高中物理带电粒子在电场中的运动提高训练含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理带电粒子在电场中的运动提高训练含解析
一、高考物理精讲专题带电粒子在电场中的运动
1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).
(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;
(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);
(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .
【答案】(1)01
5
2mv B ql = (2)2
058mv l Q kq = (3)0253mv B ql π= 2
20(23)9mv E ql
ππ-=
【解析】 【分析】 【详解】
(1)粒子从P 到A 的轨迹如图所示:
粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25
r l l α=
= 由洛伦兹力提供向心力可得2
011
v qv B m r =
解得:
0 1
5
2
mv B
ql
=
(2)粒子从P到A的轨迹如图所示:
粒子绕负点电荷Q做匀速圆周运动,设半径为r2
由几何关系得
2
5
2cos8
l
r l
α
==
由库仑力提供向心力得
2
2
22
v
Qq
k m
r r
=
解得:
2
5
8
mv l
Q
kq
=
(3)粒子从P到A的轨迹如图所示:
粒子在磁场中做匀速圆周运动,在电场中做类平抛运动
粒子在电场中的运动时间
00
sin3
5
l l
t
v v
α
==
根据题意得,粒子在磁场中运动时间也为t,则
2
T
t=

2
2m
T
qB
π
=
解得0
2
5
3
mv
B
ql
π
=
设粒子在磁场中做圆周运动的半径为r,则0v t r
π
=
解得:35l r π
=
粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t m
α-=
⋅ 解得:2
20(23)9mv E ql
ππ-=
2.如图所示,EF 与GH 间为一无场区.无场区左侧A 、B 为相距为d 、板长为L 的水平放置的平行金属板,两板上加某一电压从而在板间形成一匀强电场,其中A 为正极板.无场区右侧为一点电荷Q 形成的电场,点电荷的位置O 为圆弧形细圆管CD 的圆心,圆弧半径为R ,圆心角为120°,O 、C 在两板间的中心线上,D 位于GH 上.一个质量为m 、电荷量为q 的带正电粒子以初速度v 0沿两板间的中心线射入匀强电场,粒子出匀强电场经无场区后恰能进入细圆管,并做与管壁无相互挤压的匀速圆周运动.(不计粒子的重力、管的粗细)求:
(1)O 处点电荷的电性和电荷量; (2)两金属板间所加的电压.
【答案】(1)负电,2043mv R kq ;(2) 20
33mdv qL
【解析】
(1)粒子进入圆管后受到点电荷Q 的库仑力作匀速圆周运动,粒子带正电,则知O 处点电荷带负电.由几何关系知,粒子在D 点速度方向与水平方向夹角为30°,进入D 点时速度为:0023303
v v v cos =
=︒ …①
在细圆管中做与管壁无相互挤压的匀速圆周运动,故Q 带负电且满足2
2Qq v k m
R R
=…②
由①②得:
2
4
3
mv R Q
kq
=
(2)粒子射出电场时速度方向与水平方向成30°
tan 30°=
y
v
v
…③
v y=at…④
qU
a
md
=…⑤
L
t
v
=…⑥
由③④⑤⑥得:
22
00
303
3
mdv tan mdv
U
qL qL

==
3.如图所示,竖直面内有水平线MN与竖直线PQ交于P点,O在水平线MN上,OP间距为d,一质量为m、电量为q的带正电粒子,从O处以大小为v0、方向与水平线夹角为θ=60º的速度,进入大小为E1的匀强电场中,电场方向与竖直方向夹角为θ=60º,粒子到达PQ线上的A点时,其动能为在O处时动能的4倍.当粒子到达A点时,突然将电场改为大小为E2,方向与竖直方向夹角也为θ=60º的匀强电场,然后粒子能到达PQ线上的B点.电场方向均平行于MN、PQ所在竖直面,图中分别仅画出一条电场线示意其方向。

已知粒子从O运动到A的时间与从A运动到B的时间相同,不计粒子重力,已知量为m、q、v0、d.求:
(1)粒子从O到A运动过程中,电场力所做功W;
(2)匀强电场的场强大小E1、E2;
(3)粒子到达B点时的动能E kB.
【答案】(1)2
3
2
W mv
= (2)E1=
2
3
4
m
qd
υ
E2=
2
3
3
m
qd
υ
(3) E kB=
2
14
3

【解析】 【分析】
(1)对粒子应用动能定理可以求出电场力做的功。

(2)粒子在电场中做类平抛运动,应用类平抛运动规律可以求出电场强度大小。

(3)根据粒子运动过程,应用动能计算公式求出粒子到达B 点时的动能。

【详解】
(1) 由题知:粒子在O 点动能为E ko =
2
012
mv 粒子在A 点动能为:E kA =4E ko ,粒子从O 到A 运动过程,由动能定理得:电场力所做功:W=E kA -E ko =2
032
mv ; (2) 以O 为坐标原点,初速v 0方向为x 轴正向, 建立直角坐标系xOy ,如图所示
设粒子从O 到A 运动过程,粒子加速度大小为a 1, 历时t 1,A 点坐标为(x ,y ) 粒子做类平抛运动:x=v 0t 1,y=
21112
a t 由题知:粒子在A 点速度大小v A =2 v 0,v Ay 03v ,v Ay =a 1 t 1 粒子在A 点速度方向与竖直线PQ 夹角为30°。

解得:2
1
3v x a =
,20132v y a = 由几何关系得:ysin60°
-xcos60°=d , 解得:20
13v a =,104d t v =
由牛顿第二定律得:qE 1=ma 1,
解得:2
13mv E =
设粒子从A 到B 运动过程中,加速度大小为a 2,历时t 2,
水平方向上有:v A sin30°
=2
2t
a 2sin60°,210
4d t t v ==,qE 2=ma 2,
解得:2023a d = ,2
233mv E qd
=; (3) 分析知:粒子过A 点后,速度方向恰与电场E 2方向垂直,再做类平抛运动, 粒子到达B 点时动能:E kB =2
12
B mv ,v B 2=(2v 0)2+(a 2t 2)2, 解得:20
143
KB mv E =。

【点睛】
本题考查了带电粒子在电场中的运动,根据题意分析清楚粒子运动过程与运动性质是解题的前提与关键,应用动能定理、类平抛运动规律可以解题。

4.利用电场可以控制电子的运动,这一技术在现代设备中有广泛的应用,已知电子的质量为m ,电荷量为e -,不计重力及电子之间的相互作用力,不考虑相对论效应.
(1)在宽度一定的空间中存在竖直向下的匀强电场,一束电子以相同的初速度0v 沿水平方向射入电场,如图1所示,图中虚线为某一电子的轨迹,射入点A 处电势为A ϕ,射出点B 处电势为B ϕ.
①求该电子在由A 运动到B 的过程中,电场力做的功AB W ;
②请判断该电子束穿过图1所示电场后,运动方向是否仍然彼此平行?若平行,请求出速度方向偏转角θ的余弦值cos θ(速度方向偏转角是指末速度方向与初速度方向之间的夹角);若不平行,请说明是会聚还是发散.
(2)某电子枪除了加速电子外,同时还有使电子束会聚或发散作用,其原理可简化为图2所示.一球形界面外部空间中各处电势均为1ϕ,内部各处电势均为221()ϕϕϕ>,球心位于z 轴上O 点.一束靠近z 轴且关于z 轴对称的电子以相同的速度1v 平行于z 轴射入该界面,由于电子只受到在界面处法线方向的作用力,其运动方向将发生改变,改变前后能量守恒.
①请定性画出这束电子射入球形界面后运动方向的示意图(画出电子束边缘处两条即可);
②某电子入射方向与法线的夹角为1θ,求它射入球形界面后的运动方向与法线的夹角2θ的正弦值2sin θ.
【答案】(1)①()AB B A W e ϕϕ=- ②是平行;
(
)0
20
cos 2B A v v v
e v m
θϕϕ=
=-+
; (2)① ②
()1122211sin 2e v m
θϕϕ=
-+
【解析】 【详解】
(1)①AB 两点的电势差为AB A B U ϕϕ=-
在电子由A 运动到B 的过程中电场力做的功为()AB AB B A W eU e ϕϕ=-=-
②电子束在同一电场中运动,电场力做功一样,所以穿出电场时,运动方向仍然彼此平行,设电子在B 点处的速度大小为v ,根据动能定理
2201122
AB W mv mv =
- 0cos v v θ=
解得:
()0
20
cos 2B A v v
e v m
θϕϕ=
=-+
(2)①运动图如图所示:
②设电子穿过界面后的速度为2v ,由于电子只受法线方向的作用力,其沿界面方向的速度不变,则1122sin sin θθ=v v 电子穿过界面的过程,能量守恒则:
2211221122mv e mv e ϕϕ-=- 可解得:()212212e v v m
ϕϕ-=+

(
)11
22211
sin sin 2v e v m
θθϕϕ=
-+
故本题答案是:(1)①()AB B A W e ϕϕ=- ②
()0
20
cos 2B A v v v
e v m
θϕϕ=
=-+
; (2)① ②
()1122211sin 2e v m
θϕϕ=
-+
5.如图甲所示,极板A 、B 间电压为U 0,极板C 、D 间距为d ,荧光屏到C 、D 板右端的距离等于C 、D 板的板长.A 板O 处的放射源连续无初速地释放质量为m 、电荷量为+q 的粒子,经电场加速后,沿极板C 、D 的中心线射向荧光屏(荧光屏足够大且与中心线垂直),当C 、D 板间未加电压时,粒子通过两板间的时间为t 0;当C 、D 板间加上图乙所示电压(图中电压U 1已知)时,粒子均能从C 、D 两板间飞出,不计粒子的重力及相互间的作用.求:
(1)C 、D 板的长度L ;
(2)粒子从C 、D 板间飞出时垂直于极板方向偏移的最大距离; (3)粒子打在荧光屏上区域的长度. 【答案】(1)02qU L t m =2)2102qU t y md =(3)2
10
32qU t s s md
∆== 【解析】
试题分析:(1)粒子在A 、B 板间有2
0012
qU mv = 在C 、D 板间有00L v t = 解得:0
2qU L t m
=(2)粒子从nt 0(n=0、2、4……)时刻进入C 、D 间,偏移距离最大
粒子做类平抛运动 偏移距离2012
y at = 加速度1
qU a md
=
得:2
10
2qU t y md
=
(3)粒子在C 、D 间偏转距离最大时打在荧光屏上距中心线最远ZXXK] 出C 、D 板偏转角0
tan y v v θ=
0y v at =
打在荧光屏上距中心线最远距离tan s y L θ=+
荧光屏上区域长度2
10
32qU t s s md
∆==
考点:带电粒子在匀强电场中的运动
【名师点睛】此题是带电粒子在匀强电场中的运动问题;关键是知道粒子在水平及竖直方向的运动规律和特点,结合平抛运动的规律解答.
6.两平行的带电金属板水平放置,板间电场可视为匀强电场.带电量相等粒子a ,b 分别以相同初速度水平射入匀强电场,粒子a 飞离电场时水平方向分位移与竖直方向分位移大小相等,粒子b 飞离电场时水平方向速度与竖直方向速度大小相等.忽略粒子间相互作用力及重力影响,求粒子a 、b 质量之比. 【答案】1:2 【解析】 【详解】
假设极板长度为l ,粒子a 的质量为m a ,离开电场时竖直位移为y ,粒子b 的质量为m b ,离开电场时竖直分速度为v y ,两粒子初速度均为v 0,在极板间运动时间均为t 对粒子a :l =v 0t …① y =
12
a 1t 2
…② 1a
qE
a m =
…③ y =l …④
①②③④联立解得:20
2a qEl m v = 对粒子b :v y =a 2t …⑤ v y =v 0…⑥
2b
qE
a m
=
…⑦ ①⑤⑥⑦联立解得:20
b qEl m v =

1
2
a b m m =.
7.如图1所示,光滑绝缘斜面的倾角θ=30°,整个空间处在电场中,取沿斜面向上的方向为电场的正方向,电场随时间的变化规律如图
2所示.一个质量m=0.2kg ,电量q=1×10-5C 的带正电的滑块被挡板P 挡住,在t=0时刻,撤去挡板P .重力加速度g=10m/s 2,求:
(1)0~4s 内滑块的最大速度为多少? (2)0~4s 内电场力做了多少功? 【答案】(1)20m/s (2)40J 【解析】 【分析】
对滑块受力分析,由牛顿运动定律计算加速度计算各速度. 【详解】
【解】(l)在0~2 s 内,滑块的受力分析如图甲所示,
电场力F=qE
11sin F mg ma θ-=
解得2
110/a m s =
在2 ---4 s 内,滑块受力分析如图乙所示
22sin F mg ma θ+=
解得2
210/a m s =
因此物体在0~2 s 内,以2
110/a m s =的加速度加速, 在2~4 s 内,2
210/a m s =的加速度减速,即在2s 时,速度最大
由1v a t =得,max 20/v m s =
(2)物体在0~2s 内与在2~4s 内通过的位移相等.通过的位移max
202
v x t m == 在0~2 s 内,电场力做正功1160W F x J == - 在2~4 s 内,电场力做负功2220W F x J ==- 电场力做功W=40 J
8.如图,平面直角坐标系中,在,y >0及y <-3
2
L 区域存在场强大小相同,方向相反均平行于y 轴的匀强电场,在-
3
2
L <y <0区域存在方向垂直于xOy 平面纸面向外的匀强磁场,一质量为m ,电荷量为q 的带正电粒子,经过y 轴上的点P 1(0,L )时的速率为v 0,方向沿x 轴正方向,然后经过x 轴上的点P 2(3
2L ,0)进入磁场.在磁场中的运转半径R =52
L (不计粒子重力),求:
(1)粒子到达P 2点时的速度大小和方向; (2)
E
B

(3)粒子第一次从磁场下边界穿出位置的横坐标;(4)粒子从P1点出发后做周期性运动的周期.
【答案】(1)5 3
v0,与x成53°角;(2)0
4
3
v
;(3)2L;(4)
()
40537
60
L
v
π
+

【解析】
【详解】
(1)如图,粒子从P1到P2做类平抛运动,设到达P2时的y方向的速度为v y,
由运动学规律知
3
2
L=v0t1,
L=
2
y
v
t1
可得t1=
3
2
L
v,v y=
4
3
v0
故粒子在P2的速度为v22
0y
v v
+=
5
3
v0
设v与x成β角,则tanβ=
y
v
v
=
4
3
,即β=53°;
(2)粒子从P1到P2,根据动能定理知qEL=
1
2
mv2-
1
2
mv02可得
E=
2
8
9
mv
qL
粒子在磁场中做匀速圆周运动,根据qvB=m
2
v
R
解得:B=
mv
qR
=
5
3
5
2
m v
q L


=0
2
3
mv
qL
解得:0
4
3
v
E
B
=;
(3)粒子在磁场中做圆周运动的圆心为O′,在图中,过P2做v的垂线交y=-
3
2
L直线与Q′点,可得:
P2O′=
3
253
L
cos o
=
5
2
L=r
故粒子在磁场中做圆周运动的圆心为O ′,因粒子在磁场中的轨迹所对圆心角α=37°,故粒子将垂直于y =-
32
L 直线从M 点穿出磁场,由几何关系知M 的坐标x =
3
2
L +(r -r cos37°)=2L ; (4)粒子运动一个周期的轨迹如上图,粒子从P 1到P 2做类平抛运动:t 1=0
32L
v 在磁场中由P 2到M 动时间:t 2=
372360r v π︒⨯o
=0
37120L
v π 从M 运动到N ,a =qE m =2
89v L
则t 3=
v a =0
158L
v 则一个周期的时间T =2(t 1+t 2+t 3)=
()0
4053760L
v π+.
9.如图所示,两块平行金属极板MN 水平放置,板长L =" 1" m .间距d =
3
3
m ,两金属板间电压U MN = 1×104V ;在平行金属板右侧依次存在ABC 和FGH 两个全等的正三角形区域,正三角形ABC 内存在垂直纸面向里的匀强磁场B 1,三角形的上顶点A 与上金属板M 平齐,BC 边与金属板平行,AB 边的中点P 恰好在下金属板N 的右端点;正三角形FGH 内存在垂直纸面向外的匀强磁场B 2,已知A 、F 、G 处于同一直线上.B 、C 、H 也处于同一直
线上.AF 两点距离为
2
3
m .现从平行金属极板MN 左端沿中心轴线方向入射一个重力不计的带电粒子,粒子质量m = 3×10-10kg ,带电量q = +1×10-4C ,初速度v 0= 1×105m/s .
(1)求带电粒子从电场中射出时的速度v 的大小和方向
(2)若带电粒子进入中间三角形区域后垂直打在AC 边上,求该区域的磁感应强度B 1 (3)若要使带电粒子由FH 边界进入FGH 区域并能再次回到FH 界面,求B 2应满足的条件. 【答案】(1)53
10/3m s ;垂直于AB 方向出射.(2)3310
(3)
235+ 【解析】
试题分析:(1)设带电粒子在电场中做类平抛运动的时间为t ,加速度为a ,
则:
U
q ma
d
=解得:102
3
10/
3
qU
a m s
md
==⨯
5
110
L
t s
v
-
==⨯
竖直方向的速度为:v y=at=
3
3
×105m/s
射出时速度为:225
23
10/
y
v v v m s
=+=⨯
速度v与水平方向夹角为θ,
3
tan
3
y
v
v
θ==,故θ=30°,即垂直于AB方向出射.(2)带电粒子出电场时竖直方向的偏转的位移2
13
262
d
y at m
===,即粒子由P1点垂直AB射入磁场,
由几何关系知在磁场ABC区域内做圆周运动的半径为
1
2
cos303
d
R m
==
o

2
1
1
v
B qv m
R
=
知:
1
1
33
mv
B T
qR
==
(3)分析知当轨迹与边界GH相切时,对应磁感应强度B2最大,运动轨迹如图所示:
由几何关系得:2
2
1
sin60
R
R
o
+=
故半径
2
(233)
R m
=

2
2
2
v
B qv m
R
=

2
23
B
+
=
所以B2
23
+

考点:带电粒子在匀强磁场中的运动.
10.如图甲所示,在直角坐标系0≤x≤L区域内有沿y轴正方向的匀强电场,右侧有一个以点(3L,0)为圆心、半径为L的圆形区域,圆形区域与x轴的交点分别为M、N.现有一质量为m、带电量为e的电子,从y轴上的A点以速度v0沿x轴正方向射入电场,飞出电场后从M点进入圆形区域,此时速度方向与x轴正方向的夹角为30°.不考虑电子所受的重力.
(1)求电子进入圆形区域时的速度大小和匀强电场场强E的大小;
(2)若在圆形区域内加一个垂直纸面向里的匀强磁场,使电子穿出圆形区域时速度方向垂直于x轴.求所加磁场磁感应强度B的大小和电子刚穿出圆形区域时的位置坐标;
(3)若在电子刚进入圆形区域时,在圆形区域内加上图乙所示变化的磁场(以垂直于纸面向外为磁场正方向),最后电子从N点处飞出,速度方向与进入磁场时的速度方向相同.请写出磁感应强度B0的大小、磁场变化周期T各应满足的关系表达式.
【答案】(1)(2)(3)(n=1,2,3…)
(n=1,2,3…)
【解析】
(1)电子在电场中作类平抛运动,射出电场时,速度分解图如图1中所示.
由速度关系可得:
解得:
由速度关系得:v y=v0tanθ=v0
在竖直方向:
而水平方向:
解得:
(2)根据题意作图如图1所示,电子做匀速圆周运动的半径R=L
根据牛顿第二定律:
解得:
根据几何关系得电子穿出圆形区域时位置坐标为(,-)
(3)电子在在磁场中最简单的情景如图2所示.
在磁场变化的前三分之一个周期内,电子的偏转角为60°,设电子运动的轨道半径为r,运动的T0,粒子在x轴方向上的位移恰好等于r1;
在磁场变化的后三分之二个周期内,因磁感应强度减半,电子运动周期T′=2T0,故粒子的偏转角度仍为60°,电子运动的轨道半径变为2r,粒子在x轴方向上的位移恰好等于
2r.
综合上述分析,则电子能到达N点且速度符合要求的空间条件是:3rn=2L(n=1,2,3…)
而:
解得:(n=1,2,3…)
应满足的时间条件为: (T0+T′)=T
而:
解得(n=1,2,3…)
点睛:本题的靓点在于第三问,综合题目要求及带电粒子运动的半径和周期关系,则符合
要求的粒子轨迹必定是粒子先在正B0中偏转60°,而后又在− B0中再次偏转60°,经过n次这样的循环后恰恰从N点穿出.先从半径关系求出磁感应强度的大小,再从周期关系求出交变磁场周期的大小.
11.如图所示,OO′为正对放置的水平金属板M、N的中线,热灯丝逸出的电子(初速度、
重力均不计)在电压为U 的加速电场中由静止开始运动,从小孔O 射人两板间正交的匀强电场、匀强磁场(图中未画出)后沿OO′做直线运动,已知两板间的电压为2U ,两板长度与两板间的距离均为L ,电子的质量为m 、电荷量为e 。

求:
(1)电子通过小孔O 时的速度大小v ;
(2)板间匀强磁场的磁感应强度的大小B 和方向。

【答案】(1)2eU
m
(2)12mU L e 方向垂直纸面向里
【解析】 【详解】
(1)电子通过加速电场的过程中,由动能定理有:2
12
eU mv = 解得:2eU
v m
=
(2)两板间电场的电场强度大小为:2U
E L
=
由于电子在两板间做匀速运动,故:evB eE = 解得:12mU
B L e
=
根据左手定则可判断磁感应强度方向垂直纸面向外.
12.如图所示,AB 是一段长为s 的光滑绝缘水平轨道,BC 是一段竖直墙面。

一带电量为q(q>0)的小球静止在A 点。

某时刻在整个空间加上水平向右、场强E=
的匀强电场,当
小球运动至B 点时,电场立即反向(大小不变),经一段时间后,小球第一次运动至C 点。

重力加速度为g 。

求:
(1)小球由A 运动至B 的时间t ;
(2)竖直墙面BC的高度h;
(3)小球从B点抛出后,经多长时间动能最小?最小动能是多少?
【答案】(1)(2)(3)
【解析】
【分析】
根据“小球在匀强电场中运动至B点,经一段时间后小球第一次运动至C点”可知,本题考查带电小球在匀强电场中的曲线运动问题,根据匀变速曲线运动的运动规律,运用动能定理和分运动的运动学公式列式计算.
【详解】
(1)小球由A至B,由牛顿第二定律得:
位移为
联立解得运动时间:
(2)设小球运动至B时速度为v B,则
小球由B运动至C的过程中,在水平方向做加速度为-a的匀变速运动,位移为0,
则:
在竖直方向上做自由落体运动,则
联立解得:
(3)从B点抛出后经时间t,水平方向、竖直方向速度分别为
经时间t合速度v满足
代入得:
由此,当时,最小,最小值,
故小球从B点抛出后,达动能最小需经时间
动能最小值
【点睛】
涉及电场力和重力作用下的匀变速曲线运动,针对运动规律选择牛顿第二定律和运动学公式;针对初末状态选用动能定理截决问题比较容易.。

相关文档
最新文档