高考物理万有引力与航天专项训练及答案及解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理万有引力与航天专项训练及答案及解析
一、高中物理精讲专题测试万有引力与航天
1.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018”.例如,我国将进行北斗组网卫星的高密度发射,全年发射18颗北斗三号卫星,为“一带一路”沿线及周边国家提供服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.图为其中一颗静止轨道卫星绕地球飞行的示意图.已知该卫星做匀速圆周运动的周期为T ,地球质量为M 、半径为R ,引力常量为G .
(1)求静止轨道卫星的角速度ω; (2)求静止轨道卫星距离地面的高度h 1;
(3)北斗系统中的倾斜同步卫星,其运转轨道面与地球赤道面有一定夹角,它的周期也是T ,距离地面的高度为h 2.视地球为质量分布均匀的正球体,请比较h 1和h 2的大小,并说出你的理由.
【答案】(1)2π=T ω;(2)2
3124GMT h R π
(3)h 1= h 2 【解析】 【分析】
(1)根据角速度与周期的关系可以求出静止轨道的角速度; (2)根据万有引力提供向心力可以求出静止轨道到地面的高度; (3)根据万有引力提供向心力可以求出倾斜轨道到地面的高度; 【详解】
(1)根据角速度和周期之间的关系可知:静止轨道卫星的角速度2π=T
ω (2)静止轨道卫星做圆周运动,由牛顿运动定律有:2
1
212π=()()()Mm G
m R h R h T
++ 解得:2
312
=4π
GMT
h R
(3)如图所示,同步卫星的运转轨道面与地球赤道共面,倾斜同步轨道卫星的运转轨道面与地球赤道面有夹角,但是都绕地球做圆周运动,轨道的圆心均为地心.由于它的周期也是T ,根据牛顿运动定律,2
2
22
2=()()()Mm G
m R h R h T
π++ 解得:2
322
=4GMT
h R π
- 因此h 1= h 2.
故本题答案是:(1)2π=T ω;(2)2312=4GMT h R π
- (3)h 1= h 2 【点睛】
对于围绕中心天体做圆周运动的卫星来说,都借助于万有引力提供向心力即可求出要求的物理量.
2.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的
Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为
M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离
为r 时,地球与卫星组成的系统的引力势能为p GMm
E r
=-(取无穷远处的引力势能为
零),忽略地球自转和喷气后飞船质量的変化,问:
(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?
(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度
3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引
【答案】(1)2GMm R (23【解析】 【分析】
(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;
(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】
(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动
即:2
2mM v G m R R
=
则飞船的动能为2122k GMm
E mv R
=
=; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:
221211()22GMm GMm
mv mv R h R
-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:
2v = (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312
Mm G
mv R =
则探测器离开飞船时的速度(相对于地心)至少是:3v =. 【点睛】
本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.
3.我国科学家正在研究设计返回式月球软着陆器,计划在2030年前后实现航天员登月,对月球进行科学探测。
宇航员在月球上着陆后,自高h 处以初速度v 0水平抛出小球,测量出小球的水平射程为L (这时月球表面可以看成是平坦的),已知月球半径为R ,万有引力常量为G 。
(1)试求月球表面处的重力加速度g . (2)试求月球的质量M
(3)字航员着陆后,发射了一颗绕月球表面做匀速圆周运动的卫星,周期为T ,试求月球的
【答案】(1)2022hv g L =(2)22
02
2hv R
M GL = (3)23GT πρ=
【解析】 【详解】
(1)根据题目可得小球做平抛运动, 水平位移: v 0t =L
竖直位移:h =
12
gt 2 联立可得:20
22hv g L
=
(2)根据万有引力黄金代换式2
mM
G
mg R =, 可得2220
2
2hv R gR M G GL
== (3)根据万有引力公式2224mM G m R R T π=;可得23
2
4R M GT
π=, 而星球密度M V ρ=,3
43
V R π= 联立可得2
3GT πρ=
4.宇航员站在一星球表面上的某高处,沿水平方向抛出一小球.经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L .若抛出时的初速度增大到2倍,则抛出点
.已知两落地点在同一水平面上,该星球的半径为R ,万有引力常量为G ,求该星球的质量M .
【答案】M =
【解析】 【详解】
两次平抛运动,竖直方向2
12
h gt =
,水平方向0x v t =,根据勾股定理可得:
222
0()L h v t -=,抛出速度变为2倍:2220)(2)h v t -=,联立解得:h =
,
g =,在星球表面:
2Mm G mg R =,解得:2M =
5.宇航员王亚平在“天宫一号”飞船内进行了我国首次太空授课.若已知飞船绕地球做匀速
圆周运动的周期为T ,地球半径为R ,地球表面重力加速度g ,求: (1)地球的第一宇宙速度v ; (2)飞船离地面的高度h . 【答案】(1)v gR = (2
)22
3
2
4gR T h R π
=- 【解析】 【详解】
(1)根据2
v mg m R
=得地球的第一宇宙速度为:
v gR =.
(2)根据万有引力提供向心力有:
()2
2
24()Mm G m R h R h T
π=++, 又2
GM gR =,
解得:22
3
2
4gR T h R π
=
- .
6.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形,2017年6月,“神舟十号”与“太空一号”成功对接.现已知“太空一号”飞行器在轨运行周期为To ,运行速度为0v ,地球半径为R ,引力常量为.G 假设“天宫一号”环绕地球做匀速圖周运动,求:
()1“天宫号”的轨道高度h . ()2地球的质量M .
【答案】(1)00 2v T h R π=- (2)3
00 2v T M G
π=
【解析】 【详解】
(1)设“天宫一号”的轨道半径为r ,则有:
00
2r
v T π=
“天宫一号”的轨道高度为:h r R =- 即为:00
2v T h R π
=
-
(2)对“天宫一号”有:2
220
4Mm G m r r T π=
所以有:3
00
2v T M G
π=
【点睛】
万有引力应用问题主要从以下两点入手:一是星表面重力与万有引力相等,二是万有引力提供圆周运动向心力.
7.我国在2008年10月24日发射了“嫦娥一号”探月卫星.同学们也对月球有了更多的关注.
(1)若已知地球半径为R ,地球表面的重力加速度为g ,月球绕地球运动的周期为T ,月球绕地球的运动可近似看作匀速圆周运动,试求月球绕地球运动的轨道半径.
(2)若宇航员随登月飞船登陆月球后,在月球表面某处以速度0v 竖直向上抛出一个小球,经过时间t ,小球落回抛出点.已知月球半径为r ,万有引力常量为G ,试求出月球的质量
M 月
【答案】
(2)20
2v r Gt . 【解析】 【详解】
(1)设地球的质量为M ,月球的质量为M 月,地球表面的物体质量为m ,月球绕地球运动的轨道半径R ',根据万有引力定律提供向心力可得:
2
22()MM G
M R R T
π=''月月
2Mm
mg G
R
= 解得:
R '= (2)设月球表面处的重力加速度为g ',根据题意得:
02
g t v '=
02
GM m g r
m '=
月 解得:
2
02v r M Gt
=月
8.2017年4月20日19时41分天舟一号货运飞船在文昌航天发射中心由长征七号遥二运载火箭成功发射升空。
22日12时23分,天舟一号货运飞船与天宫二号空间实验室顺利完成首次自动交会对接。
中国载人航天工程已经顺利完成“三步走”发展战略的前两步,中国航天空间站预计2022年建成。
建成后的空间站绕地球做匀速圆周运动。
已知地球质量为M,空间站的质量为m0,轨道半径为r0,引力常量为G,不考虑地球自转的影响。
(1)求空间站线速度v0的大小;
(2)宇航员相对太空舱静止站立,应用物理规律推导说明宇航员对太空舱的压力大小等于零;
(3)规定距地球无穷远处引力势能为零,质量为m的物体与地心距离为r时引力势能为
Ep=-
GMm
r。
由于太空中宇宙尘埃的阻力以及地磁场的电磁阻尼作用,长时间在轨无动力运行的空间站轨道半径慢慢减小到r1(仍可看作匀速圆周运动),为了修正轨道使轨道半径恢复到r0,需要短时间开动发动机对空间站做功,求发动机至少做多少功。
【答案】(1)
GM
v
r
=;(2)0;(3)
10
22
GMm GMm
W
r r
=-
【解析】
【详解】
解:(1)空间站在万有引力作用下做匀速圆周运动,则有:
2
000
2
00
GMm m v
r r
=
解得:
GM
v
r
=
(2)宇航员相对太空舱静止,即随太空舱一起绕地球做匀速圆周运动,轨道半径与速度和太空舱相同,此时宇航员受万有引力和太空舱的支持力,合力提供向心力
设宇航员质量为m,所受支持力为N F,则有:
2
000
2
00
N
GMm m v
F
r r
-=
解得:0
N
F=
根据牛顿第三定律,宇航员对太空舱的压力大小等于太空舱对宇航员的支持力,故宇航员对太空舱的压力大小等于零
(3) 在空间站轨道由1r修正到0r的过程中,根据动能定理有:22
01
11
22
W W mv mv
+=-
万
而:10
()GMm GMm
W r r =-
--万 2
1211
mv GMm r r = 联立上述方程解得:10
22GMm GMm
W r r =
-
9.2019年1月3日10时26分,嫦娥四号探测器自主着陆在月球背面南极-艾特肯盆地内的冯·卡门撞击坑内,实现人类探测器首次在月球背面软着陆。
设搭载探测器的轨道舱绕月球运行半径为r ,月球表面重力加速度为g ,月球半径为R ,引力常量为G ,求: (1)月球的质量M 和平均密度ρ; (2)轨道舱绕月球的速度v 和周期T .
【答案】(1)G
gR M 2
=, 34g RG ρπ= (2
)v =
2T π=【解析】 【详解】
(1)在月球表面:002Mm m g G R =,则G
gR M 2
=
月球的密度:2343/34M gR g
R V G GR
ρππ===
(2)轨道舱绕月球做圆周运动的向心力由万有引力提供:2
2Mm v G m r r
=
解得:v =
22r T v π⋅==
10.假如你乘坐我国自行研制的、代表世界领先水平的神州X 号宇宙飞船,通过长途旅行,目睹了美丽的火星,为了熟悉火星的环境,飞船绕火星做匀速圆周运动,离火星表面的高度为H ,测得飞行n 圈所用的时间为t ,已知火星半径为R ,引力常量为G ,求: (1)神舟X 号宇宙飞船绕火星的周期T ; (2)火星表面重力加速度g .
【答案】(1)t T n = (2)()3
22224n R H g R t
π+=
【解析】
(1)神舟X 号宇宙飞船绕火星的周期t T n
=
(2)根据万有引力定律()
()2
2
24Mm
G
m R H T
R H π=++,
2
Mm
G
mg R = 解得()
3
2222
4n R H g R t
π+=
【点睛】本题考查了万有引力定律的应用,考查了求重力加速度、第一宇宙速度问题,知道万有引力等于重力、万有引力提供向心力是解题的前提与关键,应用万有引力公式与牛顿第二定律可以解题.。