太湖县高级中学2019-2020学年高二上学期第一次月考测试数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太湖县高级中学2019-2020学年高二上学期第一次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.过抛物线y2=﹣4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2),若x1+x2=﹣6,则|AB|为()A.8 B.10 C.6 D.4
2.已知||=3,||=1,与的夹角为,那么|﹣4|等于()
A.2 B.C.D.13
3.已知f(x)在R上是奇函数,且f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=()A.﹣2 B.2 C.﹣98 D.98
4.设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题:
①若m∥l,m⊥α,则l⊥α;
②若m∥l,m∥α,则l∥α;
③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;
④若α∩β=l,β∩γ=m,γ∩α=n,n∥β,则l∥m.
其中正确命题的个数是()
A.1 B.2 C.3 D.4
5.双曲线4x2+ty2﹣4t=0的虚轴长等于()
A. B.﹣2t C.D.4
6.设f(x)=e x+x﹣4,则函数f(x)的零点所在区间为()
A.(﹣1,0)B.(0,1) C.(1,2) D.(2,3)
7.“x>0”是“>0”成立的()
A.充分非必要条件B.必要非充分条件
C.非充分非必要条件D.充要条件
8.长方体ABCD﹣A1B1C1D1中,AA1=2AB=2AD,G为CC1中点,则直线A1C1与BG所成角的大小是()
A.30°B.45°C.60°D.120°
9. 已知函数f (x )=1+x ﹣+﹣+…+,则下列结论正确的是( )
A .f (x )在(0,1)上恰有一个零点
B .f (x )在(﹣1,0)上恰有一个零点
C .f (x )在(0,1)上恰有两个零点
D .f (x )在(﹣1,0)上恰有两个零点
10.过抛物线y 2=4x 焦点的直线交抛物线于A ,B 两点,若|AB|=10,则AB 的中点到y 轴的距离等于( ) A .1 B .2 C .3 D .4
11.设i 是虚数单位,是复数z 的共轭复数,若z
=2(+i ),则z=( )
A .﹣1﹣i
B .1+i
C .﹣1+i
D .1﹣i
12.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( ) A .必要不充分条件
B .充分不必要条件
C .充分必要条件
D .既不充分也不必要条件
二、填空题
13.已知函数f (x )是定义在R 上的单调函数,且满足对任意的实数x 都有f[f (x )﹣2x ]=6,则f (x )+f (﹣x )的最小值等于 .
14.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测1564
的线性回归方程为
附:回归直线的斜率和截距的最小二乘估计公式分别为: =, =﹣.
15.函数f (x )=(x >3)的最小值为 .
16.i 是虚数单位,化简:
= .
17.【盐城中学2018届高三上第一次阶段性考试】函数f (x )=x ﹣lnx 的单调减区间为 .
18.已知n S 是数列1{}2n n -的前n 项和,若不等式1
|12
n n n S λ-+<+|对一切n N *
∈恒成立,则λ的取值范围是___________.
【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力.
三、解答题
19.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知tanA=,c=
.
(Ⅰ)求;
(Ⅱ)若三角形△ABC 的面积为,求角C .
20.已知等差数列{a n }满足a 1+a 2=3,a 4﹣a 3=1.设等比数列{b n }且b 2=a 4,b 3=a 8 (Ⅰ)求数列{a n },{b n }的通项公式;
(Ⅱ)设c n =a n +b n ,求数列{c n }前n 项的和S n .
21.在平面直角坐标系xOy 中,点B 与点A (﹣1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率
之积等于﹣.
(Ⅰ)求动点P 的轨迹方程;
(Ⅱ)设直线AP 和BP 分别与直线x=3交于点M ,N ,问:是否存在点P 使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由.
22.已知函数f (x )=alnx ﹣x (a >0). (Ⅰ)求函数f (x )的最大值;
(Ⅱ)若x ∈(0,a ),证明:f (a+x )>f (a ﹣x );
(Ⅲ)若α,β∈(0,+∞),f (α)=f (β),且α<β,证明:α+β>2α
23.(本小题满分12分)
设椭圆2222:1(0)x y C a b a b +=>>的离心率12e =,圆22
127x y +=与直线1x y a b
+=相切,O 为坐标原
点.
(1)求椭圆C 的方程;
(2)过点(4,0)Q -任作一直线交椭圆C 于,M N 两点,记MQ QN λ=,若在线段MN 上取一点R ,使 得MR RN λ=-,试判断当直线运动时,点R 是否在某一定直一上运动?若是,请求出该定直线的方 程;若不是,请说明理由.
24.如图的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).
(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积;
(3)在所给直观图中连结BC′,证明:BC′∥面EFG.
太湖县高级中学2019-2020学年高二上学期第一次月考试卷数学(参考答案)
一、选择题
1.【答案】A
【解析】解:由题意,p=2,故抛物线的准线方程是x=1,
∵抛物线y2=﹣4x 的焦点作直线交抛物线于A(x1,y1)B(x2,y2)两点
∴|AB|=2﹣(x1+x2),
又x1+x2=﹣6
∴∴|AB|=2﹣(x1+x2)=8
故选A
2.【答案】C
【解析】解:||=3,||=1,与的夹角为,
可得=||||cos<,>=3×1×=,
即有|﹣4|=
==.
故选:C.
【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题.
3.【答案】A
【解析】解:因为f(x+4)=f(x),故函数的周期是4
所以f(7)=f(3)=f(﹣1),
又f(x)在R上是奇函数,
所以f(﹣1)=﹣f(1)=﹣2×12=﹣2,
故选A.
【点评】本题考查函数的奇偶性与周期性.
4.【答案】B
【解析】解:∵①若m∥l,m⊥α,
则由直线与平面垂直的判定定理,得l⊥α,故①正确;
②若m∥l,m∥α,则l∥α或l⊂α,故②错误;
③如图,在正方体ABCD﹣A1B1C1D1中,
平面ABB1A1∩平面ABCD=AB,
平面ABB1A1∩平面BCC1B1=BB1,
平面ABCD∩平面BCC1B1=BC,
由AB、BC、BB1两两相交,得:
若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n不成立,故③是假命题;
④若α∩β=l,β∩γ=m,γ∩α=n,n∥β,
则由α∩γ=n知,n⊂α且n⊂γ,由n⊂α及n∥β,α∩β=m,
得n∥m,同理n∥l,故m∥l,故命题④正确.
故选:B.
【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.5.【答案】C
【解析】解:双曲线4x2+ty2﹣4t=0可化为:
∴
∴双曲线4x2+ty2﹣4t=0的虚轴长等于
故选C.
6.【答案】C
【解析】解:f(x)=e x+x﹣4,
f(﹣1)=e﹣1﹣1﹣4<0,
f(0)=e0+0﹣4<0,
f(1)=e1+1﹣4<0,
f(2)=e2+2﹣4>0,
f(3)=e3+3﹣4>0,
∵f(1)•f(2)<0,
∴由零点判定定理可知,函数的零点在(1,2).
故选:C.
7.【答案】A
【解析】解:当x>0时,x2>0,则>0
∴“x>0”是“>0”成立的充分条件;
但>0,x2>0,时x>0不一定成立
∴“x>0”不是“>0”成立的必要条件;
故“x>0”是“>0”成立的充分不必要条件;
故选A
【点评】判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p 为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
8.【答案】C
【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,
建立空间直角坐标系,
设AA1=2AB=2AD=2,
A1(1,0,2),C1(0,1,2),=(﹣1,1,0),
B(1,1,0),G(0,1,1),=(﹣1,0,1),
设直线A1C1与BG所成角为θ,
cosθ===,
∴θ=60°.
故选:C.
【点评】本题考查空间点、线、面的位置关系及学生的空间想象能力、求异面直线角的能力,解题时要注意向量法的合理运用.
9.【答案】B
【解析】解:∵f′(x)=1﹣x+x2﹣x3+…+x2014
=(1﹣x)(1+x2+…+x2012)+x2014;
∴f′(x)>0在(﹣1,0)上恒成立;
故f(x)在(﹣1,0)上是增函数;
又∵f(0)=1,
f(﹣1)=1﹣1﹣﹣﹣…﹣<0;
故f(x)在(﹣1,0)上恰有一个零点;
故选B.
【点评】本题考查了导数的综合应用及函数零点的个数的判断,属于中档题.
10.【答案】D
【解析】解:抛物线y2=4x焦点(1,0),准线为l:x=﹣1,
设AB的中点为E,过A、E、B分别作准线的垂线,
垂足分别为C、G、D,EF交纵轴于点H,如图所示:
则由EG为直角梯形的中位线知,
EG====5,
∴EH=EG﹣1=4,
则AB的中点到y轴的距离等于4.
故选D.
【点评】本题考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想.
11.【答案】B
【解析】解:设z=a+bi(a,b∈R),则=a﹣bi,
由z=2(+i),得(a+bi)(a﹣bi)=2[a+(b﹣1)i],
整理得a2+b2=2a+2(b﹣1)i.
则,解得.
所以z=1+i.
故选B.
【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.
12.【答案】B
【解析】解:∵b⊥m,∴当α⊥β,则由面面垂直的性质可得a⊥b成立,
若a⊥b,则α⊥β不一定成立,
故“α⊥β”是“a⊥b”的充分不必要条件,
故选:B.
【点评】本题主要考查充分条件和必要条件的判断,利用线面垂直的性质是解决本题的关键.
二、填空题
13.【答案】6.
【解析】解:根据题意可知:f(x)﹣2x是一个固定的数,记为a,则f(a)=6,
∴f(x)﹣2x=a,即f(x)=a+2x,
∴当x=a时,
又∵a+2a=6,∴a=2,
∴f(x)=2+2x,
∴f(x)+f(﹣x)=2+2x+2+2﹣x=2x+2﹣x+4
≥2+4=6,当且仅当x=0时成立,
∴f(x)+f(﹣x)的最小值等于6,
故答案为:6.
【点评】本题考查函数的最值,考查运算求解能力,注意解题方法的积累,属于中档题.
14.【答案】y=﹣1.7t+68.7
【解析】解:=,==63.6.
=(﹣2)×4.4+(﹣1)×1.4+0+1×(﹣1.6)+2×(﹣2.6)=﹣17.
=4+1+0+1+2=10.
∴=﹣=﹣1.7.=63.6+1.7×3=68.7.
∴y关于t的线性回归方程为y=﹣1.7t+68.7.
故答案为y=﹣1.7t+68.7.
【点评】本题考查了线性回归方程的解法,属于基础题.
15.【答案】12.
【解析】解:因为x>3,所以f(x)>0
由题意知:=﹣
令t=∈(0,),h(t)==t﹣3t2
因为h(t)=t﹣3t2的对称轴x=,开口朝上知函数h(t)在(0,)上单调递增,(,)单调递减;
故h(t)∈(0,]
由h(t)=⇒f(x)=≥12
故答案为:12
16.【答案】﹣1+2i.
【解析】解: =
故答案为:﹣1+2i .
17.【答案】(0,1)
【解析】
考点:本题考查函数的单调性与导数的关系 18.【答案】31λ-<<
【解析】由221111
1123(1)22
22n n n S n n
--=+⨯
+⨯++-⋅
+,2
11112222n
S =⨯+⨯+…111(1)22n n n n -+-⋅+⋅,两式相减,得2111111212222222n n n n n S n -+=++++-⋅=-,所以12
42
n n n S -+=-,
于是由不等式12
|142
n λ-+<-|对一切N n *∈恒成立,得|12λ+<|,解得31λ-<<.
三、解答题
19.【答案】
【解析】解:(Ⅰ)由题意知,tanA=,
则
=
,即有sinA ﹣sinAcosC=cosAsinC ,
所以sinA=sinAcosC+cosAsinC=sin (A+C )=sinB ,
由正弦定理,a=b ,则=1;…
(Ⅱ)因为三角形△ABC 的面积为
,a=b 、c=,
所以S=absinC=a 2
sinC=
,则
,①
由余弦定理得, =
,②
由①②得,cosC+sinC=1,则2sin (C+)=1,sin (C+)=,
又0<C <π,则
C+
<
,即C+
=
,
解得C=….
【点评】本题考查正弦定理,三角形的面积公式,以及商的关系、两角和的正弦公式等,注意内角的范围,属于中档题.
20.【答案】
【解析】解:(1)设等差数列{a n}的公差为d,则由,可得,…
解得:,
∴由等差数列通项公式可知:a n=a1+(n﹣1)d=n,
∴数列{a n}的通项公式a n=n,
∴a4=4,a8=8
设等比数列{b n}的公比为q,则,
解得,
∴;
(2)∵…
∴,
=,
=,
∴数列{c n}前n项的和S n=.
21.【答案】
【解析】解:(Ⅰ)因为点B与A(﹣1,1)关于原点O对称,所以点B得坐标为(1,﹣1).
设点P的坐标为(x,y)
化简得x2+3y2=4(x≠±1).
故动点P轨迹方程为x2+3y2=4(x≠±1)
(Ⅱ)解:若存在点P使得△PAB与△PMN的面积相等,设点P的坐标为(x0,y0)
则.
因为sin∠APB=sin∠MPN,
所以
所以=
即(3﹣x0)2=|x02﹣1|,解得
因为x02+3y02=4,所以
故存在点P使得△PAB与△PMN的面积相等,此时点P的坐标为.
【点评】本题主要考查了轨迹方程、三角形中的几何计算等知识,属于中档题.
22.【答案】
【解析】解:(Ⅰ)令,所以x=a.
易知,x∈(0,a)时,f′(x)>0,x∈(a,+∞)时,f′(x)<0.
故函数f(x)在(0,a)上递增,在(a,+∞)递减.
故f(x)max=f(a)=alna﹣a.
(Ⅱ)令g(x)=f(a﹣x)﹣f(a+x),即g(x)=aln(a﹣x)﹣aln(a+x)+2x.
所以,当x∈(0,a)时,g′(x)<0.
所以g(x)<g(0)=0,即f(a+x)>f(a﹣x).
(Ⅲ)依题意得:a<α<β,从而a﹣α∈(0,a).
由(Ⅱ)知,f(2a﹣α)=f[a+(a﹣α)]>f[a﹣(a﹣α)]=f(α)=f(β).
又2a﹣α>a,β>a.所以2a﹣α<β,即α+β>2a.
【点评】本题考查了利用导数证明不等式的问题,一般是转化为函数的最值问题来解,注意导数的应用.
23.【答案】(1)
22
1
43
x y
+=;(2)点R在定直线1
x=-上.
【解析】
试
题解析:
(1)由12e =,∴2214e a =,∴22
34a b =
7=
,
解得2,a b ==,所以椭圆C 的方程为22
143
x y +=
.
设点R 的坐标为00(,)x y ,则由MR RN λ=-⋅,得0120()x x x x λ-=--,
解得112
12
21212011224
424()
41()814
x x x x x x x x x x x x x x x λλ
++
⋅-+++=
==+-+++
+
又221212222
64123224
24()24343434k k x x x x k k k
---++=⨯+⨯=+++,
21222
3224
()883434k x x k k
-++=+=++,从而121201224()1()8x x x x x x x ++==-++, 故点R 在定直线1x =-上.
考点:1.椭圆的标准方程与几何性质;2.直线与椭圆的位置关系. 24.【答案】 【解析】解:(1)如图
(2)它可以看成一个长方体截去一个小三棱锥,
设长方体体积为V 1,小三棱锥的体积为V 2,则根据图中所给条件得:V 1=6×4×4=96cm 3
,
V 2
=
••2•2•
2=cm 3,
∴V=v 1﹣v 2
=
cm 3
(3)证明:如图,
在长方体ABCD ﹣A ′B ′C ′D ′中,连接AD ′,则AD ′∥BC ′
因为E ,G 分别为AA ′,A ′D ′中点,所以AD ′∥EG ,从而EG ∥BC ′, 又EG ⊂平面EFG ,所以BC ′∥平面EFG ;
2016年4月26日。