GWD-TN-9
通用电气爱德华EST3火灾报警图形监控软件用户手册
02 ............................................................................................................... 明说用使 PGC TSE 81 .....................................................................................................................巧技作操库据数 51 ........................................................................................ 件文 txt.epyTeciveDresU 51 .................................................................................................... 件文 txt.tciDresU 41 .......................................................................................................... 件文 INI.PGC 31 ........................................................ 中库备设前当到入导库据数的中 UDS-3 将 31 ......................................................................................... 置位的块模或头探整调 31 ................................................................................. 块模或头探的上图面平放拖 21 ......................................................................................... 据数的块模或头探改修 11 ............................................................................................. 入输的息信块模头探 9 ........................................................................................................... 作制的图面平 9 ....................................................................................................... 入输的介简程工 7 ........................................................................................................... 作制的图面立 7 ............................................................................................................... 作制的面封 5 .................................................................................................. 介简件文录目 TRC 31 . 3 21.3 11.3 01 . 3 9. 3 8. 3 7. 3 6. 3 5. 3 4. 3 3. 3 2. 3 1. 3
MixedOxide(MOX)Fuel
Mixed Oxide(MOX)FuelDuring the1960s with thefirst commercial use of nuclear energy it was thought that uranium would soon become scarce.For nuclear energy to make effective contributions it was felt necessary that the plutonium produced during nuclear power generation be recovered(by reprocessing)and recycled,pref-erably in fast reactors.The early work on development of plutonium-bearing fuels clearly established the superiority of uranium–plutonium mixed oxide (MOX)for fast reactors.The proportion of plutonium in the mixed oxide used in fast power reactors is usually20–30wt.%.The fuel used in prototype fast reactors such as Phoenix,PFR,MONJU,FFTF,as well as in the commercial demonstration fast reactor Superphoenix is this type of fuel.The delays in the introduction of commercial fast reactors since the 1980s have resulted in increasing use of mixed oxide of UO#with"4%PuO#composition in light water reactors(LWRs).Although‘‘mixed oxide’’in general terms encompasses both thermal and fast reactor fuels,the term MOX is popularly used to refer to UO# with"4%PuO#fuels used in LWRs.In this article, we cover MOX fuels belonging to both types of reactors although a stronger emphasis is placed on thermal reactor MOX because of the interest shown in it.1.Physical CharacteristicsUO#and PuO#both have f.c.c.(CaF#)crystal struc-tures and exhibit complete solid solubility over the entire composition range at and near an oxygen to metal ratio(O\M)l2.However,beyond UO#–30% PuO#composition,two-phase regions(of f.c.c.and b.c.c.or b.c.t.)have been reported at O\M values of less than1.94.A review of the thermal conductivity of MOX fuels indicates that the presence of PuO#in UO#slightly decreases the thermal conductivity.The thermal res-istivity is represented by1\K l A j BT,where A is the phonon scattering(the presence of plutonium in-creases A)and BT is the so-called intrinsic thermal resistivity arising from phonon–phonon interactions which increases with temperature,serflash methods are used for thermal conductivity measure-ments and the decrease is typically4%for10% Pu\U j Pu.With burn-up,the conductivity of MOX fuel degrades further owing to irradiation damage and fission products in dynamic solution,the phenomenon being similar to that in UO#.The O\M ratio is an important variable that affects thermal conductivity,melting point,and the lattice parameter.In fast-reactor MOX fuels(see Fuels for Fast Breeder Reactors),the O\M ratio is important as it affects plutonium migration behavior,andfission product attack on clad as well sodium fuel com-patibility.The O\M generally specified for fast-reactor MOX is between1.95and1.98,whereas it is close to 2.00for thermal-reactor MOX.The thermal expansion coefficient of MOX(LWR) is about1%higher(Haas1993)and the melting point 20m C lower compared to UO#.The melting point and the lattice parameter follow Vegard’s law at O\M l2 for both thermal and fast-reactor MOX.There are reports that O\M affects melting point,particularly in the case of fast-reactor MOX.An O\M corresponding to an O\Pu ratio of about1.75is reported to have always the highest melting point owing to high thermal stability seen when trivalent and tetravalent plutonium atoms are in equal proportion.Some of the important physical properties of UO#,PuO#,UO#–4%PuO#,and UO#–20%PuO#are given in Table1.The thermal creep,both for UO#and MOX,is generally modeled as the sum of a linear term proportional to applied stress(diffusional creep)and a term proportional to stress to the power of 4.5 (dislocation climb).The irradiation creep is the sum of both irradiation-enhanced creep(thermal creep in-creased owing to irradiation)and irradiation-induced creep(temperature independent and occurs only in the presence of irradiation)(see Nuclear Reactor Mater-ials:Irradiation Effects).MOX fuels are reported to show increased in-pile creep(Palmer et al.1999), resulting in their improved transient behavior.2.MOX Fuel DesignMOX thermal reactor fuel is now being used es-sentially in LWRs designed for low enriched uranium (LEU)fuels and hence has to be mechanically, neutronically,and operationally interchangeable with uranium fuels.MOX fuel must perform at least as well as its uranium counterpart(see Light Water Reactor Fuel Design and Performance).This is ensured by using almost the same hardware,design,and operating limits and also by limiting the loading of MOX to one-third of the core so that the reactor can be operated within the same licensed safety parameters.The high resonance capture of MOX fuel in a thermal neutron spectrum leads to hardening of the neutron spectrum and this is overcome by introducing a larger number of water rods in MOX fuel assemblies(FAs)compared to uranium FAs.Further,for reasons of economy, fabrication,transport,and storage,‘‘all-Pu’’MOX assemblies are preferred over‘‘island-Pu’’MOX as-semblies in LWRs(Schlosser1993).MOX fuel has been the cornerstone of fast-reactor fuel because of its excellent burn-up potential.The life-limiting phenomenon in the case of fast reactors comes from the clad(swelling)(see Nuclear Reactor Materials:Irradiation Effects,Fast Breeder Reactors: Fuel)rather than from the fuel matrix.The advanced MOX fuel design for fast reactors uses annular fuel pellets,a lower O\M,and advanced cladding(D-9,1Mixed Oxide(MOX)FuelTable1Physical properties of MOX fuel(unirradiated).No.Parameter UO#PuO#UO#–4%PuO#UO#–20%PuO# 1Theoretical density(gcm−$)10.9611.4610.9811.042Lattice parameter(A) 5.47 5.396 5.467 5.4563Melting point(m C)2840!402400!40282028104Crystal structure Fluorite:SC,O#−;f.c.c.,M%+5Coeff.of linear expansion(10−'m C−")10.110.910.1510.16Thermal diffusivity at95%Th D(cm#s−")0.022at1600m C0.023at1000m C0.021HT-9)alloys.The design burn-up in advanced fast-reactor MOX fuel exceeds200GWdton−".3.MOX Fuel FabricationFour countries,Belgium,France,India,and the UK, are engaged in the manufacture of MOX fuels for LWRs.Japan has two MOX fabrication plants—one manufacturing MOX fuel for the Advanced Thermal Reactor(ATR)and the other for its fast reactor (MONJU).The Russian Federation also has two MOX plants—one for pellet fuel and the other for Vibro-fuel(see Non-aqueous Reprocessing of Oxide Fuels)for experimental irradiation in fast reactors. Almost all MOX fabrication plants have adopted fabricationflowsheets based on mechanical mixing\ milling techniques.The micronized master blend (MIMAS)developed(Hass1993)by Belgonucleaire (BN)is used by BN and France.The UK(Macdonald 1994)and India(Kamath et al.1998)use modern attritor technology,which produces microhomogen-ous MOX that is likely to have superior performance at high burn-up(Walker et al.1996).The techniques used in MOX fuel fabrication essentially are powder metallurgy techniques involving cold pressing,sintering,centerless grinding,encapsu-lation,welding,and fuel rod assembly(see Nuclear Reactor Fuel Fabrication(Including Quality Control)). The advances that are taking place in fuel manufacture are mainly with respect to fuel performance,simplifi-cation of process steps,high level of automation to reduce operator dose,and inert matrix-based fuels for weapon-plutonium disposal.4.MOX Use and PerformanceAs at1999,35commercial LWRs were loaded with MOX fuels infive countries up to a maximum of30% of the core.Several prototype fast reactors,including Superphoenix(1200MW(e)),have been operated with MOX fuel.More than85tons of plutonium and1000 tons of MOX have been irradiated in thermal and fast reactors.The scale of MOX fuel fabrication and use is an order of magnitude less than that of UO#,but its performance is much the same as UO#.MOX fuel designers are now confident that MOX fuel can be designed to perform to the same operational and performance criteria as uranium fuels(up to 45MWdkg−").In fact,there is now enough evidence to indicate that MOX fuel performs better than UO# with respect to pellet-clad interaction(PCI)(Haas 1989).It is seen that threshold power for PCI failures for MOX fuel is higher compared to UO#,as derived from the ramp experimental data from Patten and Halden experiments.The plutonium migration noticed in high-power fast-reactor MOX near stoi-chiometric ratio is absent in thermal reactors.The only performance-related issue of some concern in the case of MOX appears to be its highfission gas release.This seems to be particularly true for het-erogeneous as opposed to homogeneous MOX fuel (Trotabas1994).The increased internal rod pressure is partly contributed to by enhanced helium generation and release in the case of MOX compared to UO#fuels (Kamimura1999).Most of the countries using MOX fuel in LWRs have not yetfinalized their options for the spent MOX fuel.The storage or disposal of spent MOX fuel entails similar problems to that of spent UO#fuel,with somewhat enhanced neutronic dose and increased radiotoxicity owing to the presence of minor actinides. Studies on‘‘Multirecycling MOX’’and100%MOX in advanced reactor concepts are also underway as well as studies on one or two MOX recycles in LWRs to be followed by multicycling in FBRs.5.Economics of MOX FuelThe MOX option is not necessarily decided only by economics,as it is also an important part of nuclear resource management and a method for reduction of radiotoxicity in the spent fuel.Nevertheless,some cost studies(OECD-NEA1994)have indicated only a marginal(10%)advantage in costs for the once-through option compared to the recycle option(see Nuclear Fuel Cycles).This margin is too small to be taken seriously in view of the uncertainties in the estimates.The once-through option also suffers from the big disadvantage of uncertainty infinalization of site selection forfinal disposal and licensability of the technology.The studies seem to indicate that MOX fuel fabrication may be three to four times costlier than for UO#,but this factor is likely to be reduced as2Mixed Oxide (MOX)FuelMOX fuel fabrication grows in scale and under-standing.With utilities having already invested in and committed to reprocessing (zero-value plutonium),the contained cost (which includes nuclear material and fabrication)of MOX is not very different from that of UO #fuel.As burn-up of the fuel increases,utilities mayfind MOX to be economically more attractive than UO #as,unlike in LEU,the increasedplutonium enrichmentdoes not lead to higher costs in the case of MOX fuel.See also :Heavy Water Reactor Fuel Design and Performance;Nuclear Reactor Fuel Fabrication (Including Quality Control)BibliographyHaas D 1989MOX fuel in-pile behaviour up to 60000MWd \T.Nucl .Eur .1–2,14–16Haas D 1993In-pile behaviour of MOX with particular emphasis on MIMAS fuel.Nucl .Technol .102,47–53Haas D,Vanderghegnst 1994Mixed oxide fuel fabrication technology and experience at BN CFCa plants and further developments for Melox plant.Nucl .Technol .106,60–81Izutsu S,Sasagawa M,Masayama H,Suzuki T 1999Progress of fuel MOX core design in ABWR.Int .Symp .on MOX Fuel Technologies.IAEA-SM-358\27.IAEA,Vienna,pp.362–7Kamath H S,Majumdar S,Purushotham D S C.1998Devel-opments in MOX pellet fabrication technology:Indian experience.IAEA-TECDOC-1036.IAEA,Vienna,pp.103–12Copyright '2001Elsevier Science Ltd.All rights reserved.No part of this publication may be reproduced,stored in any retrieval system or transmitted in any form or by any means:electronic,electrostatic,magnetic tape,mechanical,photocopying,recording or otherwise,without permission in writing from the publishers.Encyclopedia of Materials:Science and TechnologyISBN:0-08-0431526pp.5687–5690Kamimura K 1999Helium generation and release in MOX fuels.Int .Symp .on MOX Fuel Cycle Technologies.IAEA-SM-358.IAEA,Vienna,Vienna,pp.263–70Lippens M,Basselier J 1998Comparative thermal behaviour of MOX and UO #fuels.Int .Seminar on Thermal Performance ofLWR Fuel.OECD \NEA,Cadarache,pp.243–6Macdonald G 1994The MOX demonstration facility—the stepping stone to commercial MOX production.Nuclear Energy 33(3),173–8Muromura T 1995Pu rock like fuel integrated R&D—un-conventional options for Pu disposition.IAEA TECDOC-840,pp.253–61OECD-Nuclear Energy Agency 1994Economics of the Nuclear Fuel Cycle .OECD,ParisOECD-Nuclear Energy Agency 1997Management of Separated Pu:The Technical Options .OECD,ParisPalmer I,Rossiter G,White R J 1999Development and validation of enigma code for MOX fuel performance model-ing.IAEA-SM-358\20,pp.271–81Schlosser G J 1993Experience in PWR and BWR mixed oxide fuel management.Nucl .Technol .102,54–67Stoll W 1996Concept of Ad anced MOX Fuel Fabrication Technology—Pu Futures .Topical conference on Pu and actimides.Los Alamos,CA,8.1–8.4Trotabas M 1994MOX experience in French power reactors.Int .Topical Meeting on LWR Fuel Performance ,West Palm Beach,FL pp.718–23Walker C T,Goll W,Matsumura T 1996Effect of inhom-ogeneity on the level of fission gas and Cs release from OCOM MOX fuel during irradiation.J .Nucl .Mater .228,8–17H.S.Kamath and D.S.C.Purushotham3。
铣削加工中切削参数对切削力的影响
宽增 大 而增 大 。
,一~
。
在单因素试验过程 中, 主要考虑影响切削力 的 3 个主要 因素 : 切宽 a, 。切深 口 和每齿进给量 。首先 。 进行了 3 组单因素对切削力 的影 响的实验 , 即只改变 切宽 口 , 。切深 0 和每齿进给量 中的一个 因素 , 。 研究 切削力随这个因素的变化规律。 12 2 双 因素 实验 设 计 .. 金属去除率是衡量切削效率的重要指标 , 为了研 究在金属去除率不变 的情况下 , 切削参数各因数对切 削力的影响 , 设计了如下的实验 : 在保持金属去除率不 变的前提下 , 研究只改变切宽 凸 , 切深 口 和每齿进给 。 量 中的两个因素 , 研究切削力随这两个 因素的变化
规律 。
霹 / l // 囝 } 厂 /
6 0
,
. .
/ /
2 } . P — — — —。—一 0 ’
切宽 , m m
2 切 削 参数 各 因数 对切 削 力 的影 响 实 验 结果 分 析
2 1 单 因素 实验 结 果分 析 .
2 1 1 切 削力 随切 深 的变化规 律 分析 ..
实验结果如 图 3 所示 , 切削力随切宽 口 增大的变 。
化不是很明显。当切削宽度达 到一定大小后 , 切削力 趋于一个稳定值。切削宽度的增大使变形 系数减少 , 摩擦系数也减少 , 相应 的切削力也随之减少 , 但由于切 宽的增大有可能使 同时工作的齿数增多, 相应的铣 刀 切削力增大 , 正反两方面的作用使切削力不一定随切
GW9隔离开关使用说明书
主导电回路主要由动、静触头座和导电板组成,电流等级为630A以上时,导电部件表面镀锡;电流等级为1250A时,导电部件表面镀银。
隔离开关分合时用绝缘钩棒操作,绝缘钩棒扣住隔离开关锁钩,拉动锁钩向分闸方向,解开自锁装置后带动与之相连的导电板旋转实现分闸动作,合闸时由绝缘钩棒顶住隔离开关锁钩带动转轴旋转,使之相连的导电板转动至合闸位置,此时自锁装置将隔离开关锁定在合闸位置。
本型隔离开关可安装于支柱、墙壁、天花板、横架或金属架上,也可以立装、斜装或,但安装位置应使触刀打开时趋向下方。
5.安装与调整1.本系列隔离开关可以垂直或倾斜安装,但安装位置应使触刀打开时趋向下方:2.隔离开关处于合闸位置时,触头上各接触点应全部接触,开箱后,立即检查产品是否和订货单一致,随即技术文件是否齐全。
3.安装前应仔细擦拭开关上的尘垢,检查接触表面及端子,并涂上一层工业凡士林。
4.安装时,应将接地处擦净,涂上工业凡士林,并用接地螺钉妥善的接地.6.验收与保管1、产品到达目的地后,须用户应将其放在干燥通风场所,不宜倒置,并尽快按下列事项进行验收:(1)首先检查包装箱外表面有无损坏和异常现象,外表检查完毕后,把包装箱打开取出所附文件。
(2)检查产品所附文件是否齐全(包括装箱清单、产品合格证、安装使用说明书等)(3)取出产品及附件(注意切勿使绝缘支柱瓷瓶部分受损),并进行核对。
(4)检查产品外观有无损坏和异常现象。
2、产品经验收后,无论是否立即安装使用,均应安下列各项存放保管:(1)隔离开关各磨擦转动部分必须擦净并涂以无酸性凡士林保护。
(2)产品长期存放库房时,应定期检查(每次不超过六个月),若发现生锈时,应除去锈层,涂以防锈剂。
7.使用须知1 、投入运行前,应进行一次全面检查,确认无误后,方可投入运行。
(1)隔离开关各部位尺寸是否符合要求。
(2)各连接部分的螺拴应紧固牢靠,尤其是与母线的联接。
(3)触头上各接触点应全部接触(4)投入运行后应注意下列事项:(5)隔离开关在一般情况下,必须当线路负荷切除后方可进行分、合闸操作。
PowerWeld Gouging Carbon产品安全数据表说明书
S AFETY D ATA S HEETSection 1: Product and Company IdentificationProduct Identifier:PowerWeld Gouging CarbonsProduct Use:Arc Air GougingItem Code:DC__; DCF__; DCJ__Supplier Name:Techniweld CorporationSupplier Address:2300 Winston Park DriveOakville, ON L6H 7T7Supplier Web Address:Supplier Phone: 905-829-87801-800-268-4833Emergency Phone:CHEMTREC (800) 424-9300Prepared By:Techniweld CorporationPreparation Date:18 January 2016Section 2: Hazard IdentificationClassification:Not classifiedLabel Elements: See labelOther Hazards: Product is not hazardous as shipped, but may be hazardous during thegouging process: overexposure to fumes and gases may be detrimental tohealth; beware of spatter, hot metal and slag as this can burn skin and causefire; excessive noise is likely; arc rays can injure eyes and burn skin; electricshock can kill; avoid touching live electrical parts.Section 3: Composition/Information on Hazardous IngredientsHAZARDOUS INGREDIENTS CAS NUMBERAPPROXIMATE CONCENTRATION (%)Fixed Carbon [graphite] (C) 7440-44-0 [7782-42-5]>95Copper (Cu) 7440-50-8 <5Section 4: First-aid MeasuresInhalation:Inhalation may be the most common cause of overexposure due to thefumes. Large amounts of fumes will cause irritation of the nose, eyes andskin. Move from the area that has any fumes to fresh air. If breathing isdifficult, give oxygen. If not breathing, give artificial respiration andtransport to nearest medical facility for additional treatment.Ingestion:Not an expected route of exposure. Rinse month completely and drink a cupof water if conscious; obtain medical assistance when needed.Eye Contact:If arc flash or burns occur, obtain medical assistance. Large exposure towelding fumes may cause irritation to the eyes. Immediately flush upperand lower eyelids with plenty of water. After initial flushing, remove anycontact lenses and continue flushing for at least 15 minutes. Rest eyes for30 minutes. If redness, burning, blurred vision or swelling persists, visitnearest medical facility for additional treatment.8728990Skin Contact:Large exposure to welding fumes may cause irritation to skin. If burnsoccur, flush with clean cool water for 15 minutes; obtain medical assistancewhen needed.NOTE: In all severe cases, contact physician immediately. Local telephone operators can provide number of regional poison control centre.Section 5: Fire-fighting MeasuresFlammable:NoMeans of Extinction:Not applicableAuto-ignition Temperature:Not applicableHazardous Combustion Products: Not applicableExplosion Data Sensitivity toMechanical Impact:Not applicableExplosion Data Sensitivity toStatic Discharge: Not applicableSpecial Equipment:This product as shipped is non-flammable; however, gouging should nottake place in the presence of flammable materials, vapours, tanks, pipes, orcontainers that have held flammable substances unless otherwise certifiedas safe.Precautions for Fire Fighters:Firefighters should wear proper protective equipment and self-containedbreathing apparatus with full face piece. Shield personnel to protect fromventing, rupturing or bursting cans. Move containers from fire area if it canbe done without risk. Water spray may be useful in cooling equipment andcans exposed to heat and flame.Section 6: Accidental Release MeasuresProtective Equipment:See section 8Emergency Procedures:Product as shipped has no hazards.Leak or Spill Procedure:Product can be swept and removed, remaining alert to the possibility of hotends if recently used in the gouging process.Section 7: Handling and StorageHandling Procedures and Equipment:No special equipment is required to handle product as shipped. Handle inaccordance with good industrial hygiene and safety practices. Do not eat,drink or smoke when using this product. Wash hands thoroughly beforebreaks and at the end of the workday.Storage Requirements:Store in a cool, dry and low humid location as moist electrodes may shatterviolently if used (dry moist electrodes by baking at 300°F for 10 hours).Incompatibilities:None knownSection 8: Exposure Controls/Personal ProtectionExposure Limits:HAZARDS CAS NUMBER TLV-TWACopper (Cu) 7440-50-8 0.2 mg/m3 (fume), 1.0 mg/m3 (dust)Graphite 7440-44-0 2 mg/m3 (resp)Carbon Dioxide (CO2) 124-38-9 5000 ppmCarbon Monoxide (CO) 630-08-0 25 ppmNitrogen Dioxide (NO2) 10102-44-0 0.2 ppmOzone (O3) 10028-15-6 -Nitrogen Monoxide (NO) 10102-43-9 25 ppmEngineering Controls:General ventilation and local fume extraction must be adequate to keepfume concentrations within safe limits; respiratory protection should beused during the arc gouging process. Arcs and sparks during arc gougingcan be source of ignition of combustible materials. Take precautions toprevent fires.Personal Protective Equipment:Respiratory: A properly fitting fume respirator or air supplied respiratorshould be used where local exhaust and/or ventilation does not keepexposure below threshold limits indicated above.Hands: For use during the arc gouging process, properly fitted and certifiedgloves (ie./ leather welding gloves) are recommended to prevent injuryfrom sparks and electric shock.Eyes: An approved welding helmet or face shield with a filter lens shade 12-14 or higher is recommended. Other persons around the workspace shouldalso be protected by shaded welding screens and eyewear if necessary.Skin: Approved protection (ie./ welders gloves, apron, sleeves, jacket, etc.)should be worn to prevent injury from sparks and electrical shock. Section 9: Physical and Chemical PropertiesPhysical State:Solid (stick/bar)Odour and Appearance:Odourless copper coloured rod with black tipsOdour Threshold (ppm): Not applicablepH: Not applicableMelting Point:Not applicableFreezing Point: Not applicableBoiling Point:Not applicableFlashpoint:Not applicableUpper Flammable Limit (% by volume):Not applicableLower Flammable Limit (% by volume):Not applicableSection 10: Stability and ReactivityChemical Stability:StablePossible Hazardous Reactions:None knownConditions to Avoid:None under normal conditionsMaterials to Avoid (Incompatibilities):None knownConditions of Reactivity:Not availableHazardous Decomposition By-Products: When burning – CO2, CO and traces of copper fumes (Ozone, Nitrogen Oxidefrom electric and UV rays)Section 11: Toxicological InformationSkin Contact:Arc rays can burn skin; skin cancer has been reported.Skin Absorption: Not applicableEye Contact:Arc rays can injure eyes.Inhalation:Inhalation is the most likely route of exposure; refer to “Effects of AcuteExposure” and “Effects of Chronic Exposure” below.Ingestion:Unlikely due to the form of product.Effects of Acute Exposure:Radiant energy can produce flash burns of eyes and skin. Electric shock cankill. Over exposure to fumes can cause personal injury. Symptoms can varyaccording to gouging process. These may include breathing difficulty,headache, nausea, dryness or irritation of nose, throat, eyes, burningsensation of skin or eyes, unconsciousness.Effects of Chronic Exposure:Overexposure or prolonged inhalation may cause bronchitis, lung depositsand tissue damage which may be irreversible. Exposure to ultra-violet arcrays can result in keratosis-conjunctivitis causing inflammation, blurredvision, headache, sunburn.Irritancy of Product:Not availableSensitization to Product:May cause sensitisation by skin contact.Carcinogenicity:Welding fumes may be carcinogenic to humans.Reproductive Effects:Not availableToxicological Data:Not availableSection 12: Ecological InformationAquatic and Terrestrial Toxicity:The welding process can affect the environment if fume is released directlyinto the atmosphere. Residues from welding consumables could degradeand accumulate into soils and ground water.Acute fish toxicityLC50 Fish 96h Manganese: 2.91 mg/lAluminum oxide: >100 mg/l Salmo truttaLC50 Algae 72h Manganese: 0.55 mg/lAluminum oxide: >100 mg/l Selenastrumcapricornatum (greenalgae)EC50 Daphnia 48h Manganese: 5.2 mg/lAluminum oxide: >100 mg/l Daphina magna(Water flea) Persistence and Degradability:Not availableBioaccumulative Potential:Bio concentration factor (BCF): Iron 140 000Manganese 59052 Soil Mobility:Not availableSection 13: Disposal ConsiderationsNOTE: Always dispose of waste in accordance with local, provincial and federal regulations.Safe Handling:Gloves can be worn when handling used and discarded materials. Product isnot harmful as shipped.Methods of Disposal:Avoid dispersal and contact of spilled material and runoff with soil,waterways, drains and sewers. Packaging and tungsten electrode stubs canbe disposed of as general waste or recycled. For larger quantities, be sure todispose in accordance with local, provincial/state and federal regulations. Section 14: Transportation InformationAs finished product, gouging carbons are not subject to special shipping conditions.Section 15: Regulatory InformationCanada WHMIS Classification:Class D; Division 2, Subdivision ACanadian Environmental ProtectionAct (CEPA):All constituents of these products are on the Domestic Substance List (DSL).California Proposition 65:These products contain or produce chemicals known to the State ofCalifornia to cause cancer, birth defects or other reproductive harm.United States Toxic SubstancesControl Act (TSCA): All constituents of these products are on the TSCA inventory list orexcluded from listing.Section 16: Other InformationPreparation Date:18 January 2016Date of Last Revision:18 January 2016This SDS format is in accordance with GHS. Techniweld Corporation provides the information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. This document is intended only as a guide to the appropriate precautionary handling of the material by a properly trained person using this product. Product use and conditions of use are beyond the control of Techniweld. Warranty of materials is limited to test results of product performance as detailed in certificates of compliance. Interpretation of test results is the responsibility of end-user. No other warranties, expressed or implied, are made.。
基尔霍夫电流定律
3.在下图7所示的电路中,I1与I2的关系式( c ) A.I1>I2 B.I1<I2 C.I1=I2 D.不能确定
小结: 本堂课主要学习了基尔霍夫电流定律的两种形式, 以及基尔霍夫电流定律的应用。 在分析、计算电流、电压时,要注意: (1)参考方向与实际方向的区别; (2)扩展应用时,假想封闭面的选取。
思考:对节点C而言:这三个电流(I1、I2、 I3) 之间有什么关系呢?
基尔霍夫电流定律 基尔霍夫电流定律也叫节点电流定律,基尔霍夫第一 定律,克希荷夫电流定律,简称KCL。
一.基尔霍夫电流定律的内容 基尔霍夫电流定律的内容有两种形式: 第一种形式:电路中任意一个节点上,在任一时刻,
流入节点的电流之和等于流出节点的电
可用一个假想的封闭面将该部分 电路包围,对于这样的任何封闭 表面,同样必须遵守电流连续性 原理。
我们可以将这个封闭面看成是一个大节点(即 广义的节点),由KCL,有I1+I2+I3=0(ΣI=0)
例2:如图4,已知:I2=0.6mA, I3=0.4mA , R7=10KΩ,求R7两端的电压U7.
解: 假设流过R7的电流为I7,则U7=I7R7 可将R2、R3、R4、R5、R6看成是一个 封闭面
对该封闭面,应用KCL,有I1+I7=0 而对A节点,应用KCL,有
I1=I2+I3=0.6mA+0.4mA=1.0mA 则I7=-I1=-1mA
U7=I7R7=(-1mA)*10KΩ=- 10V 注:负号说明I7、U7的方向均与图中假设的方向相反。
练习 1.如图5所示,下列各式中正确的是( CD ) A. I1-I2-I3+I4+I5-I6=0 B. I1+I2-I3-I4+I5+I6=0 C. -I1-I2-I3+I4+I5-I6=0 D. I1+I2+I3-I4-I5+I6=0
【精品】特种作业操作证办证须知
特种作业操作证办证须知一、初次办证(一)办证程序:1、报名初审;2、培训;3、考核;4、审批;5、发证。
(二)报名提交材料(一律A4纸):1、身份证复印件;2、学历证书复印件;3、近两个月内县级以上医院出具的健康查体表;4、特种作业资格考试申请、发证审批(学员登记)表。
二、中期复审或延期复审(换证)(一)复审程序:1、报名初审;2、培训;3、考核;4、审批;5、复审。
(二)报名提交材料(一律A4纸):1、近两个月内县级以上医院出具的健康查体表;2、单位或个人出具的自取新证或复审以来有无事故、违章记录或安全生产违法行为等从事特种作业有关情况证明;3、特种作业资格考试申请、发证审批(学员登记)。
三、补证(一)补证程序:1、申请;2、核查;3、审批;4、补证。
(二)申请提交材料(一律A4纸):1、书面补证申请;2、当地媒体作废声明。
表A.22 特种作业资格考试申请、发证审批(学员登记)表申请人姓名申请考试专业一寸近期免冠彩照 性别: 身份证号:学历/专业: 职称: 工作单位: 联系电话: 培训受理机构名称:申请考核属性: 初次取证 □ (中期)复训 □ 延期复训 □ (确定项画“√” )申请考核类别: 理论 □ 实操 □ (确定项画“√” ) 培训经历或申请免培训理由:(培训机构/学校、培训专业、已取证编号及发证时间)理论考核科目: 考核成绩: 补考记录:实操考核科目(内容): 序号 考核科目考核时间考核成绩补考记录培训机构负责人(代)申请发证意见:(意见、签字、机构公章)______年___月___日行政许可发证机关负责人意见(签字或公章):__________年___月___日 制表人:表A.21 特种作业操作人员健康查体表登记 字 号姓名性别身份证号一寸近期 免冠彩照申报特种作业专业工作单位 联系电话: 身高(cm ) 体重(kg )精神状态听力 左耳 右耳 医师检查意见:(签字)年 月 日 视力 左眼右眼 辩色力 左眼右眼 血压脉搏医师检查意见:(签字)年 月 日神经及精神疾病 脑电图(可或缺)肺呼吸道疾病 心血管疾病 心电图(可或缺)腹腔器官疾病骨骼及关节四肢医师检查意见: (签字)年 月 日脊柱既往史心脏病史、癫痫病史、美尼尔氏症史、眩晕症史、癔病史、震颤麻痹症史、精神病史、痴呆症史。
电力金具资料
1、11、24、U型挂环型号主要尺寸(C)主要尺寸(M)主要尺寸(D)主要尺寸(H)主要尺寸(R)破坏荷重(KN)重量(kg)U—7 20 16 16 60 22 70 0。
5U-7B 20 16 16 80 22 70 0。
6 U—10 22 18 18 70 24 100 0.6U—10B22 18 18 85 23 100 0.7 U—12 24 22 20 80 30 120 1.0 U-16 26 24 22 90 32 160 1。
5 U-16T 28 24 22 90 32 160 1.5 U-20 30 27 24 100 36 200 2.3 U-20B 30 27 24 115 36 200 2.4 U-25 34 30 26 110 40 250 2。
8 U-30 38 36 30 130 46 300 3.7 U—50 34 42 36 150 55 500 7.0 2、延长环(环体整锻)型号主要尺寸(C)主要尺寸(D)主要尺寸(L) 破坏荷重(KN) 重量(kg)PH—7。
D 20 16 80 70 0.4 PH—10。
7D 22 18 100 100 0.6 PH—12。
D 24 20 120 120 0。
9 PH—16。
D 26 22 140 160 1.5 PH—20。
D 30 24 160 200 1.6 PH—25。
D 34 26 160 250 2。
0 PH—30。
D 38 30 180 300 3.03、联板型号主要尺寸(B)主要尺寸(H)主要尺寸(D1)主要尺寸(D2)主要尺寸(L)破坏荷重(KN)重量(kg)L—1040 16 70 20 18 400 100 4.5L-1240 16 70 24 18 400 120 4.7L—1640 18 100 26 20 400 160 5.9 热镀锌钢制件。
4、19、直角挂板(Z型)型号主要尺寸(C1) 主要尺寸(C2) 主要尺寸(M)主要尺寸(H) 破坏荷重(kN)重量(kg)Z-7 18 18 16 60 70 0.6 Z—7B 20 18 16 80 70 0。
GWD ONU工作原理
宽×深×高 = 125mm×176mm ×27.8mm 重量:<0.6kg
24
GWD
其他ONU介绍 CATV的光口接收: +2~-6dBm,1550nm;
CATV的光口接头: SC/APC CATV的电口: 英制RF75,86dBuV;
宽×深×高 = 265mm×145mm×40mm 重量:<0.6kg
25
GWD
其他ONU介绍
26
GWD
其他ONU介绍
27
GWD
总结
一般ONU的了解 了解ONU可以通过产品手册 原理方面的可以看芯片手册 ONU使用主要使用命令行 支持VOIP功能的ONU • 可以了解实现语音使用的协议 • 协议的架构 • 语音功能的配置
28
GWD
谢谢
29
GT811_A 的交换芯片特性: 交换芯片的FDB表具有共享VLAN特性,而丌是严格的IVL。 部分交换芯片每64个vlan同享一个FDB表。 使用遇到问题:端口未在vlan中,而fdb表却是该vlan,端口学习了一个fdb表项。
13
GWD
VLAN功能
ONU上的VLAN模式有dot1q模式和透传模式; ONU端口默认的端口隔离打开; ONU默认工作在dot1q模式; VLAN内数据转収原理同OLT; ONU上无mvlan; ONU上vlan 中丌可设置mcastmode的值; ONU上vlan过滤可实现,命令有别不OLT。 ONU上VLAN I范围1-4094; ONU上的VLAN 容量因ONU类型丌同而丌同。
8
GWD
GT87X介绍
GT87X是GWD面向电力客户,根据需要有内嵌RS232、RS485串口服务器、无内嵌串口服 务器可选及单双PON口可选分成丌同的类型的产品,整个系列为GT87X系列ONU。 介绍一款支持双PON口且内嵌串口服务器的ONU; GT87x的电源有两种DC24V,和AC220V。
小安阅读法具体操作的整理
小安阅读的复习方法写于2003年12月,在当时OG版本是第10版,正文中提到的OG均指第10版OG(OG10),而“补充材料”则是当时新东方GMAT培训的教材(与OG10大部分重复,有人说是第9版OG上的内容,未经证实)。
现在,使用小安阅读方法进行G MAT 备考,教材可以使用:OG第12版(OG12),GWD/TN题目。
——————一般原则:——————对于已经做完所有gma t阅读的x djm,建议你把og和补充材料的阅读拿出来(共81篇,也可以挑一部分,比如补充材料第2篇完全可以删掉),进行横向总结:1、根据细节题的题目和正确答案把考点在原文中全部画出来。
然后看细节题的考法,总结:主要的无外乎取非和关键字替换2、把所有mai n idea题看一遍,看其对文章意思的表述方法:有套路,且不走极端3、把所有结构题看一遍,看其表述方法4、把态度题看一遍(题目太少,可以再看看g re年代题)5、最关键的题i nform ation题。
没什么好方法,锻炼看题目时的记忆力,还有主要从段落意思上看当你做完这样的总结后,你会形成一种gmat阅读的感觉,并且会在你再次作题时融入你的阅读方法。
对于句子理解上有困难的xdjm(衡量的标志:看阅读时看不懂文章在讲什么),建议你可以尝试训练杨鹏难句(不用练完,练出感觉就可以了)对于那些对科技类和多生词类文章有困难的xd jm,希望你多练习首字母提炼技术,可以找gre的这类文章练,强迫自己做首字母提炼。
我在复习时总的感觉是,总结的时间远超过作题的时间,我甚至按题材和写作方法对所有题目进行了分类,现在看来,这个工作的帮助似乎不很大,没有题目总结那么有意义,不过目标比较高,时间又有剩余的朋友也可以做一下这个工作。
锆的制作工艺 +美国球形燃料结构重要锆合金
A New Innovative Spherical Cermet Nuclear Fuel Element to Achieve an Ultra-Long Core Life for use in Grid-Appropriate LWRsDJ Senor J M CutaCL Painter HE AdkinsKJ Geelhood DW MatsonDW Wootan CP AbregoGH MeriwetherDecember 2007Prepared for the U.S. Department of Energyunder Contract DE-AC05-76RL01830DISCLAIMERThis report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.PACIFIC NORTHWEST NATIONAL LABORATORYoperated byBATTELLEfor theUNITED STATES DEPARTMENT OF ENERGYunder Contract DE-AC05-76RL01830Printed in the United States of AmericaAvailable to DOE and DOE contractors from theOffice of Scientific and Technical Information,P.O. Box 62, Oak Ridge, TN 37831-0062;ph: (865) 576-8401fax: (865) 576-5728email: reports@Available to the public from the National Technical Information Service,U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161ph: (800) 553-6847fax: (703) 605-6900email: orders@online ordering: /ordering.htmThis document was printed on recycled paper.(9/2003)PNNL-16647 A New Innovative Spherical Cermet Nuclear Fuel Element to Achieve an Ultra-Long Core Life for use in Grid-Appropriate LWRsDJ Senor JM CutaCL Painter HE AdkinsKJ Geelhood DW MatsonDW Wootan C. P. AbregoGH. MeriwetherDecember 2007Prepared for the U.S. Department of Energyunder Contract DE-AC05-76RL01830Pacific Northwest National LaboratoryRichland, Washington 99352SummaryPNNL has proposed the Atoms for Peace Reactor (AFPR-100) concept as a 100 MWe, inherently safe, proliferation-resistant reactor that would be ideal for deployment to nations with emerging economies that decide to select nuclear power for the generation of carbon-free electricity. The basic concept of the AFPR is a water-cooled fixed particle bed, randomly packed with spherical fuel elements. The cylindrical core is approximately 3 m in height and 3 m in diameter, and consists of a series of four annular rings containing the spherical fuel elements. The reactor core is cooled by single-phase water flow within the particle bed at such a low rate that the bed will not fluidize. The concept incorporates a 20+ year core life requirement to enhance the proliferation resistance attribute associated with reactor. The ability to achieve an ultra long core life greatly reduces the need to handle fresh and spent fuel on site during the life of a plant, which in turn will greatly simplify safeguards oversight and the associated cost. The concept relies heavily on the use of existing technology which is one advantage over other small reactor concepts currently being pursued. The ultra long core life is achieved by an innovative new spherical cermet fuel element, which relies on the use of common fuels, materials, and fabricationtechniques, albeit in a somewhat novel way. The design of this new innovative fuel is the subject of this report. The feasibility ofx fabricating such a fuel will be discussed in a later report.-matrix pebble (10-15 mm dia)The new spherical cermet fuelconsists of coated UO 2 kernelsembedded in a zirconium, or zirconium hydride, matrix whichis then overcoated with aprotective outer fuel-free layer asshown. The spherical cermetfuel elements are envisioned tobe 10-15 mm in diameter. The H 2O Coolantspherical cermet fuel elementprovides structural stability over a service life of about 20 years and appears to be fabricable with existing technology. In general, the spherical fuel cermet fuel elements offer the following advantages over existing rodded fuel technology:•high thermal conductivity, •low fuel temperatures, •good fission product retention, and •good performance at high burnup. Analyses of reactor physics performance parameters show that the spherical cermet fuel elements enable long core lifetime, easily-tailored power distribution, and attractive spent fuel isotopic composition. A fresh fuel enrichment of 12% provides sufficient initial reactivity to maintain criticality for at least 20 years of operation without refueling. The low fuel temperatures allow for higher burnup to be achieved due to reduced fission gas release and corrosion of the outer protective layer. The fuel average burnup forthe core over a 20 year period is about 53 GWD/MTU. A fuel free coating layer made of Zr (or Zr-base alloys such as Zr-1Nb) was selected to ensure good performance over a 20 year lifetime. The resultant plutonium isotopic composition is similar to that contained in commercial light water reactor spent fuel. Evaluation of thermal-hydraulics characteristics of the core design shows that single-phase vertical upflow through a core fueled with such a fuel can remove 300 MW of heat with a reasonably low pressure drop for a relatively wide range of pressures and inlet temperatures. Based on analysis of the preliminary core design, recommended normal operating parameters are•core inlet temperature of 204°C (400°F)•core exit pressure of 12.41 MPa (1800 psia)•core exit subcooling of 16.7 °C (30 °F) below saturation at the core exit pressure.These parameters produce the following operating conditions:•core pressure drop of 0.0564 MPa (8.2 psi)•total flow rate of 585 kg/sec (1290 lbm/sec), assuming 1.5% bypass flow•core exit temperature of 310°C (590°F)•steam generated at a pressure of 9.875 MPa (1432 psia).These are not the only parameters that could produce acceptable operating conditions in the core, but they provide a reasonable starting point for more detailed analysis of core performance.ContentsSummary (iii)1.0 Introduction.................................................................................................................1.12.0 Spherical Cermet Fuel Concept ..................................................................................2.12.1 Materials Selection................................................................................................................. 2.12.2 Proposed Fuel Fabrication Method ........................................................................................ 2.22.2.1 Kernel........................................................................................................................2.22.2.2 Zr Kernel Coating...................................................................................................... 2.42.2.3 Pebble Fabrication.....................................................................................................2.62.2.4 Pebble Outer Coating ................................................................................................ 2.72.3 Alternative Outer Coating Materials ...................................................................................... 2.13.0 Fuel Performance Modeling .......................................................................................3.13.1.1 Uranium Dioxide (UO2) ............................................................................................ 3.13.1.2 Zirconium..................................................................................................................3.73.1.3 Zirconium Hydride (ZrH1.6) .................................................................................... 3.123.2 Spherical Cermet Fuel Effective Thermal Conductivity and Specific Heat.........................3.153.3 Spherical Cermet Fuel Transient Thermal Analysis............................................................. 3.16Analysis....................................................................................................4.1 4.0 Neutronics4.1 AFPR Core Specifications for Analysis................................................................................. 4.14.2 Methods..................................................................................................................................4.24.3 Parametric Studies.................................................................................................................. 4.34.4 Analysis of Zr Base Case ....................................................................................................... 4.54.4.1 Description ................................................................................................................ 4.54.4.2 Burnup Analysis........................................................................................................4.64.4.3 Decay Heat ................................................................................................................ 4.84.4.4 Fuel Isotopics ............................................................................................................ 4.94.4.5 Reactivity Coefficients..............................................................................................4.94.5 Analysis of ZrH1.6 Base Case ............................................................................................... 4.104.5.1 Description .............................................................................................................. 4.104.5.2 Burnup Analysis......................................................................................................4.104.5.3 Decay Heat .............................................................................................................. 4.134.5.4 Fuel Isotopics .......................................................................................................... 4.134.6 Analysis Alternatives ...........................................................................................................4.134.6.1 Radial Power Distribution Sensitivities .................................................................. 4.134.6.2 Burnable Poison Studies.......................................................................................... 4.164.6.3 Core Lifetime Studies.............................................................................................. 4.184.7 Spectral Comparisons........................................................................................................... 4.204.8 Conclusions .......................................................................................................................... 4.225.0 Thermal Hydraulics Analysis .....................................................................................5.15.1 Core Design for Single-Phase Flow ....................................................................................... 5.25.2 Core Thermal-Hydraulics for Single-Phase Flow .................................................................. 5.55.2.1 Core Operating Conditions........................................................................................ 5.55.2.2 Material Temperatures in AFPR Core..................................................................... 5.135.3 Core Cooling in Accident Conditions .................................................................................. 5.185.3.1 Short-term Response of AFPR Core to Accident Conditions ................................. 5.195.3.2 Long-term Response of AFPR Core to Accident Conditions.................................. 5.206.0 Conclusions and Recommendations for Future Work................................................6.17.0 References...................................................................................................................7.1FiguresFigure 1.1 Iterative Process Used to Evaluate Feasibility of Spherical Cermet Fuel Elements in the AFPR System..................................................................................................................................... 1.4 Figure 2.1. Schematic representation of the AFPR pebble fuel concept................................................... 2.1 Figure 2.2. The gel precipitation process for producing UO2 fuel kernels. .............................................. 2.3 Figure 2.3. Cross sectional drawing of a FBCVD reactor for coating particle surfaces............................2.5 (Pierson, 1999)........................................................................................................................................... 2.5 Figure 2.4. PBMR pebble manufacturing process. ................................................................................... 2.7 Figure 2.5. Stylized representation of the spray process proposed for applying an outer coating to the pebble. Note that for thicker coatings, multiple spray/recrystallization cycles may be required. .... 2.8 Figure 2.6. Photographs of samples after 1826 hours at 300˚C. The metals are lightly corroded with oxide films but the ceramics are visually unaffected. However, the YSZ materials did exhibitweight gains. ...................................................................................................................................... 2.3 Figure 3.1. Thermal conductivity for 95% T.D. UO2 fuel at various burnup levels ................................ 3.2 Figure 3.2. Specific heat for 95% T.D. UO2 fuel..................................................................................... 3.3 Figure 3.3. Fuel swelling and densification model predictions as a function of burnup for 95% T.D.fuel.....................................................................................................................................................3.4 Figure 3.4. Young’s modulus for UO2 as a function of temperature for 95% T.D. fuel...........................3.5 Figure 3.5. Shear modulus for UO2 as a function of temperature for 95% T.D. fuel ............................... 3.5 Figure 3.6. Thermal expansion strain for 95% T.D. UO2 fuel .................................................................. 3.6 Figure 3.7. Athermal fission gas release model ........................................................................................ 3.7 Figure 3.8. Thermal conductivity for zirconium.......................................................................................3.8 Figure 3.9. Specific heat for zirconium..................................................................................................... 3.9 Figure 3.10. Young’s modulus for unirradiated, fully annealed zirconium............................................3.10 Figure 3.11. Shear modulus for unirradiated, fully annealed zirconium................................................. 3.11 Figure 3.12. Thermal expansion strain for zirconium.............................................................................3.12 Figure 3.13. Thermal conductivity of ZrHx for various hydrogen concentrations.................................3.13 Figure 3.14. Specific heat of ZrHx for various hydrogen concentrations............................................... 3.14 Figure 3.15. ZrHx density as a function of hydrogen content ................................................................ 3.14Figure 3.16. Dependence of Pebble Time Constant on Pebble Diameter for Zr and ZrH1.6 Pebble Matrices ........................................................................................................................................... 3.16 Figure 3.17. Dependence of Pebble ∆T on Pebble Diameter for Zr and ZrH1.6 Pebble Matrices ........... 3.17 Figure 4.1. AFPR 1/8th Core Model Horizontal Slice.............................................................................. 4.2 Figure 4.2. Variation of kernel packing fraction with Zr and ZrH1.6 matrix............................................. 4.4 Figure 4.3. Variation of pebble diameter for Zr matrix ............................................................................ 4.4 Figure 4.4. Variation of fuel kernel diameter for Zr matrix......................................................................4.5 Figure 4.5. Burnup reactivity loss over 20 years for Zr base case ............................................................ 4.6 Figure 4.6. Burnup in each fuel region over 20 years for Zr base case..................................................... 4.7 Figure 4.7. Fuel kernel power density in each fuel region for 20 year irradiation for Zr base case ......... 4.8 Figure 4.8. Decay power for the AFPR core as a function of time after shutdown .................................. 4.9 Figure 4.9. Burnup reactivity loss over 20 years for ZrH1.6 base case .................................................... 4.11 Figure 4.10. Burnup in each fuel region over 20 years for ZrH1.6 base case......................................... 4.12 Figure 4.11. Power density in each fuel region for 20 year irradiation for ZrH1.6 base case ................ 4.13 Figure 4.12. Impact of fuel enrichment zoning on radial power distributions........................................4.14 Figure 4.13. Impact of moderator rods and radial reflector on radial power distributions ..................... 4.15 Figure 4.14. Impact of adding a radial reflector on the radial power distribution in the ZrH core.........4.15 Figure 4.15. WIMS results using different burnable absorbers .............................................................. 4.16 Figure 4.16. Burnup reactivity loss over 20 years for Zr case with 2 zone boron burnable poison........ 4.17 Figure 4.17. Power density changes over 20 years for Zr case with 2 zone boron burnable poison ...... 4.18 Figure 4.18. Effect of increasing kernel packing fraction on burnup reactivity loss for Zr base case....4.19 Figure 4.19. Burnup reactivity loss over 20 years for Zr case with core volume doubled by increasing the core radius ................................................................................................................ 4.19 Figure 4.20. Burnup for each fuel region over 20 years for Zr case with core volume doubled by increasing the core radius ................................................................................................................ 4.20 Figure 4.21. Neutron spectrum comparison between Zr base case, ZrH base case, and B burnable poison case.......................................................................................................................................4.21 Figure 4.22. Comparison of neutron spectra for current cermet fuel cases with previous micro-fuel concept.............................................................................................................................................4.22 Figure 5.1. Conceptual Illustration of Packed Bed Core with Vertical Upflow Cooling.......................... 5.3 Figure 5.2. Estimated Operating Temperatures and Pressures in the AFPR at 300 MW(thermal)........... 5.4 Figure 5.3. AFPR Core Flow Rate as a function of Inlet Temperature and Exit Pressure........................ 5.8 Figure 5.4. Core Pressure Drop as a function of Inlet Temperature and Exit Pressure ............................ 5.9 Figure 5.5. Core Pressure Drop as a function of Core Exit Subcooling at Core Inlet Temperature of 204°C (400°F).................................................................................................................................. 5.10 Figure 5.6. Core Pressure Drop as a function of Core Exit Subcooling at Core Inlet Temperature of 225°C (437°F).................................................................................................................................. 5.11 Figure 5.7. Core Pressure Drop as a function of Core Exit Subcooling at Core Inlet Temperature of 250°C (482°F).................................................................................................................................. 5.12 Figure 5.8. Saturation Pressure at Core Exit Temperature as a Function of Core Exit Subcooling ....... 5.12 Figure 5.9. Estimated Nusselt Number for Acceptable Range of Fuel Particle Surface Temperatures..5.15 Figure 5.10. Fuel Particle Center Temperatures for Acceptable Range of Fuel Particle Surface Temperatures ................................................................................................................................... 5.17 Figure 5.11. Fuel Particle Center and Surface Temperatures as a Function of Nusselt Number for Heat Transfer to Coolant.................................................................................................................. 5.17Figure 5.12. Core Flow Rate and Power Decay Forcing Functions for Complete Loss of Flow Accident (CLOFA) in typical LWRs...............................................................................................5.18 Figure 5.13. Flow Rate Required to Remove Decay Heat in Hot Shutdown Conditions for AFPR Core..................................................................................................................................................5.21 Figure 5.14. Friction Pressure Drop in Particle Bed Core for Flow Rate Required to Remove Decay Heat in Hot Shutdown Conditions...................................................................................................5.22 Figure 6.1 PWR Pebble Bed Fuel Assembly ............................................................................................ 6.1TablesTable 1.1 Comparison of AFPR Concept with other Small Reactors.......................................................1.2 Table 2.1. Weight Gain Data Associated from 1011 hours of Autoclave testing at 288˚C ....................... 2.2 Table 3.1. Effective thermal properties for Spherical Cermet Fuel Element at normal and accident conditions.........................................................................................................................................3.15 Table 3.2. Time constants for Spherical CERMET Fuel Element at normal and accident conditions ... 3.17 Table 3.3. Peak Center Temperatures for Spherical CERMET Fuel Element during normal and accident conditions .......................................................................................................................... 3.18 Table 4.1. AFPR Core Specifications ....................................................................................................... 4.1 Table 4.2. AFPR Core Model Radial Dimensions....................................................................................4.3 Table 4.3 Fuel Parameters Selected for Burnup Analysis.........................................................................4.5 Table 4.4. Fuel Specifications for Zr base case ........................................................................................ 4.6 Table 4.5. Core average isotopics of spent fuel after 20 years of operation for Zr base case...................4.9 Table 4.6. Fuel Specifications for ZrH1.6 base case.............................................................................. 4.10 Table 4.7. Core average isotopics of spent fuel after 20 years of operation for ZrH1.6 base case.........4.13 Table 5.1. AFPR Core Design Parameters Relevant to Thermal-Hydraulic Analysis.............................. 5.5 Table 5.2. Decay Heat After Shutdown in AFPR Core .......................................................................... 5.21 Table 6.1 Summary of Key AFPR System Characteristics with Spherical Cermet Fuel Elements..........6.21.0 IntroductionLight water reactors (LWRs) currently dominate commercial nuclear power. The need for power plants capable of providing large baseline loads for use on well-developed electricity grids has historically driven the development of nuclear power reactors, resulting in large 1000+ MWe commercial units. Markets with much smaller power needs and less well-developed electrical distribution infrastructure, such as those found in developing nations, have not yet influenced the design of nuclear power reactors and technologies. A different reactor design approach, tailored for this market segment, could help meet the rising power demands associated with economic growth and urbanization, while avoiding the use of fossil fuels that would otherwise be burned in power plants. If deployed to developing nations, there will be a need to ensure that the reactor fuel cannot be easily diverted for use in nuclear or radiological weapons.In 2005, the US Department of Energy began developing program elements associated with what would be announced in 2006 as the Global Nuclear Energy Partnership (GNEP). As part of President Bush's Advanced Energy Initiative, GNEP seeks to develop a worldwide consensus on enabling the expanded use of economical, carbon-free nuclear energy to meet growing electricity demand. An element of GNEP is to provide small reactors suitable for meeting the growing energy demands of emerging economies in developing nations that currently depend on oil and other fossil fuels. Developing smaller-scale, passively-safe, secure and proliferation-resistant reactors is necessary before nuclear energy is viable for use in developing nations with small-grid markets.The Atoms for Peace Reactor (AFPR) is an evolutionary small reactor concept being developed by the Pacific Northwest National Laboratory (PNNL). The reactor system is envisioned to be proliferation-resistant, passively-safe, and economical for potential deployment to nations with emerging economies. The enabling feature of this reactor concept is the particulate fuel form. The fuel form provides fission product containment, low stored energy, and long core life. Studies of the AFPR system before FY06 focused on the neutronics and thermal-hydraulics characteristics of the system (Tsiklauri et al. 2005). These studies concluded the concept was viable, but performance of the reactor hinged on the ability of the fuel particles to perform as designed.A comparison of currently-available small reactor designs is provided in Table 1.1. The only operational reactor among these is the Russian built KLT-40S that uses 36% enriched uranium with a 3-4 year refueling interval. The use of greater than 20% enriched fuel is less than desirable from a proliferation risk perspective. The other LWR reactor concepts have relatively short core lifetimes that will require frequent access to the core and significant fresh and spent fuel handling. The fast reactors have longer core lifetimes and correspondingly less need to handle fuel, but they will require significant investment in reactor technology and materials research due to higher operating temperatures and immature technology. The situation is similar for the pebble bed modular reactor (PBMR), a high-temperature gas-cooled reactor currently under development in South Africa. The AFPR concept offers advantages over these other reactors in that it has a long core life and the technology needed to build the reactor exists today; however, it is acknowledged that an extensive fuel qualification program would need to be undertaken.1.1。
GWD100(A)温度传感器使用说明书内容修订
一、概 述GWD100(A)温度传感器(以下简称传感器)是一种带LED 显示的工业用温度测量仪器。
传感器采用半导体温度传感元件,因此具有工作稳定、测量准确、功耗小、使用寿命长的优点。
产品为矿用本质安全型,适用于工矿环境、电机、以及管道内或容器中流体温度的测量。
1、传感器型号含义:2、正常工作环境条件:a 、工作温度:-5℃~40℃b 、相对湿度:≤98%RH (+25℃)c 、大气压力:80kPa ~110kPad 、机械环境:无显著震动和冲击的场合。
e 、在有甲烷、煤尘爆炸性气体环境中使用。
二、主要功能与结构1、功 能传感器由配套设备提供电源,传感器实时测量温度值并输出相对应的模拟量信号。
传感器为4位LED 显示,分辨率0.1℃ 2、结 构传感器外壳采用不锈钢材料加工而成,外形结构见 图1体积:296mm ×142mm ×69mm 测量探头部分:Φ8×60;管道安装探测管:Φ11×146 重 量:1.8 kg 3、防护等级:IP54三、主要技术特征1、防爆型式:矿用本质安全型,防爆标志:ExibI2、工作电压:DC 9V ~24V ,工作电流 ≤ 60mA3、本安参数: U i :DC 18V ,I i :80mA ; C i :0.9nF ;L i :0mH4、输出信号制式图1:传感器外形图G W D 100 (A )修改序号 测量范围 ℃ 数字半导体式 温度传感器a) 电流型: DC 1mA~5mA;4mA~20mAb) 频率型: 200Hz~1000Hz(脉冲宽度≥0.3ms,脉冲幅度),高电平不小于3.0V、低电平不大于+0.5V5、测量范围: 0~100℃6、基本误差a、显示误差:≤1℃b、输出误差:≤1℃7、报警功能:传感器具有声光报警功能,在全量程范围内可任意设置上、下限报警点。
8、传输距离:最大传输距离为2000m(单芯截面积为1.5mm2时)电缆分布电容:≤0.06uF/km;分布电感:≤0.8mH/km;直流电阻12.8Ω/km9、可以采用遥控调校。
基于逻辑回归的APU性能状况评估
U#
%("4<
U!
!(##%
UP
#(PP,
P4("%P #,(!#% #!(#4<
P4("%P <-(!<4 -6(%P!
U%
#(P",
##(6,,
6"(PP#
97基于逻辑回归的 %?@性能状况评估
!(# 逻辑回归模型 逻辑回归模型应用场景较多"可用于分类及预
测"其主要应用于流行病理学研究中"比较常用的情
阵 ('B$ 则主成分 可以表示为!
T $[ F#"F!"4"FB] D $('B I[ !#"!!"4"!'] D +%* #(P 特征提取
利用 RM9对原始特征参数进行降维"得到四个
主元 U# #U! #UP #U% "结果如表 ! 所示!
表 !$主成分特征值
成分 特征值
方差百分比 .n
累积 .n
模型也常用于机械设备性能如发动机轴承磨损退化
评估模型中$ 复杂机械设备的性能衰退过程具有一
定的趋势和规律"其过程大致可分为正常完好状态#
异常状态和故障状态这三个阶段"因此"逻辑回归模
型的输出变量可以为正常和失效的二分类变量或输
出变量为正常#异常和故障状态的多分类变量$ 在
不发生意外结构损伤的情况下"9Ra气路性能的衰
# 5'$ 假设有 9个协变量组成的向量 !d+ !# "!! "4
!9* D"逻辑回归模型可以表示为!
J2+ >2 $#
GWD MATH错题集
GWD MA TH错题集1The figure shows a square patio surrounded by a walkway of width x meters. If the area of the walkway is 132 square meters and the width of the patio is 5 meters greater than the width of the walkway, what is the area of the patio, in square meters?A.56B.64C.68D.81E.100Answer: B2A photographer will arrange 6 people of 6 different heights for photograph by placing them in two rows of three so that each person in the first row is standing in front of someone in the second row. The heights of the people within each row must increase from left to right, and each person in the second row must be taller than the person standing in front of him or her. How many such arrangements of the 6 people are possible?A. 5B. 6C.9D.24E.36Answer: A3 If w and c are integers, is w > 0?(1) w + c > 50(2) c > 48A. Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.B. Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.C. BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.D. EACH statement ALONE is sufficient.E. Statements (1) and (2) TOGETHER are NOT sufficient.Answer: E4 If n = 811– 8, what is the units digit of n?A. 0B. 1C. 4D. 6E. 8Answer: C5 Joanna bought only $0.15 stamps and $0.29 stamps. How many $0.15 stamps did she buy?(1) She bought $4.40 worth of stamps.(2) She bought an equal number of $0.15 stamps and $0.29 stamps.A. Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.B. Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.C. BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.D. EACH statement ALONE is sufficient.E. Statements (1) and (2) TOGETHER are NOT sufficient.AnswerA6 A certain roller coaster has 3 cars, and a passenger is equally likely to ride in any 1 of the 3 cars each time that passenger rides the roller coaster. If a certain passenger is to ride the roller coaster 3 times, what is the probability that the passenger will ride in each of the 3 cars?A. 0B. 1/9C. 2/9D. 1/3E. 1Answer:C 3X2X1/3X3X37The figure above shows the dimensions of a semicircular cross section of a one-way tunnel. The single traffic lane is 12 feet wide and is equidistant from the sides of the tunnel. If vehicles must clear the top of the tunnel by at least ½ foot when they are inside the traffic lane, what should be the limit on the height of vehicles that are allowed to use the tunnel?A. 5½ ftB. 7½ ftC. 8 ½ ftD. 9½ ftE. 10 ftAnswer: B8 The operation ⊗ is defined for all nonzero numbers a and b by a ⊗ b = a/b – b/a. If x and y are nonzero numbers, which of the following statements must be true?I. x ⊗ xy = x(1 ⊗ y)II. x ⊗ y = -(y ⊗ x)III. 1/x ⊗ 1/y = y ⊗ xA. I onlyB. II onlyC. III onlyD. I and IIE. II and IIIAnswer: E9 Is the sum of the integers x and y a prime number?(1) x is an even prime number.(2) y is a prime number between 10 and 20.A. Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.B. Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.C. BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.D. EACH statement ALONE is sufficient.E. Statements (1) and (2) TOGETHER are NOT sufficient.Answer: E10 AMOUNT OF BACTERIA PRESENTData for a certain biology experiment are given in the table above. If the amount of bacteria present increased by the same fraction during each of the two 3-hour periods shown, how many grams of bacteria were present at 4:00 P.M.?A. 12.0B. 12.1C. 12.2D. 12.3E. 12.4Answer:A11 What is the remainder when the two digit, positive integer x is divided by 3?(1) The sum of the digits of x is 5.(2) The remainder when x is divided by 9 is 5.A. Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.B. Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.C. BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.D. EACH statement ALONE is sufficient.E. Statements (1) and (2) TOGETHER are NOT sufficient.Answer: D12In Town X, 64 percent of the population are employed, and 48 percent of the population are employed males. What percent of the employed people in Town X are females?A. 16%B. 25%C. 32%D. 40%E. 52%Answer:B 0.64是E, 0.48是男&E,0.16是女&E,0.16/0.64是女&E在所有E的比例13How many seconds will it take for a car that is traveling at a constant rate of 45 miles per hour to travel a distance of 22 yards? (1 mile = 1,160 yards)A. 8B. 9C. 10D. 11E. 12Answer: C14Last year the price per share of Stock X increased by k percent and the earnings per share of Stock X increased by m percent, where k is greater than m. By what percent did the ratio of price per share to earnings per share increase, in terms of k and m?A. k/m %B. (k-m) %C. [100(k-m)]/(100+k) %D. [100(k-m)]/(100+m) %E. [100(k-m)]/(100+k+m) %Answer: D假设前年Price per share =x, 前年earning per share =y 那么去年的price per share 为(1+k%)x,去年的earning per share 为(1+m%)y 求去年的price per share 与earningper share的比率比前年的比率增加了多少。
国家开放大学电大专科《英语听力(1)》2023-2024期末试题及答案(试卷代号:2149)
国家开放大学电大专科《英语听力》2023-2024期末试题及答案关建字摘要:试题,英语听力,答案,押巾,评分标准,试卷,专科,开放,大学,国家竭诚为您提供优质文档,本文为收集整理修正,共7页,请先行预览,如有帮助感谢下载支持国家开放大学电大专科《英语听力(1)》2023-2024期末试题及答案(试卷代号:2149)Seel Ion ()ni 9Purl \In Ihh Mtethm • you tirr gnx In henr ten words On answer sheet tick ( / ) the right von el in each ^ord You u lll hepr euch %*ord lwkc> ( hi polnu)Vl>Wrl 12Il31□G 7K 910rr VI li n ,H1A3|Pm I IIIn this set!ion.MHI arc R»lng b» hear ten ward*. C hrx»»e the word )ou hour In cuch gmttp Mild write A.ih C oi 1> onMiur Mnssvft Aliev!.You Mill hear vnch word (wheV. xmw t\ mnp (\ hcmriJ l'. pnrl 「.K0O41(*. vnr (「・mm pm C. fool (•< 10 points)IhA.Ik -*li»rrn 1% movr Ik lllliv Il poriil 11 < irotgv LI El B. ol IL porier B< l?ilhrr !1 wnol12. A.nun eh 13, A.bar ILA.parkn it more.mrw 1).biHchct H ptJKh IL #jrcw l ).)ni>k l>.u*e Ih ,lmrp lh fliMir l>.WJHlIIS. A.w 16. A.FA 115V 17. A./ill I&A,lop19.A・hill 2a. A.、Vfr 》wIn lith section • you arc Huiny Io hear ]<, short dinlouues. After c;ich diidouue. I here arv two Mattmenf?. Decide whether the statement h true (1J <ir fulsr < I- > wnrl wrlM your answer on tht \nMvcr Sheet >Ou will hear each cltnlo^nc onh once ( b• points)Ihalofiiie A21. John^s parents hnvr此four children.Siu-111 is h>hn'、ynitngrr、isaerDialogue UThere arr 1200 studenis i” Ten'、srhnaL21 < J here arc- 40 tcratiers(t> liun ^choriLDialogue C25.June- has been hviriR in S<in hmnasco for 1 3 yc»rs<26.Shr was hum in Sari F EJKISE.Dialogue I)27> The mnn l> xoing n> W a houAn2& There is n subwny siauon near (he hoitwu皈E29.Thv man couldn* i get into his hpn^e nfter the pony<30.Kr finnily got in hy hrrnking ihti window./&如&F31.The wnmun likr* hi^h heel乎32.She likes grevn very rnnch>Dialogue G33.The parly t£ on Smurdaye34> The nwin will cnniv i(> the pArty-Dtaiojiuc H31. I hr mnn w;mt5 t< buy sotne painh3G「here'5 nor enough paint HI the 5hop.37< I hty inlkin^ nhout h(«w tn y.vvirn<3氏I he WootI hrothrr^ an gwd al 5lu<ly.Dialo^tie JM. 1 hev rv tnlktnx ahovi B pl»c< in the IL S・E・ The man will vi<;t the wornnn next yrnnSection ThreeIn this svetion.)<>w urt: guing lo hnir lhr(T|用SWRX. \Fler e;ich passage there nrv M*vcrnl quvsliimN. Cluxrv the heM answer for nit h question nn<l s%rite il on the Answer Shref. Yen sill hear eachPassage 1IL h COMS- cnch person m Ira^l ID have lunch in rcJttHuraintSiA. SIDB. Si5(ZO points)「S12)2;Von enn have n vhrnp iuricb tn i>Ar rrsiMunintC hnirl13. You enn hnve A complete lun<li at un inexpensive pnre from $ 2. 50 :(i S .A,乱50C. t.50Passugv 2H・ Julidti lives in fUt tn London.Aa w cheap:C.R big43. She shares Hw flat withA- two ocher girlsC- «hrp! oiher girls .li another girlB.MI expenHivrK 3, 50K fMt-food chnihI6< She |"s lor ihr (nllowinjj EXl EP I lheA. food C. waierPussier 347.M M M prjnple like Hi ^;>cntl ^iimnivr holidays.A, at home C. nt the sefiside48.People before their balidny smrEsave enough money C. rem H house19. Fhcrc is io do ai the seaside.A« a lotB. TioihingH. book hotel rooms II clirnbing hilk B, remC. tiule30a Many people make a lot of,A# noise (\ frirndsSection FourK moneyIn this section, yon arc going to hear a passage. Fill in the blanks as ymi listen Io I he pasSHg Write >our unjnvcr (in the Atisvcr Sheet. You will hear the passage twirc. < ZO points)Sail was an importnni item on the 51 )of royahy. Il wii5 fnKliinin/illy placed in front iif I hr King when he 52)down in cj :t l»ipnr :Ant giiv-5ts 53) the King's thble were seated 54 >the 5alt. Less imponanl were seatsfnriher 55〉from it. In ihv Roman Empire. 56) of the imporiant rnads was ihr 57) ihm carried 品to Rome. Salt wz 5H)important in ihr Middk Agg tlut tn many countries 59) one was allowed io 60) salt without permission from the governrnrnt.given试题及答案评分标准(仅供参考)Part A(10 pninbt 1 point each)Vnwel!234560910V ;ci 1 JItJJ□ lisV□iJ1JAJ S731Part HJ(lupointst 1 puint each)11. Li 16. C 12. B17. D13. C18. C« H戚B0 D20- C(ID 2 points each)2L T22. I-26. F27. T31. E32. FF37. F Section three(20 poinUt 2 points csich)4L A42. B46. C47. C Section Fiiur(2n2押巾s<-iuh i5L tttblr52. Mt56, onr S7. nnc 23.T28. 133.T3fi. 1-13.C,I8. B53. nt58. an24. I*29. r34. E39.F44. B49. A54. n<*4r59. tin25. 130.135. Tm F45. A50. B35. uwayfiO. grdl。
GN-9
GN-9系列网络电力仪适用于配电系统的连续监视和控制,可测量各种常用电量参数及有功、无功电能。
可进行远程控制、越限报警、并且具有模拟量变送功能;DO开关输出可用于越限报警或远程遥控;报警的门限值可远程设置。
所有数据都可以通过RS485通讯口用MODBUS协议读出;DI开关量输入可用于监视开关的状态。
该系列仪表将高精度的电量测量、智能化电能计量与简单的人机界面结合在一起,操作简便,适用于对电力品质、电力安全及自动化要求较高的场合。
主要型号有:GN-24 GN-2Y GN-2NGN-94 GN-9Y GN-9N主要技术参数如下图:主要项目技术指标精度U、I为0.5级;P、Q为1.0级;有功电能为1.0级别;无功电能为1.0级别显示可编程LED显示、LCD液晶显示、液晶全中文显示线路三相三线、三相四线电能计量四象限电能,有功、无功计量额定值电压:AC100V/400V过负荷持续1.2倍;瞬时2倍(1S)功耗电压:<1V A(每项)阻抗电压:>300KΩ输入测量频率 45-65Hz精度0.1Hz模拟量 1-4路变送输出:4-20Ma/0-20mA(用户可选)通讯 RS-485接口、MODBUS-RTU协议脉冲输入2路电脑脉冲输出(用户可选)开关量输入 1-4路开关量输入、干结点方式(用户可选)输出可编程开关量输出 1-4路开关量输入,干结点继电器(用户可选)工作范围AC/DC85-265V电源功耗<5V A绝缘电阻>100MΩ绝缘强度输入—电源>2KV;输入—输出>1KV;输出—电源>2KV工作条件环境温度:-10—55℃;相对湿度:<93%RH;海拔高度:<2500M;无腐蚀气体场所经中国版权局审核批准,以上产品型号版权归大导电气(上海)有限公司所有,任何单位或者个人未经授权,不得借用、冒用我司型号,违者我司将通过法律途径维护相关权益。
最终解释权归大导电气(上海)有限公司所有。
GWD-TN-24
GWD-TN-24 第⼗⼆套详解(11)T-4-Q24~27: T S-7-33~36Until recently, zoologists believed that all species of phocids (true seals), a pin-nipped family, use a different maternal strategyThe maternal strategy evolved by harbor seals may have to do with their small size and the large proportion of their fat stores depleted in lactation.Harbor seals are small compared with other phocids species such as grey seals, all of which are known to fast for the entire lactation period. Studies show that mother seals of these species use respectively 84 percent, 58 percent, and 33 percent of their fat stores during lactation. By comparison, harbor seals use 80 percent of their fat stores in just the first 19 days of lactation, even though they occasionally feed during this period. Since such a large proportion of their fat stores is exhausted despite feeding, mother harbor seals clearly cannot support all of lactation using only energy stored before giving birth. Though smaller than many other phocids, harbor seals are similar in size to most otariids. In addition, there is already some evidence suggesting that the ringedphocids species that is similar in size to the harbor seal, may also use a maternal foraging strategy.T-4-24:T-733It can be inferred from the passage that the females of[ZXM4]all phocids species differ from the females of all otariid species in that the female phocidsA.have shorter lactation periodsB.consume more food during lactationC.consume a higher proportion of fat storesD.forage for food occasionally during their lactation periodsE.deplete a smaller percentage of their fat stores during their lactation periods-------------------------------------------------------------------T-4-25:T-7-34The primary purpose of the passage is to[ZXM5]A.present evidence that several phocids species use the maternal fasting strategyB.explain why the maternal strategy typically used by phocids is different from the maternal strategy used by otariidsC.argue that zoologists’ current understanding of harbor seals’ maternal strategy is incorrectD.describe an unexpected behavior observed in harbor seals and propose an explanation that may account for the behaviorE.describe evidence concerning the maternal strategy of the harbor seal and suggest that the harbor seal belongs to the otariidrather than to the phocids family-----------------------------------------------------------------T-4-26:T-7-35According to the passage, until recently zoologists[ZXM6]believed which of the following about all phocids mothers?A.Their fasting periods after giving birth were typically shorter than those of otariids.B.Their lactation periods were generally as long as those of comparably sized otariids.C.They acquired only moderate energy stores in the form of blubber before arriving at breeding sites.D.They depleted less than a third of their stored body fat during lactation.E.The replenished their fat stores only after their lactation period ended.-------------------------------------------------------------------T-4-27-T-7-36The author of the passage mentions ringed seals most probably in order toA.provide an example of a phocid species that fasts[ZXM7]throughout its entire lactation periodB.provide an example of a phocid species whose maternal strategy is typical of phocid speciesC.provide an example of a phocid species that may deplete an even higher proportion of its fat stores during lactation than harborseals doD.support the assertion that harbor seals are smaller than many other phocidsE.support the assertion that harbor seals’ maternal strategy may be related to their small size[ZXM1]Q 24:[ZXM2]Q 26:[ZXM3]Q27,解答该问题,关键要找个论据的观点,这个观点就是⽂章的第⼀句话;的不⼀样;作者通过by contrast来进⾏对⽐,⽤⼀个fasting strategy,因此是时间快慢问题;因此只[ZXM5]D项最不具体,最虚;[ZXM6]GWD录⾳:细节题做;⼀定要找到phocids mothers如果选项都有only的时候,不要因为only就⼲掉E:C强调的获得能量的形式,E强调的是获得能量的时间;原⽂读到的是能量获得的时间;题⽬问的作者提到这个东西是为了什么,问作者的⽬的,因此应该找作者的观点,⽽作者的观点应该是在后⾯;。
GW隔离开关技术参数
概述:有机复合绝缘高压隔离开关,适用于相应电压品级及电流负荷的电力系统中作输配线路及电器设备接通或断开之用,以便于电力系统停电或检修,保障检修工作人员的安全用途及利用范围:HGW9系列户外高压隔离开关(以下简称隔离开关)用于单相或三相交流50HZ,额定电压10~15kV,额定电流200~100A的电力系统中,作为有电压无负载时分合电路和过载保护之用。
其利用地址环境的条件如下:1、户外;2、环境温度: +400C;3、海拔高度不超过4000m;4、最大风速不超过35m/s;5、3级及以下污秽地区;6、地震烈度不超过8级。
技术参数表:结构与原理:隔离开关由底座、支柱绝缘子、导电部份和保险钩等部份组成。
触刀上装有保险钩,合闸后即自行闭锁,不会因自重或电动力的作用而自行分闸,隔离开关用钩棒进行分、合闸操作。
隔离开关的支柱绝缘子采用有机硅复合绝缘材料整体模压一次成型,除一般隔离开关的共同特性外,还具有外形美观、体积小、重量轻、抗老化、耐污秽特性好、安装运输无破损等优点,可以大大提高系统运行的安全可靠性。
以上是HGW9-10kV隔离开关详细信息,若是您对HGW9-10kV隔离开关的价钱、厂家、型号、图片有什么疑问,请联系咱们获取HGW9-10kV隔离开关的最新信息。
10kV交流高压户外隔离开关技术规范书工程项目:广西电网公司年月目录1总则2利用环境条件3技术参数和要求4实验5供货范围6技术资料和图纸交付进度7运输要求8技术服务1总则本设备技术规范书适用于10kV系统户外隔离开关和接地开关,本技术规范书提出了该产品的功能设计、结构、性能、和实验等方面的技术要求。
需方在本规范书中提出了最低限度的技术要求,并未规定所有的技术要求和适用的标准,未对一切技术细则作出规定,也未充分引述有关标准和规范的条文,供方应提供一套知足本规范书和现行有关标准要求的高质量产品及其相应服务。
若是供方没有以书面形式对本规范书的条款提出异议,则意味着供方提供的设备(或系统)完全知足本规范书的要求。
华电天仁自主研发变桨系统用于3MW大叶片风机党辉
华电天仁自主研发变桨系统用于3MW大叶片风机党辉发布时间:2021-10-25T07:26:32.071Z 来源:《中国电业》(发电)》2021年第12期作者:党辉[导读] 可变桨系统占风力涡轮机总成本的不到 5%,但这种“小”部件对风力涡轮机的安全运行起着重要作用。
根据历史数据,变桨系统故障占所有风扇故障的 21%,风扇停机时间约为 23%,因此,厂商会更加注重变桨系统的选择。
华电天仁首台3MW风控系统在固安生产现场下线。
该组风电系统兼容3兆瓦地面风力发电机组,继2MW变桨系统后,华电天仁展示了独特的人才和科研优势,自主研发设计了大型风电场控制系统。
该系统的交付,表明华电天仁具备大型风电变桨系统的研发制造能力。
党辉甘肃龙源风力发电有限公司甘肃玉门 735200摘要:可变桨系统占风力涡轮机总成本的不到 5%,但这种“小”部件对风力涡轮机的安全运行起着重要作用。
根据历史数据,变桨系统故障占所有风扇故障的 21%,风扇停机时间约为 23%,因此,厂商会更加注重变桨系统的选择。
华电天仁首台3MW风控系统在固安生产现场下线。
该组风电系统兼容3兆瓦地面风力发电机组,继2MW变桨系统后,华电天仁展示了独特的人才和科研优势,自主研发设计了大型风电场控制系统。
该系统的交付,表明华电天仁具备大型风电变桨系统的研发制造能力。
关键词:变桨系统;大叶片风机;3MW风机1 风电机组变桨控制系统的重要性风力发电机变桨控制系统是控制和保护兆瓦级以上风力发电机的重要工具,是关闭风力发电机的主要制动系统。
在风机启动过程中,变桨系统通过控制叶片的角度来达到风机自动启动的目的。
风机正常运行时,变桨系统控制叶片角度达到满负荷,达到额定风速后,风机稳定运行,不会负载过大[1];当风机正常关闭或紧急情况下,变桨系统控制叶片将其移动到位,提供空气制动,以确保风机的安全。
2 华电天仁变桨系统的介绍不同的风机叶片可以自主的改变桨距角,同时还可以控制风机风速的变化,整个控制系统在不同的速度之下都可以运行为最好的状态,可以降低特定的风速,但也能提高发电机组在进行风速降低时的发电力,这个时候就可以在风速保持增加的时候稳定受力的曲线,提高工作效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GWD-12-Q2: Scientists are discussing ways to remove excess carbon dioxide from the atmosphere by increasing the amount that is absorbed by plant life. One plan to accomplish this is to establish giant floating seaweed farms in the oceans. When the seaweed plants die, they will be disposed of by being burned for fuel. Which of the following, if true, would indicate the most serious weakness in the plan above?
Q4: The primary purpose of the passage is to A. explain how the findings of a particular experiment have been interpreted and offer an alternative interpretation describe a particular experiment and point out one of its limitations present similarities between human memory and animal memory point out a flaw in the argument that a certain capacity is uniquely human account for the unexpected behavior of animal subjects in a particular experiment
A. in which thin layers of extra paper are used to decrease the amount of oxygen entering the cigarette, thereby slowing B. in which they use thin layers of extra paper in decreasing the amount of oxygen entering the cigarette, which slows C. that uses thin layers of extra paper to decrease the amount of oxygen when it enters the cigarette, thereby slowing D. for which thin layers of extra paper are used to decrease the amount of oxygen that enters the cigarette, and thereby slowing E. using thin layers of extra paper in decreasing the amount of oxygen entering the cigarette, which slows
B. C. D. E.
GWD-12-Q4 to Q7: The term “episodic memory” was introduced by Tulving to refer to what he considered a uniquely human capacity—the ability to recollect specific past events, to travel back into the past in one’s own mind—as distinct from the capacity simply to use information acquired through past experiences. Subsequently, Clayton et al. developed criteria to test for episodic memory in animals. According to these criteria, episodic memories are not of individual bits of information; they involve multiple components of a single event “bound” together. Clayton sought to examine evidence of scrub jays’ accurate memory of “what,” “where,” and “when” information and their binding of this information. In the wild, these birds store food for retrieval later during periods of food scarcity. Clayton’s experiment required jays to remember the type, location, and freshness of stored food based on a unique learning event. Crickets were
Q1: GWD-11-28 In an effort to reduce the number of fires started by cigarettes, a major tobacco company is test-marketing a cigarette in which thin layers of extra paper are used to decrease the amount of oxygen entering the cigarette, thereby slowing the rate at which it burns and lowering the heat it generates.
GWD-12-Q3: Were it not for the fusion-powered heat and radiation that rush from its core, instead its own weight would cause a star to collapse. instead its own weight would cause a star to collapse instead a star would have collapsed under its own weight a star would have to be collapsing under its own weight a star would collapse under its own weight its own weight would have caused a star’s coll the passage, Clayton’s experiment depended on the fact that scrub jays A. B. C. D. E. recall “when” and “where” information more distinctly than “what” information are not able to retain information about a single past event for an indefinitely long period of time choose peanuts over crickets when the crickets have been stored for a long period of time choose crickets over peanuts whenever both are available prefer peanuts that have been stored for a short period to crickets that have been stored for a short period
A. Some areas of ocean in the Southern Hemisphere do not contain sufficient nutrients to support large seaweed farms. B. When a seaweed plant is burned, it releases an amount of carbon dioxide comparable to the amount it has absorbed in its lifetime. C. Even if seaweed farms prove effective, some people will be reluctant to switch to this new fuel. D. Each year about seven billion tons of carbon dioxide are released into the atmosphere but only about five billion tons are absorbed by plant life. E. Seaweed farms would make more money by farming seaweed to sell as nutritional supplements than by farming seaweed to sell as fuel.
A. B. C. D. E.
to examine evidence of scrub jays’ accurate memory of “what,” “where,” and “when” information and their binding of this information. In the wild, these birds store food for retrieval later during periods of food scarcity. Clayton’s experiment required jays to remember the type, location, and freshness of stored food based on a unique learning event. Crickets were stored in one location and peanuts in another. Jays prefer crickets, but crickets degrade more quickly. Clayton’s birds switched their preference from crickets to peanuts once the food had been stored for a certain length of time, showing that they retain information about the what, the where, and the when. Such experiments cannot, however, reveal whether the birds were reexperiencing the past when retrieving the information. Clayton acknowledged this by using the term “episodic-like” memory.