华龙区民族中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华龙区民族中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 在二项式(x 3﹣)n (n ∈N *)的展开式中,常数项为28,则n 的值为( )
A .12
B .8
C .6
D .4
2. 四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,若该四棱锥的所有顶点都在
体积为
24316
π
同一球面上,则PA =( ) A .3 B .72 C .23 D .9
2
【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.
3. 已知全集R U =,集合{|||1,}A x x x R =≤∈,集合{|21,}x
B x x R =≤∈,则集合U A
C B I 为( ) A.]1,1[- B.]1,0[ C.]1,0( D.)0,1[- 【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力. 4. 若()f x 是定义在(),-∞+∞上的偶函数,[)()1212,0,x x x x ∀∈+∞≠,有()()
2121
0f x f x x x -<-,则
( )
A .()()()213f f f -<<
B .()()()123f f f <-<
C .()()()312f f f <<
D .()()()321f f f <-<
5. 若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值为( ) A .3
B .2
C .3
D .4
6. 如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个 圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )
A .
π
1
B .π21
C .π121-
D .π2141-
D
A
B
C
O
【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.
7. 已知不等式组⎪⎩

⎨⎧≥+≤+≥-1210y x y x y x 表示的平面区域为D ,若D 内存在一点00(,)P x y ,使001ax y +<,则a 的取值
范围为( )
A .(,2)-∞
B .(,1)-∞
C .(2,)+∞
D .(1,)+∞ 8. 有下列四个命题:
①“若a 2+b 2=0,则a ,b 全为0”的逆否命题; ②“全等三角形的面积相等”的否命题; ③“若“q ≤1”,则x 2+2x+q=0有实根”的逆否命题;
④“矩形的对角线相等”的逆命题. 其中真命题为( )
A .①②
B .①③
C .②③
D .③④
9. 设n S 是等差数列{}n a 的前项和,若5359a a =,则95
S
S =( ) A .1 B .2 C .3 D .4
10.用反证法证明命题:“已知a 、b ∈N *,如果ab 可被5整除,那么a 、b 中至少有一个能被5整除”时,假设的内容应为( )
A .a 、b 都能被5整除
B .a 、b 都不能被5整除
C .a 、b 不都能被5整除
D .a 不能被5整除
11.设集合M={x|x >1},P={x|x 2﹣6x+9=0},则下列关系中正确的是( ) A .M=P B .P ⊊M C .M ⊊P D .M ∪P=R
12.设S n 为等差数列{a n }的前n 项和,已知在S n 中有S 17<0,S 18>0,那么S n 中最小的是( ) A .S 10 B .S 9
C .S 8
D .S 7
二、填空题
13.设集合A={﹣3,0,1},B={t 2﹣t+1}.若A ∪B=A ,则t= .
14.数列{a n }是等差数列,a 4=7,S 7= .
15.已知函数f (x )=x 2+
x ﹣b+(a ,b 为正实数)只有一个零点,则+的最小值为 .
16.已知含有三个实数的集合既可表示成}1,,
{a
b
a ,又可表示成}0,,{2
b a a +,则 =+20042003b a .
17.已知关于的不等式20x ax b ++<的解集为(1,2),则关于的不等式2
10bx ax ++>的解集
为___________.
18.已知函数322()7f x x ax bx a a =++--在1x =处取得极小值10,则
b
a
的值为 ▲ . 三、解答题
19.在直角坐标系xOy 中,曲线C 1的参数方程为C 1:
为参数),曲线C 2:
=1.
(Ⅰ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,求C 1,C 2的极坐标方程; (Ⅱ)射线θ=(ρ≥0)与C 1的异于极点的交点为A ,与C 2的交点为B ,求|AB|.
20.已知集合A={x|
>1,x ∈R},B={x|x 2﹣2x ﹣m <0}.
(Ⅰ)当m=3时,求;A ∩(∁R B );
(Ⅱ)若A ∩B={x|﹣1<x <4},求实数m 的值.
21.(本小题满分10分)选修4-1:几何证明选讲.
如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于E ,过E 的切线与AC 交于D .
(1)求证:CD =DA ;
(2)若CE =1,AB =2,求DE 的长.
22.已知集合A={x|x <﹣1,或x >2},B={x|2p ﹣1≤x ≤p+3}. (1)若p=,求A ∩B ;
(2)若A ∩B=B ,求实数p 的取值范围.
23.(本小题满分16分)
在互联网时代,网校培训已经成为青年学习的一种趋势,假设某网校的套题每日的销售量()h x (单位:千套)与销售价格(单位:元/套)满足的关系式()()()h x f x g x =+(37x <<,m 为常数),其中()f x 与()3x -成反比,()g x 与()7x -的平方成正比,已知销售价格为5元/套时,每日可售出套题21千套,销售价格为3.5元/套时,每日可售出套题69千套. (1) 求()h x 的表达式;
(2) 假设网校的员工工资,办公等所有开销折合为每套题3元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数)
24.如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ,BC ⊥CF ,,EF=2,BE=3,CF=4.
(Ⅰ)求证:EF ⊥平面DCE ;
(Ⅱ)当AB的长为何值时,二面角A﹣EF﹣C的大小为60°.
华龙区民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】B
【解析】解:展开式通项公式为T r+1=
•(﹣1)r •x 3n ﹣4r ,
则∵二项式(x 3﹣)n (n ∈N *)的展开式中,常数项为28,
∴,
∴n=8,r=6. 故选:B .
【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
2. 【答案】B
【解析】连结,AC BD 交于点E ,取PC 的中点O ,连结OE ,则OE PA P ,所以OE ⊥底面ABCD ,则O 到四棱锥的所有顶点的距离相等,即O 球心,均为2221118222
PC PA AC PA =+=+,所以由球的体积可得
2341243(8)3216PA ππ+=
,解得7
2
PA =,故选B .
3. 【答案】C.
【解析】由题意得,[11]
A =-,,(,0]
B =-∞,∴(0,1]U A
C B =I ,故选C. 4. 【答案】
D 5. 【答案】A
【解析】解:∵l 1:x+y ﹣7=0和l 2:x+y ﹣5=0是平行直线, ∴可判断:过原点且与直线垂直时,中的M 到原点的距离的最小值
∵直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0,
∴两直线的距离为=, ∴AB 的中点M 到原点的距离的最小值为+=3

故选:A
【点评】本题考查了两点距离公式,直线的方程,属于中档题.
6. 【答案】C
【解析】设圆O 的半径为2,根据图形的对称性,可以选择在扇形OAC 中研究问题,过两个半圆的交点分别向OA ,OC 作垂线,则此时构成一个以1为边长的正方形,则这个正方形内的阴影部分面积为
12

,扇形
OAC 的面积为π,所求概率为π
π
π
12112
-=
-=P . 7. 【答案】A
【解析】解析:本题考查线性规划中最值的求法.平面区域D 如图所示,先求z ax y =+的最小值,当12
a ≤时,12a -≥-
,z ax y =+在点1,0A ()取得最小值a ;当12a >时,12a -<-,z ax y =+在点11
,33
B ()
取得最小值1133a +.若D 内存在一点00(,)P x y ,使001ax y +<,则有z ax y =+的最小值小于1,∴121a a ⎧

⎪⎨⎪<⎩或
121113
3a a ⎧>⎪⎪⎨⎪+<⎪,∴2a <,选A . 8. 【答案】B
【解析】解:①由于“若a 2+b 2=0,则a ,b 全为0”是真命题,因此其逆否命题是真命题;
②“全等三角形的面积相等”的否命题为“不全等的三角形的面积不相等”,不正确;
O
x
y
(1,0)A 11
(,)33
B
③若x2+2x+q=0有实根,则△=4﹣4q≥0,解得q≤1,因此“若“q≤1”,则x2+2x+q=0有实根”的逆否命题是真命题;
④“矩形的对角线相等”的逆命题为“对角线相等的四边形是矩形”,是假命题.
综上可得:真命题为:①③.
故选:B.
【点评】本题考查了命题之间的关系及其真假判定方法,考查了推理能力,属于基础题.
9.【答案】A
【解析】1111]
试题分析:
19
95
15
53
9()
9
21
5()5
2
a a
S a
a a
S a
+
===
+
.故选A.111]
考点:等差数列的前项和.
10.【答案】B
【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除”的否定是“a,b都不能被5整除”.故选:B.
11.【答案】B
【解析】解:P={x|x=3},M={x|x>1};
∴P⊊M.
故选B.
12.【答案】C
【解析】解:∵S16<0,S17>0,
∴=8(a8+a9)<0,=17a9>0,
∴a8<0,a9>0,
∴公差d>0.
∴S n中最小的是S8.
故选:C.
【点评】本题考查了等差数列的通项公式性质及其求和公式、不等式的解法,考查了推理能力与计算能力,属于中档题.
二、填空题
13.【答案】0或1.
【解析】解:由A∪B=A知B⊆A,∴t2﹣t+1=﹣3①t2﹣t+4=0,①无解
或t2﹣t+1=0②,②无解
或t2﹣t+1=1,t2﹣t=0,解得t=0或t=1.
故答案为0或1.
【点评】本题考查集合运算及基本关系,掌握好概念是基础.正确的转化和计算是关键.
14.【答案】49
【解析】解:
=
=7a4
=49.
故答案:49.
【点评】本题考查等差数列的性质和应用,解题时要认真审题,仔细求解.
15.【答案】9+4.
【解析】解:∵函数f(x)=x2+x﹣b+只有一个零点,
∴△=a﹣4(﹣b+)=0,∴a+4b=1,
∵a,b为正实数,
∴+=(+)(a+4b)=9++
≥9+2=9+4
当且仅当=,即a=b时取等号,
∴+的最小值为:9+4
故答案为:9+4
【点评】本题考查基本不等式,得出a+4b=1是解决问题的关键,属基础题.
16.【答案】-1
【解析】
试题分析:由于{}2,,1,,0b a a a b a ⎧⎫
=+⎨⎬⎩⎭
,所以只能0b =,1a =-,所以()20032003200411a b +=-=-。

考点:集合相等。

17.【答案】),1()2
1,(+∞-∞Y 【




点:一元二次不等式的解法.
18.【答案】1
2
-

点:函数极值
【方法点睛】函数极值问题的常见类型及解题策略
(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号. (2)已知函数求极值.求f ′(x )―→求方程f ′(x )=0的根―→列表检验f ′(x )在f ′(x )=0的根的附近两侧的符号―→下结论.
(3)已知极值求参数.若函数f (x )在点(x 0,y 0)处取得极值,则f ′(x 0)=0,且在该点左、右两侧的导数值符号相反.
三、解答题
19.【答案】
【解析】解:(Ⅰ)曲线为参数)可化为普通方程:(x﹣1)2+y2=1,
由可得曲线C1的极坐标方程为ρ=2cosθ,曲线C2的极坐标方程为ρ2(1+sin2θ)=2.(Ⅱ)射线与曲线C1的交点A的极径为,
射线与曲线C2的交点B的极径满足,解得,所以.
20.【答案】
【解析】解:(1)当m=3时,由x2﹣2x﹣3<0⇒﹣1<x<3,
由>1⇒﹣1<x<5,
∴A∩B={x|﹣1<x<3};
(2)若A∩B={x|﹣1<x<4},
∵A=(﹣1,5),
∴4是方程x2﹣2x﹣m=0的一个根,
∴m=8,
此时B=(﹣2,4),满足A∩B=(﹣1,4).
∴m=8.
21.【答案】
【解析】解:(1)证明:
如图,连接AE,
∵AB是⊙O的直径,
AC,DE均为⊙O的切线,
∴∠AEC=∠AEB=90°,
∠DAE=∠DEA=∠B,
∴DA =DE .
∠C =90°-∠B =90°-∠DEA =∠DEC , ∴DC =DE , ∴CD =DA .
(2)∵CA 是⊙O 的切线,AB 是直径, ∴∠CAB =90°,
由勾股定理得CA 2=CB 2-AB 2, 又CA 2=CE ×CB ,CE =1,AB =2, ∴1·CB =CB 2-2,
即CB 2-CB -2=0,解得CB =2, ∴CA 2=1×2=2,∴CA = 2. 由(1)知DE =12CA =2
2,
所以DE 的长为2
2
.
22.【答案】
【解析】解:(1)当p=时,B={x|0≤x ≤}, ∴A ∩B={x|2<x ≤}; (2)当A ∩B=B 时,B ⊆A ;
令2p ﹣1>p+3,解得p >4,此时B=∅,满足题意; 当p ≤4时,应满足,
解得p 不存在;
综上,实数p 的取值范围p >4.
23.【答案】(1) ()()2
10473h x x x =
+-- (37x <<)(2) 13 4.33
x =≈

题解析:(1) 因为()f x 与3x -成反比,()g x 与7x -的平方成正比, 所以可设:()13
k f x x =-,()()2
27g x k x =-,12.00k k ≠≠,,
则()()()()2
1273
k h x f x g x k x x =+=
+--则 ………………………………………2分 因为销售价格为5元/套时,每日可售出套题21千套,销售价格为2.5元/套时,每日可售出套题69千套 所以,()()521, 3.569h h ==,即1
2124212
49269
4
k k k k ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:12104k k =⎧⎨=⎩, ……………6分
所以,()()2
10473
h x x x =
+-- (37x <<) ………………………………………8分 (2) 由(1)可知,套题每日的销售量()()2
10473
h x x x =
+--,
答:当销售价格为4.3元/套时,网校每日销售套题所获得的利润最大.…………16分
考点:利用导数求函数最值
24.【答案】
【解析】证明:(Ⅰ)在△BCE中,BC⊥CF,BC=AD=,BE=3,∴EC=,
∵在△FCE中,CF2=EF2+CE2,∴EF⊥CE由已知条件知,DC⊥平面EFCB,
∴DC⊥EF,又DC与EC相交于C,∴EF⊥平面DCE
解:(Ⅱ)
方法一:过点B作BH⊥EF交FE的延长线于H,连接AH.
由平面ABCD⊥平面BEFC,平面ABCD∩平面BEFC=BC,
AB⊥BC,得AB⊥平面BEFC,从而AH⊥EF.
所以∠AHB为二面角A﹣EF﹣C的平面角.
在Rt△CEF中,因为EF=2,CF=4.EC=
∴∠CEF=90°,由CE∥BH,得∠BHE=90°,又在Rt△BHE中,BE=3,

由二面角A﹣EF﹣C的平面角∠AHB=60°,在Rt△AHB中,解得,
所以当时,二面角A﹣EF﹣C的大小为60°
方法二:如图,以点C为坐标原点,以CB,CF和CD分别作为x轴,y轴和z轴,建立空间直角坐标系C﹣xyz.
设AB=a(a>0),则C(0,0,0),A(,0,a),B(,0,0),E(,3,0),F(0,4,0).从而,
设平面AEF的法向量为,由得,,取x=1,
则,即,
不妨设平面EFCB的法向量为,
由条件,得
解得.所以当时,二面角A﹣EF﹣C的大小为60°.
【点评】本题考查的知识点是用空间向量求平面间的夹角,其中(I)的关键是熟练掌握线线垂直、线面垂直与面面垂直的之间的相互转化,(II)的关键是建立空间坐标系,将二面角问题,转化为向量的夹角问题.。

相关文档
最新文档