八年级初二数学数学勾股定理的专项培优练习题(附解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为15cm ,在容器内壁离容器底部3cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿3cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为25cm ,则该圆柱底面周长为( )
A .20cm
B .18cm
C .25cm
D .40cm
2.在ABC 中,AB 边上的中线3,6,8CD AB BC AC ==+=,则ABC 的面积为
( ) A .6
B .7
C .8
D .9
3.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE ,BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ;
③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )
A .①②③
B .①②④
C .②③④
D .①②③④
4.在平面直角坐标系中,已知平行四边形ABCD 的点A (0,﹣2)、点B (3m ,4m +1)(m ≠﹣1),点C (6,2),则对角线BD 的最小值是( ) A .32
B .213
C .5
D .6
5.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=15,则S 2的值是( )
A .3
B .
154
C .5
D .
152
6.已知,等边三角形ΔABC 中,边长为2,则面积为( ) A .1
B .2
C 2
D 37.将一根 24cm 的筷子,置于底面直径为 15cm ,高 8cm 的装满水的无盖圆柱形水杯中,
设筷子浸没在杯子里面的长度为 hcm ,则 h 的取值范围是( ) A .h≤15cm
B .h≥8cm
C .8cm≤h≤17cm
D .7cm≤h≤16cm
8.在四边形ABCD 中,AB ∥CD ,∠A =90°,AB =1,BD ⊥BC ,BD =BC ,CF 平分∠BCD 交BD 、AD 于E 、F ,则EDC 的面积为( )
A .22﹣2
B .32﹣2
C .2﹣2
D .2﹣1
9.已知三角形的两边分别为3、4,要使该三角形为直角三角形,则第三边的长为
( ) A .5
B .7
C .5或7
D .3或4
10.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( ) A .7,24,25
B .
111,4,5222
C .3,4,5
D .114,7
,822
二、填空题
11.如图,在平面直角坐标系中,等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1,以OA 2为直角边作第二个等腰直角三角形OA 2A 3,以OA 3为直角边作第三个等腰直角三角形OA 3A 4,…,依此规律,得到等腰直角三角形OA 2018A 2019,则点A 2019的坐标为________.
12.如图,现有一长方体的实心木块,有一蚂蚁从A 处出发沿长方体表面爬行到C '处,若长方体的长4cm AB =,宽2cm BC =,高1cm BB '=,则蚂蚁爬行的最短路径长是___________.
13.等腰三角形的腰长为5,一腰上的高为3,则这个等腰三角形底边的长为________ 14.在Rt ABC 中,90,30,2C A BC ∠=∠==,以ABC 的边AC 为一边的等腰三角形,它的第三个顶点在ABC 的斜边AB 上,则这个等腰三角形的腰长为_________.
15.如图是“赵爽弦图”,△ABH 、△BCG 、△CDF 和△DAE 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形.如果AB =13,EF =7,那么AH 等于_____.
16.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,AD=4,AB=3,则CD=_________
17.如图,△ABC 中,∠ACB=90°,AB=2,BC=AC ,D 为AB 的中点,E 为BC 上一点,将△BDE 沿DE 翻折,得到△FDE ,EF 交AC 于点G ,则△ECG 的周长是___________.
18.在ABC 中,12AB AC ==,30A ∠=︒,点E 是AB 中点,点D 在AC 上,
32DE =,将ADE 沿着DE 翻折,点A 的对应点是点F ,直线EF 与AC 交于点G ,那么DGF △的面积=__________.
19.观察:①3、4、5,②5、12、13,③7、24、25,……,发现这些勾股数的“勾”都是奇数,且从3起就没断过.根据以上规律,请写出第8组勾股数:______. 20.如图所示,圆柱体底面圆的半径是
2
π
,高为1,若一只小虫从A 点出发沿着圆柱体的外侧面爬行到C 点,则小虫爬行的最短路程是______
三、解答题
21.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.
(1)当2t =秒时,求PQ 的长;
(2)求出发时间为几秒时,PQB ∆是等腰三角形?
(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.
22.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .
(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;
②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;
(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.
23.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在ABC ∆中,AO 是BC 边上的中线,AB 与AC 的“广益值”就等于22AO BO -的值,可记为22AB AC OA BO ∇=-
(1)在ABC ∆中,若90ACB ∠=︒,81AB AC ∇=,求AC 的值.
(2)如图2,在ABC ∆中,12AB AC ==,120BAC ∠=︒,求AB AC ∇,BA BC ∇的值.
(3)如图3,在ABC ∆中,AO 是BC 边上的中线,24ABC S ∆=,8AC =,
64AB AC ∇=-,求BC 和AB 的长.
24.如图,在四边形ABCD 中,=AB AD ,=BC DC ,=60A ∠︒,点E 为AD 边上一点,连接CE ,BD . CE 与BD 交于点F ,且CE ∥AB .
(1)求证:CED ADB ∠=∠; (2)若=8AB ,=6CE . 求BC 的长 .
25.在ABC ∆中,AB AC =,CD 是AB 边上的高,若10,45AB BC ==.
(1)求CD 的长.
(2)动点P 在边AB 上从点A 出发向点B 运动,速度为1个单位/秒;动点Q 在边AC 上从点A 出发向点C 运动,速度为v 个单位秒()v>1,设运动的时间为()0t t >,当点Q 到点C 时,两个点都停止运动.
①若当2v =时,CP BQ =,求t 的值.
②若在运动过程中存在某一时刻,使CP BQ =成立,求v 关于t 的函数表达式,并写出自变量t 的取值范围.
26.已知n 组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四组:24,10,26;第五组:35,12,37;第六组:48,14,50;…
(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;
(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使
得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.
27.菱形ABCD中,∠BAD=60°,BD是对角线,点E、F分别是边AB、AD上两个点,且满足AE=DF,连接BF与DE相交于点G.
(1)如图1,求∠BGD的度数;
(2)如图2,作CH⊥BG于H点,求证:2GH=GB+DG;
(3)在满足(2)的条件下,且点H在菱形内部,若GB=6,CH=43,求菱形ABCD的面积.
28.在平面直角坐标系中,点A(0,4),B(m,0)在坐标轴上,点C,O关于直线AB 对称,点D在线段AB上.
(1)如图1,若m=8,求AB的长;
(2)如图2,若m=4,连接OD,在y轴上取一点E,使OD=DE,求证:CE=2DE;(3)如图3,若m=43,在射线AO上裁取AF,使AF=BD,当CD+CF的值最小时,请在图中画出点D的位置,并直接写出这个最小值.
29.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.
(2)如图1,求AF的长.
(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.
①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.
②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t 的值.
30.(发现)小慧和小雯用一个平面去截正方体,得到一个三角形截面(截出的面),发现截面一定是锐角三角形.为什么呢?她们带着这个疑问请教许老师.
(体验)(1)从特殊入手许老师用1个铆钉把长度分别为4和3的两根窄木棒的一端连在一起(如图,),保持不动,让从重合位置开始绕点转动,在转动的过程,观测的大小和的形状,并列出下表:
的大小的形状

直角三角形

直角三角形

请仔细体会其中的道理,并填空:_____,_____;
(2)猜想一般结论在中,设,,(),
①若为直角三角形,则满足;
②若为锐角三角形,则满足____________;
③若为钝角三角形,则满足_____________.
(探索)在许老师的启发下,小慧用小刀在一个长方体橡皮上切出一个三角形截面
(如图1),设,,,请帮助小慧说明为锐角三角形的道理.
(应用)在小慧的基础上,小雯又切掉一块“角”,得到一个新的三角形截面(如图2),那么的形状是()
A.一定是锐角三角形
B.可能是锐角三角形或直角三角形,但不可能是钝角三角形
C.可能是锐角三角形或直角三角形或钝角三角形
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【分析】
将容器侧面展开,建立A关于EG的对称点A′,根据两点之间线段最短可知A′B的长度即为最短路径,由勾股定理求出A′D即圆柱底面周长的一半,由此即可解题.
【详解】
解:如图,将圆柱展开,EG为上底面圆周长的一半,
作A 关于E 的对称点A ',连接A B '交EG 于F , 则蚂蚁吃到蜂蜜需爬行的最短路径为AF BF +的长, 即 25cm AF BF A B '+==, 延长BG ,过A '作A D BG '⊥于D ,
3cm AE A E '==,153315cm BD BG DG BG AE ∴=+=+=-+=, Rt A DB '∴△中,由勾股定理得:2222251520cm A D A B BD ''=--=,
∴该圆柱底面周长为:20240cm ⨯=,
故选D . 【点睛】
本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.
2.B
解析:B 【分析】
本题考查三角形的中线定义,根据条件先确定ABC 为直角三角形,再根据勾股定理求得
228AC BC = ,最后根据1
2
ABC AC BC ∆=
⋅求解即可. 【详解】
解:如图,在ABC 中,AB 边上的中线, ∵CD=3,AB= 6, ∴CD=3,AB= 6, ∴CD= AD= DB ,
12∠∠∴=,34∠=∠ , ∵1234180∠+∠+∠+∠=︒,
∴1390∠+∠=︒, ∴
ABC 是直角三角形,
∴22236AC BC AB +==, 又∵8AC BC +=,
∴22264AC AC BC BC +⋅+=,
∴22264()643628AC BC AC BC ⋅=-+=-=,
又∵1 2
ABC
AC BC

=⋅,
∴1287
22
ABC
S

=⨯=,
故选B.
【点睛】本题考查三角形中位线的应用,熟练运用三角形的中线定义以及综合分析、解答问题的能力,关键要懂得:在一个三角形中,如果获知一条边上的中线等于这一边的一半,那么就可考虑它是一个直角三角形,通过等腰三角形的性质和内角和定理来证明一个三是直角三角形.
3.A
解析:A
【分析】
先判断△DBE是等腰直角三角形,根据勾股定理可推导得出2BE,故①正确;根据∠BHE和∠C都是∠HBE的余角,可得∠BHE=∠C,再由∠A=∠C,可得②正确;证明
△BEH≌△DEC,从而可得BH=CD,再由AB=CD,可得③正确;利用已知条件不能得到④,据此即可得到选项.
【详解】
解:∵∠DBC=45°,DE⊥BC于E,
∴在Rt△DBE中,BE2+DE2=BD2,BE=DE,
∴2BE,故①正确;
∵DE⊥BC,BF⊥DC,∴∠BHE和∠C都是∠HBE的余角,
∴∠BHE=∠C,
又∵在▱ABCD中,∠A=∠C,
∴∠A=∠BHE,故②正确;
在△BEH和△DEC中,
BHE C
HEB CED
BE DE
∠=∠


∠=∠

⎪=


∴△BEH≌△DEC,
∴BH=CD,
∵四边形ABCD为平行四边形,
∴AB=CD,
∴AB=BH,故③正确;
利用已知条件不能得到△BCF≌△DCE,故④错误,
故选A.
【点睛】
本题考查了平行四边形的性质、等腰直角三角形的判定与性质、勾股定理、全等三角形的判定与性质等,熟练掌握相关性质与定理是解题的关键.
4.D
解析:D
【分析】
先根据B(3m,4m+1),可知B在直线y=4
3
x+1上,所以当BD⊥直线y=
4
3
x+1时,BD最
小,找一等量关系列关于m的方程,作辅助线:过B作BH⊥x轴于H,则BH=4m+1,利用三角形相似得BH2=EH•FH,列等式求m的值,得BD的长即可.
【详解】
解:如图,
∵点B(3m,4m+1),
∴令
3
41
m x
m y
=


+=


∴y=4
3
x+1,
∴B在直线y=4
3
x+1上,
∴当BD⊥直线y=4
3
x+1时,BD最小,
过B作BH⊥x轴于H,则BH=4m+1,
∵BE在直线y=4
3
x+1上,且点E在x轴上,
∴E(−3
4
,0),G(0,1)
∵F是AC的中点
∵A(0,−2),点C(6,2),∴F(3,0)
在Rt△BEF中,∵BH2=EH⋅FH,
∴(4m+1)2=(3m+3
4
)(3−3m)
解得:m1=−1
4
(舍),m2=
1
5

∴B(3
5

9
5
),
∴BD=2BF=2×
2
2
39
(3)
55
⎛⎫
-+ ⎪
⎝⎭
=6,
则对角线BD的最小值是6;
故选:D.
【点睛】
本题考查了平行四边形的性质,利用待定系数法求一次函数的解析式,三角形相似的判定,圆形与坐标特点,勾股定理等知识点.本题利用点B的坐标确定其所在的直线的解析式是关键.
5.C
解析:C
【解析】
将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,
∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=15,
∴得出S1=8y+x,S2=4y+x,S3=x,
∴S1+S2+S3=3x+12y=15,即3x+12y=15,x+4y=5,
所以S2=x+4y=5,
故答案为5.
点睛:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,用x,y 表示出S1,S2,S3,再利用S1+S2+S3=15求解是解决问题的关键.
6.D
解析:D
【解析】
根据题意可画图为:过点A作AD⊥BC,垂足为D,
∵∠B=60°,
∴∠BAD=30°,
∵AB=2,
∴AD=3,
∴S△ABC= 1
2BC·AD=
1
2
×2×3=3.
故选D.
7.C
解析:C
【分析】
筷子浸没在水中的最短距离为水杯高度,最长距离如下图,是筷子斜卧于杯中时,利用勾股定理可求得.
【详解】
当筷子笔直竖立在杯中时,筷子浸没水中距离最短,为杯高=8cm
AD是筷子,AB长是杯子直径,BC是杯子高,当筷子如下图斜卧于杯中时,浸没在水中的距离最长
由题意得:AB=15cm,BC=8cm,△ABC是直角三角形
∴在Rt△ABC中,根据勾股定理,AC=17cm
∴8cm≤h≤17cm
故选:C
【点睛】
本题考查勾股定理在实际生活中的应用,解题关键是将题干中生活实例抽象成数学模型,然后再利用相关知识求解.
8.C
解析:C
【分析】
先过点E作EG⊥CD于G,再判定△BCD、△ABD都是等腰直角三角形,并求得其边长,最后利用等腰直角三角形,求得EG的长,进而得到△EDC的面积.
【详解】
解:过点E作EG⊥CD于G,
又∵CF平分∠BCD,BD⊥BC,
∴BE=GE,
在Rt△BCE和Rt△GCE中
CE CE BE GE =⎧⎨=⎩
, ∴Rt △BCE ≌Rt △GCE ,
∴BC =GC ,
∵BD ⊥BC ,BD =BC ,
∴△BCD 是等腰直角三角形,
∴∠BDC =45°,
∵AB//CD ,
∴∠ABD =45°,
又∵∠A =90°,AB =1,
∴等腰直角三角形ABD 中,BD =2211+=2=BC ,
∴Rt △BDC 中,CD =()()2222+=2,
∴DG =DC ﹣GC =2﹣2,
∵△DEG 是等腰直角三角形,
∴EG =DG =2﹣2,
∴△EDC 的面积=
12×DC×EG =12
×2×(2﹣2)=2﹣2. 故选:C .
【点睛】
本题主要考查了角平分线的性质,等腰直角三角形的性质与判定,全等三角形的判定与性质,以及勾股定理等知识,解决问题的关键是作辅助线,构造直角三角形EDG 进行求解.
9.C
解析:C
【分析】
根据勾股定理和分类讨论的方法可以求得第三边的长,从而可以解答本题.
【详解】
由题意可得,当3和42243+5,
当斜边为42243-7,
故选:C
【点睛】
本题考查勾股定理,解答本题的关键是明确题意,利用勾股定理和分类讨论的数学思想解
答.
10.B
解析:B
【分析】
根据勾股定理的逆定理分别计算各个选项,选出正确的答案.
【详解】
A 、22272425+=,能组成直角三角形,故正确;
B 、222
11145222⎛⎫⎛⎫⎛⎫+≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
,不能组成直角三角形,故错误; C 、222345+=,能组成直角三角形,故正确; D 、22
21147822⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭
,能组成直角三角形,故正确; 故选:B .
【点睛】 本题考查了勾股定理的逆定理:已知三角形ABC 的三边满足a 2+b 2=c 2,则三角形ABC 是直角三角形.
二、填空题
11.(21009,0).
【分析】
根据等腰直角三角形的性质得到OA 1=1,OA 2=
1,OA 3=2,
OA 4=3,…OA 2019=2018
,再利用1A 、2A 、3A …,每8个一循环,再回到y 轴的
正半轴的特点可得到点A 2019在x 轴的正半轴上,即可确定点A 2019的坐标.
【详解】
∵等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1,以OA 2为直角边作第二个等腰直角三角形OA 2A 3,以OA 3为直角边作第三个等腰直角三角形OA 3A 4,…,
∴OA 1=1,OA 2,OA 3=)2,…,OA 2019=)2018,
∵A 1、A 2、A 3、…,每8个一循环,再回到y 轴的正半轴,
∴2019÷8=252…3,
∴点A 2019在x 轴正半轴上.
∵OA 2019=)2018,
∴点A 2019的坐标为(2018,0)即(21009,0).
故答案为:(21009,0).
【点睛】
本题考查了规律型:点的坐标,等腰直角三角形的性质:等腰直角三角形的两底角都等于
45°;斜边等于直角边的2倍.也考查了直角坐标系中各象限内点的坐标特征.
12.5cm
【分析】
连接AC',分三种情况进行讨论:画出图形,用勾股定理计算出AC'长,再比较大小即可得出结果.
【详解】
解:如图
展开成平面图,连接AC',分三种情况讨论:
如图1,AB=4,BC'=1+2=3,
∴在Rt△ABC'中,由勾股定理得AC'=22
+=5(cm),
43
如图2,AC=4+2=6,CC'=1
∴在Rt△ACC'中,由勾股定理得AC'=22
+=37(cm),
61
如图3,AD =2,DC'=1+4=5,
∴在Rt△ADC'中,由勾股定理得AC'=22
+=29(cm)
25
∵5<29<37,
∴蚂蚁爬行的最短路径长是5cm,
故答案为:5cm.
【点睛】
本题考查平面展开-最短路线问题和勾股定理,本题具有一定的代表性,是一道好题,注意要分类讨论.
13.310或10
【详解】
分两种情况:
(1)顶角是钝角时,如图1所示:
在Rt△ACO中,由勾股定理,得AO2=AC2-OC2=52-32=16,
∴AO=4,
OB=AB+AO=5+4=9,
在Rt △BCO 中,由勾股定理,得BC 2=OB 2+OC 2=92+32=90,
∴BC=310;
(2)顶角是锐角时,如图2所示:
在Rt △ACD 中,由勾股定理,得AD 2=AC 2-DC 2=52-32=16,
∴AD=4,
DB=AB-AD=5-4=1.
在Rt △BCD 中,由勾股定理,得BC 2=DB 2+DC 2=12+32=10,
∴10 ;
综上可知,这个等腰三角形的底的长度为1010. 【点睛】
本题考查了勾股定理及等腰三角形的性质,难度适中,分情况讨论是解题的关键.
14.232
【分析】
先求出AC 的长,再分两种情况:当AC 为腰时及AC 为底时,分别求出腰长即可.
【详解】
在Rt ABC 中,90,30,2C A BC ∠=∠==,
∴AB=2BC=4, ∴22224223AC AB BC =-=-=
当AC 为腰时,则该三角形的腰长为3
当AC 为底时,作AC 的垂直平分线交AB 于点D ,交AC 于点E ,如图,此时△ACD 是等腰三角形,则3
设DE=x ,则AD=2x ,
∵222AE DE AD +=,
∴222(3)(2)x x +=
∴x=1(负值舍去),
∴腰长AD=2x=2,
故答案为:23或2
【点睛】
此题考查勾股定理的运用,结合线段的垂直平分线的性质,等腰三角形的性质,解题时注意:“AC 为一边的等腰三角形”没有明确AC 是等腰三角形的腰或底,故应分为两种情况解题,这是此题的易错之处.
15.【分析】
根据面积的差得出a+b 的值,再利用a-b=7,解得a ,b 的值代入即可.
【详解】
∵AB =13,EF =7,
∴大正方形的面积是169,小正方形的面积是49,
∴四个直角三角形面积和为169﹣49=120,设AE 为a ,DE 为b ,即141202ab ⨯
=, ∴2ab =120,a 2+b 2=169,
∴(a +b )2=a 2+b 2+2ab =169+120=289,
∴a +b =17,
∵a ﹣b =7,
解得:a =12,b =5,
∴AE =12,DE =5,
∴AH =12﹣7=5.
故答案为:5.
【点睛】
此题考查勾股定理的证明,关键是应用直角三角形中勾股定理的运用解得ab 的值. 16.
【解析】
【分析】
延长BC ,AD 交于E 点,在直角三角形ABE 和直角三角形CDE 中,根据30°角所对的直角边等于斜边的一半和勾股定理即可解答.
【详解】
如图,延长AD 、BC 相交于E ,
∵∠A=60°,∠B=∠ADC=90°,
∴∠E=30°
∴AE=2AB ,CE=2CD
∵AB=3,AD=4,
∴AE=6, DE=2
设CD=x,则CE=2x,DE=x
即x=2
x=
即CD=
故答案为:
【点睛】
本题考查了勾股定理的运用,含30°角所对的直角边是斜边的一半的性质,本题中构建直角△ABE和直角△CDE,是解题的关键.
17.2
【分析】
连接CE.根据“直角三角形斜边上的中线等于斜边的一半”、等腰三角形的性质以及折叠的性质推知EG+CG=EG+GF=EF=BE,
【详解】
解:(1)如图,连接CD、CF.
∵Rt△ABC中,∠ACB=90°,AC=BC,D为AB边的中点,
∴BD=CD=1.2 ,
∵由翻折可知BD=DF,
∴CD=BD=DF=1,∠DFE=∠B=∠DCA=45°,
∴∠DCF=∠DFC,
∴∠DCF-∠DCA=∠DFC-∠DFE,即∠GCF=∠GFC,
∴GC=GF,
∴EG+CG=EG+GF=EF=BE,
∴△ECG 的周长=EG+GC+CE=BE+EC=BC=2, 故答案为2.
【点睛】
本题考查了折叠的性质、勾股定理、直角三角形的性质,能将三角形的周长转移到已知线段上是解题的关键..
18.639+或639-
【分析】
通过计算E 到AC 的距离即EH 的长度为3,所以根据DE 的长度有两种情况:①当点D 在H 点上方时,②当点D 在H 点下方时,两种情况都是过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,利用含30°的直角三角形的性质和勾股定理求出AH,DH 的长度,进而可求AD 的长度,然后利用角度之间的关系证明AG GE =,再利用等腰三角形的性质求出GQ 的长度,最后利用2DGF AED AEG S
S S =-即可求解.
【详解】
①当点D 在H 点上方时,
过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,
12AB = ,点E 是AB 中点,
162
AE AB ∴== . ∵EH AC ⊥,
90AHE ∴∠=︒ .
30,6A AE ∠=︒=,
132
EH AE ∴== ,
AH ∴===. 3DE =,
3DH ∴=== ,
DH EH ∴=,3AD AH DH =-=,
45EDH ∴∠=︒,
15AED EDH A ∴∠=∠-∠=︒ .
由折叠的性质可知,15DEF AED ∠=∠=︒,
230AEG AED ∴∠=∠=︒ ,
AEG A ∴∠=∠,
AG GE ∴= . 又GQ AE ⊥ ,
132
AQ AE ∴== . 30A ∠=︒ ,
12
GQ AG ∴=. 222GQ AQ AG += , 即2
223(2)GQ GQ +=,
GQ ∴= .
2DGF AED AEG S S S =- ,
11
23)36922
DGF S ∴=⨯⨯⨯-⨯=; ②当点D 在H 点下方时,
过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,
12AB = ,点E 是AB 中点,
162
AE AB ∴== . ∵EH AC ⊥,
90AHE ∴∠=︒.
30,6A AE ∠=︒= ,
132EH AE ∴=
= , 22226333AH AE EH ∴=-=-=. 32DE =,
2222(32)33DH DE EH ∴=-=-= ,
DH EH ∴=,333AD AH DH =+=,
45DEH ∴∠=︒ ,
90105AED A DEH ∴∠=︒-∠+∠=︒ .
由折叠的性质可知,105DEF AED ∠=∠=︒,
218030AEG AED ∴∠=∠-︒=︒ ,
AEG A ∴∠=∠,
AG GE ∴= . 又GQ AE ⊥ ,
132
AQ AE ∴== . 30A ∠=︒,
12GQ AG ∴= . 222GQ AQ AG += , 即2
223(2)GQ GQ +=, 3GQ ∴= .
2DGF AED AEG S S S =- ,
112(333)36363922
DGF S ∴=⨯⨯+⨯-⨯⨯=+, 综上所述,DGF △的面积为639-或639+.
故答案为:639-或639+.
【点睛】
本题主要考查折叠的性质,等腰三角形的判定及性质,等腰直角三角形的性质,勾股定理,含30°的直角三角形的性质,能够作出图形并分情况讨论是解题的关键. 19.17,144,145
【分析】
由题意观察题干这些勾股数,根据所给的勾股数找出三个数之间的关系即可.
【详解】
解:因为这些勾股数的“勾”都是奇数,且从3起就没断过,所以从3、5、7…依次推出第8组的“勾”为17,
继续观察可知弦-股=1,利用勾股定理假设股为m ,则弦为m+1,
所以有222
17(1)m m +=+,解得144m =,1145m +=,即第8组勾股数为17,144,145.
故答案为17,144,145.
【点睛】
本题属规律性题目,考查的是勾股数之间的关系,根据题目中所给的勾股数及勾股定理进行分析即可. 20.5
【分析】
先将图形展开,再根据两点之间线段最短可知.
【详解】
圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C 是边的中点,矩形的宽即高等于圆柱的母线长.
∵AB=π•2π=2,CB=1. ∴AC= 22AB +BC = 222=5+1,
故答案为:5.
【点睛】
圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长.本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.
三、解答题
21.(1)213;(2)83;(3)5.5秒或6秒或6.6秒
【分析】
(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可; (2)由题意得出BQ BP =,即28t t =-,解方程即可;
(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C CBQ ∠=∠,可证明A ABQ ∠=∠,则BQ AQ =,则CQ AQ =,从而求得t ;
②当CQ BC =时(图2),则12BC CQ +=,易求得t ;
③当BC BQ =时(图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .
【详解】
(1)解:(1)224BQ cm =⨯=,
8216BP AB AP cm =-=-⨯=,
90B ∠=︒,
222246213()PQ BQ BP cm =+=+=;
(2)解:根据题意得:BQ BP =,
即28t t =-,
解得:83
t =; 即出发时间为83
秒时,PQB ∆是等腰三角形; (3)解:分三种情况:
①当CQ BQ =时,如图1所示:
则C CBQ ∠=∠,
90ABC ∠=︒,
90CBQ ABQ ∴∠+∠=︒,
90A C ∠+∠=︒,
A ABQ ∴∠=∠
BQ AQ ∴=,
5CQ AQ ∴==,
11BC CQ ∴+=,
112 5.5t ∴=÷=秒.
②当CQ BC =时,如图2所示:
则12BC CQ +=
1226t ∴=÷=秒.
③当BC BQ =时,如图3所示:
过B 点作BE AC ⊥于点E , 则68 4.8()10
AB BC BE cm AC ⨯=== 22 3.6CE BC BE cm ∴=-=,
27.2CQ CE cm ∴==,
13.2BC CQ cm ∴+=,
13.22 6.6t ∴=÷=秒.
由上可知,当t 为5.5秒或6秒或6.6秒时,
BCQ ∆为等腰三角形.
【点睛】
本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.
22.(1)①详见解析;②详见解析;(2)DE 2= EB 2+AD 2+EB ·AD ,证明详见解析
【分析】
(1)①根据旋转的性质可得CF=CD ,∠DCF=90°,再根据已知条件即可证明
△ACD≌△BCF;
②连接EF,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE≌△FCE得到EF=DE 即可证明;
(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD,DE,BE之间的关系.
【详解】
解:(1)①证明:由旋转可得CF=CD,∠DCF=90°
∵∠ACD=90°
∴∠ACD=∠BCF
又∵AC=BC
∴△ACD≌△BCF
②证明:连接EF,
由①知△ACD≌△BCF
∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD,BF=AD
∴∠EBF=90°
∴EF2=BE2+BF2,
∴EF2=BE2+AD2
又∵∠ACB=∠DCF=90°,∠CDE=45°
∴∠FCE=∠DCE=45°
又∵CD=CF,CE=CE
∴△DCE≌△FCE
∴EF=DE
∴DE2= AD2+BE2
⑵DE2=EB2+AD2+EB·AD
理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB 的延长线于点G,连接EF,
∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD
∵AC=BC,∠ACB=60°
∴∠CAB=∠CBA =60°
∴∠ABE=120°,∠EBF=60°,∠BFG=30°
∴BG=1
2
BF,
3
∵∠ACB=60°,∠DCE=30°,
∴∠ACD+∠BCE=30°,
∴∠ECF=∠FCB+∠BCE=30°∵CD=CF,CE=CE
∴△ECF≌△ECD
∴EF=ED
在Rt△EFG中,EF2=FG2+EG2又∵EG=EB+BG
∴EG=EB+1
2 BF,
∴EF2=(EB+1
2
BF)2+(
3
2
BF)2
∴DE2=(EB+1
2
AD)2+(
3
AD)2
∴DE2=EB2+AD2+EB·AD
【点睛】
本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.
23.(1)AC=9;(2)AB∇AC=-72,BA∇BC=73
【分析】
(1)在Rt AOC
∆中,根据勾股定理和新定义可得AO2-OC2=81=AC2;
(2)①先利用含30°的直角三角形的性质求出AO=2,OB=23再用新定义即可得出结论;
②先构造直角三角形求出BE,AE,再用勾股定理求出BD,最后用新定义即可得出结论;
(3)作BD⊥CD,构造直角三角形BCD,根据三角形面积关系求出BD,根据新定义和勾股定理逆定理得出三角形AOD是直角三角形,根据中线性质得出OA的长度,根据勾股定理求出OC,从而得出BC,再根据勾股定理求出CD,再求出AD,再运用勾股定理求出AB.
【详解】
(1)已知如图:AO为BC上的中线,
在Rt AOC ∆中,
AO 2-OC 2=AC 2
因为81AB AC ∇=
所以AO 2-OC 2=81
所以AC 2=81
所以AC=9.
(2)①如图2,取BC 的中点D ,连接AO ,∵AB =AC ,∴AO ⊥BC ,
在△ABC 中,AB =AC ,∠BAC =120°,∴∠ABC =30°,
在Rt △AOB 中,AB =12,∠ABC =30°,∴AO =6,OB =2222126AB AO -=-=63,
∴AB ∇AC =AO 2﹣BO 2=36﹣108=﹣72, ②取AC 的中点D ,连接BD ,∴AD =CD =
12
AC =6,过点B 作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中,∠BAE =180°﹣∠BAC =60°,∴∠ABE =30°, ∵AB =12,∴AE =6,BE =
222212663AB AE -=-=, ∴DE =AD +AE =12,
在Rt △BED 中,根据勾股定理得,BD =()2222631267BE DE +=
+=
∴BA ∇BC =BD 2﹣CD 2=216;
(3)作BD ⊥CD,
因为24ABC S ∆=,8AC =,
所以BD=26ABC S AC ∆÷=,
因为64AB AC ∇=-,AO 是BC 边上的中线,
所以AO 2-OC 2=-64,
所以OC 2-AO 2=64,
由因为AC 2=82=64,
所以OC 2-AO 2= AC 2
所以∠OAC=90°
所以OA=24228322ABC S AC ∆⨯
÷=⨯÷= 所以OC=22228373AC OA +=+=
所以BC=2OC=273,
在Rt △BCD 中,
CD=()2222276163BC BD -=-=
所以AD=CD-AC=16-8=8
所以AB=22228610AD BD +=+=
【点睛】
考核知识点:勾股定理逆定理,含30°直角三角形性质.借助辅助线构造直角三角形,运用勾股定理等直角三角形性质解决问题是关键.
24.(1)见解析;(2)27BC =.
【分析】
(1)由等边三角形的判定定理可得△ABD 为等边三角形,又由平行进行角度间的转化可得出结论.
(2)连接AC 交BD 于点O ,由题意可证AC 垂直平分BD ,△ABD 是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4,通过证明△EDF 是等边三角形,可得DE=EF=DF=2,由勾股定理可求OC ,BC 的长.
【详解】
(1)证明:∵AB AD =,=60A ∠︒,
∴△ABD 是等边三角形.
∴60ADB ∠=︒.
∵CE ∥AB ,
∴60CED A ∠=∠=︒.
∴CED ADB ∠=∠.
(2)解:连接AC 交BD 于点O ,
∵AB AD =,BC DC =,
∴AC 垂直平分BD .
∴30BAO DAO ∠=∠=︒.
∵△ABD 是等边三角形,8AB =
∴8AD BD AB ===,
∴4BO OD ==.
∵CE ∥AB ,
∴ACE BAO ∠=∠.
∴6AE CE ==, 2DE AD AE =-=.
∵60CED ADB ∠=∠=︒.
∴60EFD ∠=︒.
∴△EDF 是等边三角形.
∴2EF DF DE ===,
∴4CF CE EF =-=,2OF OD DF =-=.
在Rt △COF 中, ∴2223OC CF OF =-=.
在Rt △BOC 中, ∴22224(23)27BC BO OC =
+=+= 【点睛】
本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.
25.(1)CD=8;(2)t=4;(3)
12-
=
t
v
t
(26
t≤<)
【分析】
(1)作AE⊥BC于E,根据等腰三角形三线合一的性质可得BE=1
2
BC,然后利用勾股定理
求出AE,再用等面积法可求出CD的长;
(2)①过B作BF⊥AC于F,易得BF=CD,分别讨论Q点在AF和FC之间时,根据
△BQF≌△CPD,得到PD=QF,建立方程即可求出t的值;
(3)同(2)建立等式关系即可得出关系式,再根据Q在FC之间求出t的取值范围即可.【详解】
解:(1)如图,作AE⊥BC于E,
∵AB=AC,
∴BE=1
2
BC=25
在Rt△ABE中,
()2
222
AE=AB BE=1025=45
--
∵△ABC的面积=11
BC AE=AB CD 22
⋅⋅

BC AE4545 CD===8
AB
⋅⨯
(2)过B作BQ⊥AC,当Q在AF之间时,如图所示,
∵△ABC的面积=11
AC BF=AB CD
22
⋅⋅,AB=AC
∴BF=CD
在Rt △CPD 和Rt △BQF 中
∵CP=BQ ,CD=BF ,
∴Rt △CPD ≌Rt △BQF (HL )
∴PD=QF
在Rt △ACD 中,CD=8,AC=AB=10 ∴22AD=AC CD =6-
同理可得AF=6
∴PD=AD=AP=6-t ,QF=AF-AQ=6-2t
由PD=QF 得6-t=6-2t ,解得t=0,
∵t >0,
∴此种情况不符合题意,舍去;
当Q 点在FC 之间时,如图所示,
此时PD=6-t ,QF=2t-6
由PD=QF 得6-t=2t-6,
解得t=4,
综上得t 的值为4.
(3)同(2)可知v >1时,Q 在AF 之间不存在CP=BQ ,Q 在FC 之间存在CP=BQ ,Q 在F 点时,显然CP ≠BQ ,
∵运动时间为t ,则AP=t ,AQ=vt ,
∴PD=6-t ,QF=vt-6,
由PD=QF 得6-t=vt-6,
整理得12-=t v t
, ∵Q 在FC 之间,即AF <AQ ≤AC
∴610<≤vt ,代入12-=t v t
得 61210<-≤t ,解得26t ≤<
所以答案为12-=
t v t (26t ≤<) 【点睛】
本题考查三角形中的动点问题,熟练掌握勾股定理求出等腰三角形的高,利用全等三角形
对应边相等建立方程是解题的关键.
26.(1)不存在,见解析;(2)以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数,见解析.
【分析】
(1)根据题意可知,这n 组正整数符合规律m 2-1,2m ,m 2+1(m≥2,且m 为整数).分三种情况:m 2-1=71;2m=71;m 2+1=71;进行讨论即可求解;
(2)由于(m 2-1) 2+(2m ) 2=m 4+2m 2+1=(m 2+1) 2,根据勾股定理的逆定理即可求解.
【详解】
(1)不存在一组数,既符合上述规律,且其中一个数为71.
理由如下:
根据题意可知,这n 组正整数符合规律21m -,2m ,21m +(2m ≥,且m 为整数). 若2171m -=,则272m =,此时m 不符合题意;
若271m =,则35.5,m =,此时m 不符合题意;
若2171m +=,则270m =,此时m 不符合题意,
所以不存在一组数,既符合上述规律,且其中一个数为71.
(2)以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数.
理由如下:
对于一组数:21m -,2m ,21m +(2m ≥,且m 为整数).
因为2224222
(1)(2)21(1)m m m m m -+=++=+
所以若一个三角形三边长分别为21m -,2m ,21m +(2m ≥,且m 为整数),则该三角形为直角三角形.
因为当2m ≥,且m 为整数时,2m 表示任意一个大于2的偶数,21m -,21m +均为正整数,
所以以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数.
【点睛】
考查了勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.注意分类思想的应用
27.(1)∠BGD =120°;(2)见解析;(3)S 四边形ABCD =
【解析】
【分析】
(1)只要证明△DAE ≌△BDF ,推出∠ADE=∠DBF ,由
∠EGB=∠GDB+∠GBD=∠GDB+∠ADE=60°,推出∠BGD=180°-∠BGE=120°;
(2)如图3中,延长GE 到M ,使得GM=GB ,连接BD 、CG .由△MBD ≌△GBC ,推出DM=GC ,∠M=∠CGB=60°,由CH ⊥BG ,推出∠GCH=30°,推出CG=2GH ,由
CG=DM=DG+GM=DG+GB ,即可证明2GH=DG+GB ;
(3)解直角三角形求出BC 即可解决问题;。

相关文档
最新文档