134°,
故选B.
“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.
8.A
解析:A
【解析】
【分析】
将a﹣3b=2整体代入即可求出所求的结果.
【详解】
解:当a﹣3b=2时,
∴2a﹣6b
=2(a﹣3b)
=4,
故选:A.
【点睛】
本题考查了代数式的求值,正确对代数式变形,利用添括号法则是关键.
9.A
解析:A
【解析】
【分析】
首先根据题目中图形,求得梯形的长.由图知,长方形的一边为10厘米,再设另一边为x 厘米.根据长方形的周长=梯形的周长,列出一元一次方程.
【详解】
解:长方形的一边为10厘米,故设另一边为x厘米.
根据题意得:2×(10+x)=10×4+6×2.
故选:A.
【点睛】
本题考查一元一次方程的应用.解决本题的关键是理清题目中梯形变化为矩形,其周长不变.
10.A
解析:A
【解析】
【分析】
根据普查得到的结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.
【详解】
A. 对广州市某校七(1)班同学的视力情况的调查,适合全面调查,符合题意;
B. 对广州市市民知晓“礼让行人”交通新规情况的调查,适合抽样调查,故不符合题意;
C. 对广州市中学生观看电影《厉害了,我的国》情况的调查,适合抽样调查,故不符合题意;
D. 对广州市中学生每周课外阅读时间情况的调查,适合抽样调查,故不符合题意,
故选A.
【点睛】
本题考查的是抽样调查与全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大的调查,应选用抽样调查,对于精确度要求高的调查,事关重大的调查往往先用普查的方式.
11.D
解析:D
【解析】
【分析】
观察数据,找到规律:第n个数为(﹣2)n+1,根据规律求出第10个数即可.
【详解】
解:观察数据,找到规律:第n个数为(﹣2)n+1,
第10个数是(﹣2)10+1=1024+1=1025
故选:D .
【点睛】
此题主要考查了数字变化规律,根据已知数据得出数字的变与不变是解题关键.
12.C
解析:C
【解析】
试题解析:A.不是同类项,不能合并.故错误.
B. 不是同类项,不能合并.故错误.
C.正确.
D.222 532.y y y -=故错误.
故选C.
点睛:所含字母相同并且相同字母的指数也相同的项叫做同类项.
二、填空题
13.14
【解析】
因为线段AB 被点C,D 分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x,
因为M,N 分别是AC,DB 的中点,所以CM=,DN=,
因为mn=17cm,所以x+4x+=1
解析:14
【解析】
因为线段AB 被点C,D 分成2:4:7三部分,所以设AC =2x ,CD =4x ,BD =7x ,
因为M,N 分别是AC,DB 的中点,所以CM =
12AC x =,DN =1722BD x =, 因为mn =17cm,所以x +4x +72
x =17,解得x =2,所以BD =14,故答案为:14. 14.2
【解析】
解:mx2+5y2﹣2x2+3=(m ﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x 的取值无关,则m ﹣2=0,解得m=2.故答案为2.
点睛:本题主要考查合并同类
解析:2
【解析】
解:mx 2+5y 2﹣2x 2+3=(m ﹣2)x 2+5y 2+3,∵代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m ﹣2=0,解得m =2.故答案为2.
点睛:本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x 的取值无关,即含字母x 的系数为0.
15.-5
【解析】
【分析】
首先要理解该计算机程序的顺序,即计算顺序,一种是当结果,此时就需要将结果返回重新计算,直到结果,才能输出结果.
【详解】
解:根据如图所示:
当输入的是的时候,,
此时结果
解析:-5
【解析】
【分析】
首先要理解该计算机程序的顺序,即计算顺序,一种是当结果1>-,此时就需要将结果返回重新计算,直到结果1<-,才能输出结果.
【详解】
解:根据如图所示:
当输入的是1-的时候,1(3)21-⨯--=,
此时结果1>-需要将结果返回,
即:1(3)25⨯--=-,
此时结果1<-,直接输出即可,
故答案为:5-.
【点睛】
本题考查程序设计题,解题关键在于数的比较大小和读懂题意.
16.4°.
【解析】
【分析】
根据度分秒之间60进制的关系计算.
【详解】
解:53°24′用度表示为53.4°,
故答案为:53.4°.
【点睛】
此题考查度分秒的换算,由度化分应乘以60,由分化度
解析:4°.
【解析】
【分析】
根据度分秒之间60进制的关系计算.
【详解】
解:53°24′用度表示为53.4°,
故答案为:53.4°.
【点睛】
此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.
17.【解析】
【分析】
进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】
解:36.35°=36°+0.35×60′=36°21′.
故答案为:36°21′.
【点
解析:3621'
o
【解析】
【分析】
进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.
【详解】
解:36.35°=36°+0.35×60′=36°21′.
故答案为:36°21′.
【点睛】
本题主要考查了度分秒的换算,相对比较简单,注意以60为进制,熟记1°=60′,
1′=60″.
18.-5
【解析】
【分析】
合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a 与b的值即可得出结果.
【详解】
解:根据题意得:=(a-1)x2+(b-6)x+1,
由结果与x取值
解析:-5
【解析】
【分析】
合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a与b的值即可得出结果.
【详解】
解:根据题意得:2261
-++-+=(a-1)x2+(b-6)x+1,
x bx ax x
由结果与x取值无关,得到a-1=0,b-6=0,
解得:a=1,b=6.
∴a-b=-5.
【点睛】
此题考查了整式的加减,熟练掌握运算法则以及理解“与x的取值无关”的意义是解本题的关键.
19.30﹣
【解析】
试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,
故答案为:30
解析:30﹣
【解析】
试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,
故答案为:30﹣.
考点:列代数式
20.-5
【解析】
【分析】
根据题意确定出a的最大值,b的最小值,即可求出所求.
【详解】
解:,
,
,,
则原式,
故答案为
【点睛】
本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.
解析:-5
【解析】
【分析】
根据题意确定出a的最大值,b的最小值,即可求出所求.
【详解】
解:459
<<,
23
∴<<,
a2
∴=,b3
=,
则原式495
=-=-,
故答案为5
-
【点睛】
本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.
21.2
【解析】
【分析】
从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.
【详解】
解:从五边形的一个顶点出发有5﹣3=2条对角线,
故答案为2.
【点睛】
本题考查了多边形的对角线,熟记
解析:2
【解析】
【分析】
从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.
【详解】
解:从五边形的一个顶点出发有5﹣3=2条对角线,
故答案为2.
【点睛】
本题考查了多边形的对角线,熟记知识点(从n边形的一个顶点出发有(n−3)条对角线)是解此题的关键.
22.三﹣
【解析】
【分析】
单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.
【详解】
是三次单项式,系数是.
故答案为:三,.
解析:三﹣2 5π
【分析】
单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.
【详解】
2
25
ab π-是三次单项式,系数是25π- . 故答案为:三,25
π-
. 【点睛】
本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键. 23.(2019,-2)
【解析】
【分析】
观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.
【详解】
∵第1次运动
解析:(2019,-2)
【解析】
【分析】
观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.
【详解】
∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,-2),第4次运动到点(4,0),第5次运动到点(5,1)…,
∴运动后点的横坐标等于运动的次数,
第2019次运动后点P 的横坐标为2019,
纵坐标以1、0、-2、0每4次为一个循环组循环,
∵2019÷4=504…3,
∴第2019次运动后动点P 的纵坐标是第504个循环组的第3次运动,与第3次运动的点的纵坐标相同,为-2,
∴点P(2019,-2),
故答案为:(2019,-2).
【点睛】
本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.
24.11
【分析】
对整式变形得,再将2a ﹣b=4整体代入即可.
【详解】
解:∵2a﹣b=4,
∴=,
故答案为:11.
【点睛】
本题考查代数式求值——已知式子的值,求代数式的值.能根据已
解析:11
【解析】
【分析】
对整式423a b -+变形得2(2)3a b -+,再将2a ﹣b=4整体代入即可.
【详解】
解:∵2a ﹣b=4,
∴423a b -+=2(2)324311a b -+=⨯+=,
故答案为:11.
【点睛】
本题考查代数式求值——已知式子的值,求代数式的值.能根据已知条件对代数式进行适当变形是解决此题的关键.
三、解答题
25.(1)A 种书籍每本30元,B 种书籍每本50元;(2)三种方案,具体见解析.
【解析】
【分析】
(1)设A 种书籍每本x 元,B 种书籍每本y 元,根据条件建立方程组进行求解即可;
(2)设购买A 种书籍a 本,则购买B 种书籍
32
a 本,根据总费用不超过700元可得关于a 的一元一次不等式,进而求解即可.
【详解】
(1)设A 种书籍每本x 元,B 种书籍每本y 元,由题意得 31803140x y x y +=⎧⎨+=⎩
, 解得:3050x y =⎧⎨=⎩
, 答:A 种书籍每本30元,B 种书籍每本50元;
(2)设购买A 种书籍a 本,则购买B 种书籍
32a 本,由题意得 30a+50×32
a ≤700, 解得:a ≤203
, 又a 为正整数,且
32
a 为整数, 所以a=2、4、6,共三种方案, 方案一:购买A 种书籍2本,则购买B 种书籍3本,
方案二:购买A 种书籍4本,则购买B 种书籍6本,
方案三:购买A 种书籍6本,则购买B 种书籍9本.
【点睛】
本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系或不等式关系是解题的关键.
26.2a 2ab -,6.
【解析】
【分析】
根据整式的运算法则即可求出答案.
【详解】
解:原式2223a 4ab 2a 2ab a 2ab =--+=-
当a 2=-,1b 2
=时, 原式()1422422=-⨯-⨯
=+ 6=.
【点睛】
本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.
27.(1)336,360;(2)这条裤子的标价是370元.
【解析】
【分析】
(1)按照两个商场的优惠方案进行计算即可;
(2)设这条裤子的标价是x 元,根据两种优惠方案建立方程求解即可.
【详解】
解:(1)甲商场实际付款:(290+270)×60%=336(元);
乙商场实际付款:290﹣2×50+270﹣2×50=360(元);
故答案为:336,360;
(2)设这条裤子的标价是x 元,
由题意得:(380+x )×60%=380﹣3×50+x ﹣3×50,
解得:x=370,
答:这条裤子的标价是370元.
【点睛】
本题考查一元一次方程的应用,理解两种优惠方案的价格计算方式是解题的关键.
28.(1)见解析;(2)1
2
m﹣
1
2
n
【解析】
【分析】
(1)依据AB=m+n进行作图,即可得到线段AB;
(2)依据中点的定义以及线段的和差关系,即可得到线段OC的长.【详解】
解:(1)如图所示,线段AB即为所求;
(2)如图,∵点O是AB的中点,
∴AO=1
2
AB=
1
2
(m+n),
又∵AC=m,
∴OC=AC﹣AO=m﹣1
2
(m+n)=
1
2
m﹣
1
2
n.
【点睛】
本题主要考查了基本作图,解决问题的关键是掌握作一条线段等于已知线段的方法.29.(1)150、45、36;(2)28.8°;(3)450人
【解析】
【分析】
(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;
(2)360°乘以A项目人数占总人数的比例可得;
(3)利用总人数乘以样本中C人数所占比例可得.
【详解】
解:(1)接受问卷调查的共有30÷20%=150人,m=150-(12+30+54+9)=45,54
%100%36%
150
n=⨯=∴n=36,
故答案为:150、45、36;
(2)A类所对应的扇形圆心角的度数为
12 36028.8
150
︒︒
⨯=
故答案为:28.8°;
(3)
45
1500450
150
⨯=(人)
答:估计该社区参加碧沙岗“暴走团”的大约有450人
【点睛】
本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.
30.(1)5;(2)BE的长为8或6
【解析】
【分析】
(1)由中点的定义可得CD=2BD,由BD=2可求CD的长度,最后根据线段的和差即可解答;
(2)由于点E在直线AD上位置不确定,需分E在线段DA上和线段AD的延长线两种情况解答.
【详解】
解:(1)∵点B为CD的中点,BD=2,
∴CD=2BD=4,
∵AD=9,
∴AC=AD﹣CD=9﹣4=5;
(2)若E在线段DA的延长线,如图1,
∵EA=1,AD=9,
∴ED=EA+AD=1+9=10,
∵BD=2,
∴BE=ED﹣BD=10﹣2=8,
若E线段AD上,如图2,
EA=1,AD=9,
∴ED=AD﹣EA=,9﹣1=8,
∵BD=2,
∴BE=ED﹣BD=8﹣2=6,
综上所述,BE的长为8或6.
【点睛】
本题考查的是线段的中点、线段的和差计算等知识点,根据题意画出图形并进行分类讨论是解答本题的关键.
四、压轴题
31.(1)80°;(2)140°【解析】
【分析】
(1)根据角平分线的定义得∠BOM=1
2
∠AOB,∠BON=
1
2
∠BOD,再根据角的和差得
∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定
义∠MOC=1
2
∠AOC,∠BON=
1
2
∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,
∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】
解:(1)∵OM平分∠AOB,ON平分∠BOD,
∴∠BOM=1
2
∠AOB,∠BON=
1
2
∠BOD,
∴∠MON=∠BOM+∠BON=1
2
∠AOB+
1
2
∠BOD=
1
2
(∠AOB+∠BOD).
∵∠AOD=∠AOB+∠BOD=α=160°,
∴∠MON=1
2
×160°=80°;
(2)∵OM平分∠AOC,ON平分∠BOD,
∴∠MOC=1
2
∠AOC,∠BON=
1
2
∠BOD,
∵∠MON=∠MOC+∠BON-∠BOC,
∴∠MON=1
2
∠AOC+
1
2
∠BOD -∠BOC=
1
2
(∠AOC+∠BOD )-∠BOC.
∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,
∴∠MON=1
2
(∠AOB+∠BOC+∠BOD )-∠BOC=
1
2
(∠AOD+∠BOC )-∠BOC,
∵∠AOD=α,∠MON=60°,∠BOC=20°,
∴60°=1
2
(α+20°)-20°,
∴α=140°.
【点睛】
本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键.
32.(1) a=-24,b=-10,c=10;(2) 点P的对应的数是-44
3
或4;(3) 当Q点开始运动后第
6、21秒时,P、Q两点之间的距离为8,理由见解析
【解析】
【分析】
(1)根据绝对值和偶次幂具有非负性可得a+24=0,b+10=0,c-10=0,解可得a、b、c的
值;
(2)分两种情况讨论可求点P的对应的数;
(3)分类讨论:当P点在Q点的右侧,且Q点还没追上P点时;当P在Q点左侧时,且Q点追上P点后;当Q点到达C点后,当P点在Q点左侧时;当Q点到达C点后,当P 点在Q点右侧时,根据两点间的距离是8,可得方程,根据解方程,可得答案.
【详解】
(1)∵|a+24|+|b+10|+(c-10)2=0,
∴a+24=0,b+10=0,c-10=0,
解得:a=-24,b=-10,c=10;
(2)-10-(-24)=14,
①点P在AB之间,AP=14×
2
21
=
28
3
,
-24+28
3
=-
44
3
,
点P的对应的数是-44
3
;
②点P在AB的延长线上,AP=14×2=28,
-24+28=4,
点P的对应的数是4;
(3)∵AB=14,BC=20,AC=34,
∴t P=20÷1=20(s),即点P运动时间0≤t≤20,
点Q到点C的时间t1=34÷2=17(s),点C回到终点A时间t2=68÷2=34(s),当P点在Q点的右侧,且Q点还没追上P点时,2t+8=14+t,解得t=6;
当P在Q点左侧时,且Q点追上P点后,2t-8=14+t,解得t=22>17(舍去);
当Q点到达C点后,当P点在Q点左侧时,14+t+8+2t-34=34,t=46
3
<17(舍去);
当Q点到达C点后,当P点在Q点右侧时,14+t-8+2t-34=34,解得t=62
3
>20(舍去),
当点P到达终点C时,点Q到达点D,点Q继续行驶(t-20)s后与点P的距离为8,此时2(t-20)+(2×20-34)=8,
解得t=21;
综上所述:当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8.
【点睛】
此题主要考查了一元一次方程的应用,关键是正确理解题意,掌握非负数的性质,再结合数轴解决问题.
33.(1)1;(2)点P运动5秒时,追上点R;(3)线段MN的长度不发生变化,其长度为5.
【解析】
试题分析:(1)由已知条件得到AB=10,由PA=PB,于是得到结论;
(2)设点P运动x秒时,在点C处追上点R,于是得到AC=6x BC=4x,AB=10,根据AC-BC=AB,列方程即可得到结论;
(3)线段MN的长度不发生变化,理由如下分两种情况:①当点P在A、B之间运动时②当点P运动到点B左侧时,求得线段MN的长度不发生变化.
试题解析:解:(1)(1)∵A,B表示的数分别为6,-4,
∴AB=10,
∵PA=PB,
∴点P表示的数是1,
(2)设点P运动x秒时,在点C处追上点R(如图)
则:AC=6x BC=4x AB=10
∵AC-BC=AB
∴ 6x-4x=10
解得,x=5
∴点P运动5秒时,追上点R.
(3)线段MN的长度不发生变化,理由如下:
分两种情况:
点P在A、B之间运动时:
MN=MP+NP=AP+BP=(AP+BP)=AB=5
点P运动到点B左侧时:
MN=MP-NP=AP-BP=(AP-BP)=AB=5
综上所述,线段MN的长度不发生变化,其长度为5.
点睛:此题主要考查了一元一次方程的应用、数轴,以及线段的计算,解决问题的关键是根据题意正确画出图形,要考虑全面各种情况,不要漏解.。