【必考题】九年级数学上期末第一次模拟试题含答案(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【必考题】九年级数学上期末第一次模拟试题含答案(1)
一、选择题
1.如图,在5×5正方形网格中,一条圆弧经过A 、B 、C 三点,那么这条圆弧所在的圆的圆心为图中的( )
A .M
B .P
C .Q
D .R
2.下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是( )
A .
B .
C .
D .
3.下列命题错误..的是 ( ) A .经过三个点一定可以作圆
B .经过切点且垂直于切线的直线必经过圆心
C .同圆或等圆中,相等的圆心角所对的弧相等
D .三角形的外心到三角形各顶点的距离相等
4.已知一次函数()10y kx m k =+≠和二次函数()2
20y ax bx c a =++≠部分自变量和对
应的函数值如表: x … -1 0 2 4 5 … y 1 … 0 1 3 5 6 … y 2

-1
5
9

当y 2>y 1时,自变量x 的取值范围是 A .-1<x <2
B .4<x <5
C .x <-1或x >5
D .x <-1或x >4
5.设()12,A y -,()21,B y ,()32,C y 是抛物线2
(1)y x k =-++上的三点,则1y ,
2y ,3y 的大小关系为( )
A .123y y y >>
B .132y y y >>
C .231y y y >>
D .312y y y >>
6.抛物线2y x 2=-+的对称轴为 A .x 2=
B .x 0=
C .y 2=
D .y 0=
7.若将抛物线y=x 2平移,得到新抛物线2(3)y x =+,则下列平移方法中,正确的是( ) A .向左平移3个单位 B .向右平移3个单位 C .向上平移3个单位 D .向下平移3个单位 8.若a 是方程22x x 30--=的一个解,则26a 3a -的值为( )
A .3
B .3-
C .9
D .9-
9.如图,二次函数2y ax bx c =++的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )
A .x <﹣2
B .﹣2<x <4
C .x >0
D .x >4
10.如图,某中学计划靠墙围建一个面积为280m 的矩形花圃(墙长为12m ),围栏总长度为28m ,则与墙垂直的边x 为( )
A .4m 或10m
B .4m
C .10m
D .8m 11.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是( ) A .36°
B .54°
C .72°
D .108°
12.如图,AOB V 中,30B ∠=︒.将AOB V 绕点O 顺时针旋转52︒得到A OB ''△,边
A B ''与边OB 交于点C (A '不在OB 上),则A CO '∠的度数为( )
A .22︒
B .52︒
C .60︒
D .82︒
二、填空题
13.一个不透明袋中装有若干个红球,为估计袋中红球的个数,小文在袋中放入10个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到白球的频率是2
7
,则袋中红球约为
________个.
14.在平面直角坐标系中,已知点P 0的坐标为(2,0),将点P 0绕着原点O 按逆时针方向旋转60°得点P 1,延长OP 1到点P 2,使OP 2=2OP 1,再将点P 2绕着原点O 按逆时针方向旋转60°得点P 3,则点P 3的坐标是_____.
15.如图,抛物线2
y ax bx c =++的对称轴为1x =,点P ,点Q 是抛物线与x 轴的两个交点,若点P 的坐标为(4,0),则点Q 的坐标为__________.
16.已知二次函数
,当x _______________时,随的增大而减小.
17.一元二次方程x 2﹣2x ﹣3=0的解是x 1、x 2(x 1<x 2),则x 1﹣x 2=_____.
18.如图,P 是⊙O 的直径AB 延长线上的一点,PC 与⊙O 相切于点C ,若∠P=20°,则∠A=___________°.
19.在平面直角坐标系中,抛物线y =x 2的图象如图所示.已知A 点坐标为(1,1),过点A 作AA 1∥x 轴交抛物线于点A 1,过点A 1作A 1A 2∥OA 交抛物线于点A 2,过点A 2作A 2A 3∥x 轴交抛物线于点A 3,过点A 3作A 3A 4∥OA 交抛物线于点A 4……,依次进行下去,则点A 2019的坐标为_______.
20.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差
别,从袋子中随机取出1个球,则它是红球的概率是_________.
三、解答题
21.有四张完全相同的卡片,正面分别写有四个角度现将这四张卡片洗匀后,背面朝上;
(1)若从中任意抽取一张,求抽到锐角卡片的概率;
(2)若从中任意抽取两张,求抽到两张角度恰好互余卡片的概率;
22.如图,PA ,PB 是圆O 的切线,A,B 是切点,AC 是圆O 的直径,∠BAC=25°,求∠P 的度数.
23.如图,在ABC V 中,ACB 90∠=o ,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90o 得到线段CE ,连结DE 交BC 于点F ,连接BE .
1()求证:ACD V ≌BCE V ;
2()
当AD BF =时,求BEF ∠的度数.
24.将图中的A 型、B 型、C 型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.
(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A 型矩形纸片的概率;
(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接). 25.解方程:2(x-3)2=x 2-9.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
根据垂径定理的推论:弦的垂直平分线必过圆心,分别作AB,BC的垂直平分线即可得到答案.
【详解】
解:作AB的垂直平分线,作BC的垂直平分线,如图,
它们都经过Q,所以点Q为这条圆弧所在圆的圆心.
故选:C.
【点睛】
本题考查了垂径定理的推论:弦的垂直平分线必过圆心.这也常用来确定圆心的方法.2.C
解析:C
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、图形既不是轴对称图形是中心对称图形,
B、图形是轴对称图形,
C、图形是轴对称图形,也是中心对称轴图形,
D、图形是轴对称图形.
故选C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
3.A
解析:A
【解析】
选项A,经过不在同一直线上的三个点可以作圆;选项B,经过切点且垂直于切线的直线必经过圆心,正确;选项C,同圆或等圆中,相等的圆心角所对的弧相等,正确;选项D,三角形的外心到三角形各顶点的距离相等,正确;故选A.
4.D
解析:D
【解析】
【分析】
利用表中数据得到直线与抛物线的交点为(-1,0)和(4,5),-1<x <4时,y 1>y 2,从而得到当y 2>y 1时,自变量x 的取值范围. 【详解】
∵当x=0时,y 1=y 2=0;当x=4时,y 1=y 2=5; ∴直线与抛物线的交点为(-1,0)和(4,5), 而-1<x <4时,y 1>y 2,
∴当y 2>y 1时,自变量x 的取值范围是x <-1或x >4. 故选D . 【点睛】
本题考查了二次函数与不等式:对于二次函数y=ax 2+bx+c (a 、b 、c 是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.
5.A
解析:A 【解析】 【分析】
根据二次函数的性质得到抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,然后根据三个点离对称轴的远近判断函数值的大小. 【详解】
解:∵抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,而A (2,y 1)离直线x =﹣1的距离最远,C (﹣2,y 3)点离直线x =1最近,∴123y y y >>. 故选A . 【点睛】
本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.
6.B
解析:B 【解析】 【分析】
根据顶点式的坐标特点,直接写出对称轴即可. 【详解】
解∵:抛物线y=-x 2+2是顶点式, ∴对称轴是直线x=0,即为y 轴. 故选:B . 【点睛】
此题考查了二次函数的性质,二次函数y=a (x-h )2+k 的顶点坐标为(h ,k ),对称轴为直线x=h .
7.A
解析:A
【解析】
【分析】
先确定抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(-3,0),然后利用顶点的平移情况确定抛物线的平移情况.
【详解】
解:抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(-3,0),因为点(0,0)向左平移3个单位长度后得到(-3,0),
所以把抛物线y=x2向左平移3个单位得到抛物线y=(x+3)2.
故选:A.
【点睛】
本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.8.C
解析:C
【解析】
由题意得:2a2-a-3=0,所以2a2-a=3,所以6a2-3a=3(2a2-a)=3×3=9,
故选C.
9.B
解析:B
【解析】
【分析】
【详解】
当函数值y>0时,自变量x的取值范围是:﹣2<x<4.
故选B.
10.C
解析:C
【解析】
【分析】
设与墙相对的边长为(28-2x)m,根据题意列出方程x(28-2x)=80,求解即可.
【详解】
设与墙相对的边长为(28-2x)m,则0<28-2x≤12,解得8≤x<14,
根据题意列出方程x(28-2x)=80,
解得x1=4,x2=10
因为8≤x<14
∴与墙垂直的边x为10m
故答案为C.
【点睛】
本题考查一元二次方程的应用,根据题意列出方程并求解是解题的关键,注意题中限制条
件,选取适合的x 值.
11.C
解析:C 【解析】
正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是360
5
=72度, 故选C .
12.D
解析:D 【解析】 【分析】
根据旋转的性质可得∠B ′=∠B =30°,∠BOB ′=52°,再由三角形外角的性质即可求得
A CO ∠'的度数. 【详解】
∵△A ′OB ′是由△AOB 绕点O 顺时针旋转得到,∠B =30°, ∴∠B ′=∠B =30°,
∵△AOB 绕点O 顺时针旋转52°, ∴∠BOB ′=52°,
∵∠A ′CO 是△B ′OC 的外角, ∴∠A ′CO =∠B ′+∠BOB ′=30°+52°=82°. 故选D . 【点睛】
本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.
二、填空题
13.25【解析】【分析】【详解】试题分析:根据实验结果估计袋中小球总数是10÷
=35个所以袋中红球约为35-10=25个考点:简单事件的频率 解析:25 【解析】 【分析】 【详解】
试题分析:根据实验结果估计袋中小球总数是10÷2
7
=35个,所以袋中红球约为35-10=25
个.
考点:简单事件的频率.
14.(﹣22)【解析】【分析】利用旋转的性质得到OP2=2OP1=OP3=4∠xOP2=∠P2OP3=60°作P3H ⊥x 轴于H 利用含30度的直角三角形求出OHP3H 从而得到P3点坐标【详解】解:如图∵点
解析:(﹣2,23). 【解析】 【分析】
利用旋转的性质得到OP 2=2OP 1=OP 3=4,∠xOP 2=∠P 2OP 3=60°,作P 3H ⊥x 轴于H ,利用含30度的直角三角形求出OH 、P 3H ,从而得到P 3点坐标. 【详解】
解:如图,∵点P 0的坐标为(2,0), ∴OP 0=OP 1=2,
∵将点P 0绕着原点O 按逆时针方向旋转60°得点P 1,延长OP 1到点P 2,使OP 2=2OP 1,再将点P 2绕着原点O 按逆时针方向旋转60°得点P 3, ∴OP 2=2OP 1=OP 3=4,∠xOP 2=∠P 2OP 3=60°, 作P 3H ⊥x 轴于H ,
OH=
1
2
OP 3=2,P 333 ∴P 3(-2,3 故答案为(-2,3 【点睛】
本题考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.
15.(0)【解析】∵抛物线的对称轴为点P 点Q 是抛物线与x 轴的两个交点∴点P 和点Q 关于直线对称又∵点P 的坐标为(40)∴点Q 的坐标为(-20)故答案为(-20)
解析:(2-,0) 【解析】
∵抛物线2
y ax bx c =++的对称轴为1x =,点P ,点Q 是抛物线与x 轴的两个交点, ∴点P 和点Q 关于直线1x =对称, 又∵点P 的坐标为(4,0), ∴点Q 的坐标为(-2,0). 故答案为(-2,0).
16.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y 随x 的增大而减小在对称轴的右边y 随x 的增大而增大根据性质可得:当x <2
时y随x的增大而减小考点:二次函数的性质
解析:<2(或x≤2).
【解析】
试题分析:对于开口向上的二次函数,在对称轴的左边,y随x的增大而减小,在对称轴的右边,y随x的增大而增大.根据性质可得:当x<2时,y随x的增大而减小.
考点:二次函数的性质
17.-4【解析】【分析】利用根与系数的关系求出所求即可此题也可解出x的值直接计算【详解】∵一元二次方程x2﹣2x﹣3=0的解是x1x2(x1<x2)
∴x1+x2=2x1x2=﹣3则x1﹣x2=﹣(x1+
解析:-4
【解析】
【分析】
利用根与系数的关系求出所求即可.此题也可解出x的值,直接计算.
【详解】
∵一元二次方程x2﹣2x﹣3=0的解是x1、x2(x1<x2),∴x1+x2=2,x1x2=﹣3,则x1﹣x2=﹣
=﹣=﹣4.
故答案为﹣4.
【点睛】
本题考查了根与系数的关系,弄清根与系数的关系是解答本题的关键.
18.35【解析】【分析】【详解】解:∵PC与⊙O相切∴∠OCP=90°∴∠COP=90°-∠P=90°-
20°=70°∵OA=OC∴∠A=∠ACO∵∠A+∠ACO=∠COP∴∠A=35°故答案为35
解析:35
【解析】
【分析】
【详解】
解:∵PC与⊙O相切,∴∠OCP=90°,
∴∠COP=90°-∠P=90°-20°=70°,
∵OA=OC,∴∠A=∠ACO,
∵∠A+∠ACO=∠COP,
∴∠A=35°,
故答案为35.
19.(-
101010102)【解析】【分析】根据二次函数性质可得出点A1的坐标求得直线A1A 2为y=x+2联立方程求得A2的坐标即可求得A3的坐标同理求得A4的坐标即可求得A5的坐标根据坐标的变化找出变
解析:(-1010,10102)
【解析】
【分析】
根据二次函数性质可得出点A1的坐标,求得直线A1A2为y=x+2,联立方程求得A2的坐标,即可求得A3的坐标,同理求得A4的坐标,即可求得A5的坐标,根据坐标的变化找出变化规律,即可找出点A2019的坐标.
【详解】
∵A点坐标为(1,1),
∴直线OA为y=x,A1(-1,1),
∵A1A2∥OA,
∴直线A1A2为y=x+2,

22
y x y x +
⎧⎨⎩=


1
1
x
y
-






2
4
x
y






∴A2(2,4),
∴A3(-2,4),
∵A3A4∥OA,
∴直线A3A4为y=x+6,

26
y x y x +
⎧⎨⎩=


2
4
x
y
-






3
9
x
y






∴A4(3,9),
∴A5(-3,9)
…,
∴A2019(-1010,10102),
故答案为(-1010,10102).
【点睛】
此题考查二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.
20.【解析】【分析】【详解】解:从袋子中随机取出1个球总共有6种等可能结果这个球为红球的结果有5中所以从袋子中随机取出1个球则它是红球的概率是故答案为:
解析:5 6
【解析】
【分析】
【详解】
解:从袋子中随机取出1个球,总共有6种等可能结果,这个球为红球的结果有5中,所
以从袋子中随机取出1个球,则它是红球的概率是5 6
故答案为:5
6

三、解答题
21.(1)3
4
;(2)
1
6
【解析】
【分析】
(1)利用四张卡片有三张锐角卡片即可得出答案;
(2)利用列表法得出多少可能结果,找到两张角度恰好互余卡片的可能结果即可得出答案.【详解】
解:(1)一共有四张卡片,其中写有锐角的卡片有三张,
因此P(抽到写有锐角卡片)
3 4 =
(2)列表如下:
所以(抽到两张角度恰好互余卡片)
1 6 =
【点睛】
本题考查了概率的求法,根据题意得出总数与可能的结果数是解题的关键.
22.∠P=50°
【解析】
【分析】
根据切线性质得出PA=PB,∠PAO=90°,求出∠PAB的度数,得出∠PAB=∠PBA,根据三角形的内角和定理求出即可.
【详解】
∵PA、PB是⊙O的切线,
∴PA=PB,
∴∠PAB=∠PBA,
∵AC是⊙O的直径,PA是⊙O的切线,
∴AC⊥AP,
∴∠CAP=90°,
∵∠BAC=25°,
∴∠PBA=∠PAB=90°-25°=65°,
∴∠P=180°-∠PAB-∠PBA=180°-65°-65°=50°.
【点睛】
本题考查了切线长定理,切线性质,三角形的内角和定理,等腰三角形的性质的应用,主要考查学生运用定理进行推理和计算的能力,题目具有一定的代表性,难度适中,熟记切线的性质定理是解题的关键.
23.()1证明见解析;()2BEF 67.5∠=o
. 【解析】
【分析】()1由题意可知:CD CE =,DCE 90∠=o ,由于ACB 90∠=o ,从而可得ACD BCE ∠∠=,根据SAS 即可证明ACD V ≌BCE V ;
()2由ACD V ≌()BCE SAS V 可知:A CBE 45∠∠==o ,BE BF =,从而可求出BEF ∠的度数.
【详解】()1由题意可知:CD CE =,DCE 90∠=o ,
ACB 90o Q ∠=,
ACD ACB DCB ∠∠∠∴=-,
BCE DCE DCB ∠∠∠=-,
ACD BCE ∠∠∴=,
在ACD V 与BCE V 中,
AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩

ACD ∴V ≌()BCE SAS V ;
()2ACB 90∠=o Q ,AC BC =,
A 45∠∴=o ,
由()1可知:A CBE 45∠∠==o ,
AD BF =Q ,
BE BF ∴=,
BEF 67.5o ∠∴=.
【点睛】本题考查了旋转的性质、全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质.
24.(1)
13
;(2)23. 【解析】
【分析】
(1)直接利用概率公式计算可得;
(2)画树状图得出所有等可能结果,从中找打2次摸出的盒子的纸片能拼成一个新矩形的
结果数,利用概率公式计算可得.
【详解】
解:(1)搅匀后从中摸出1个盒子有3种等可能结果,
所以摸出的盒子中是A型矩形纸片的概率为1
3

(2)画树状图如下:
由树状图知共有6种等可能结果,其中2次摸出的盒子的纸片能拼成一个新矩形的有4种结果,
所以2次摸出的盒子的纸片能拼成一个新矩形的概率为42 63 =.
【点睛】
考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.25.x1=3,x2=9.
【解析】
试题分析:方程移项后,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.
试题解析:方程变形得:2(x﹣3)2﹣(x+3)(x﹣3)=0,分解因式得:(x﹣3)(2x﹣6﹣x﹣3)=0,解得:x1=3,x2=9.
考点:解一元二次方程-因式分解法.。

相关文档
最新文档