低功耗实时时钟ISL1208中文资料

合集下载

ISL12026中文资料

ISL12026中文资料

®Preliminary Replacing the X1226, X1227 or X1228 RTC with the ISL12026, ISL12027 or ISL12028IntroductionIntersil has recently introduced a new family of Real Time Clock (RTC) devices (the “ISL1202x” family) which include 4k of EEPROM. These devices are pin for pin compatible and include enhancements over an older family of devices (the “X122x” family). These enhancements include:•Lower supply and battery backup current•Reliable battery switchover•Accurate Reset voltage trip points•Oscillator functionality detectionOther enhancements are detailed in the data sheets. This Application note provides information for an engineer wishing to use the new devices to replace the older devices in their system.Replacing the X1226 with the ISL12026The ISL12026 is an RTC device with 4k of EEPROM and includes an Fout/IRQ- pin for outputting an alarm interrupt or constant frequency clock. The ISL12026 can drop into anX1226 socket with no hardware changes required, but certain changes to the battery switchover and battery operation should be reviewed. See the ISL12026 data sheet for more details. There are only two changes that affect microcode or software. First, the change in general purpose EEPROM memory page size from 64 bytes to 16 bytes will require changes to the memory writing procedure. Second, the RTC registers require a full page write at a time instead of allowing a single byte write. A single byte write to the RTC registers will result in no update to those registers at all.Note that there are additional status and control bits added to the registers of the ISL12026. Review their function thoroughly before subsituting the ISL12026 for the X1226. T able 1 lists the complete hardware and register changes. If the additional functionality is not needed, however, the ISL12026 default factory setting emulates the older device functionality. Replacing the X1227 with the ISL12027The ISL12027 is an RTC device with 4k of EEPROM and includes a RESET- pin for outputting a hardware Reset signal for microcontroller or logic system reset, or a watchdog timer reset. The Reset function was improved in the ISL12027 to perform a Reset even if the oscillator has not started or has been stopped. The X1227 device would not issue a Reset with a stopped oscillator. The ISL12027 can drop into an X1227 socket with no hardware changes required, but certain changes to the battery switchover and battery operation should be reviewed. See the ISL12027 data sheet for more details.There are only two changes that affect microcode or software. First, the change in general purpose EEPROM memory page size from 64 bytes to 16 bytes will require changes to the memory writing procedure. Second, the RTC registers require a full page write at a time instead of allowing a single byte write. A single byte write to the RTC registers will result in no update to those registers at all.Note that there are additional status and control bits added to the registers of the ISL12027, and their function should be reviewed as well. Review their function thoroughly before subsituting the ISL12027 for the X1227. Table 2 lists the complete hardware and register changes. If the additional functionality is not needed, however, the device default setting from the factory emulates the older device functionality.Replacing the X1228 with the ISL12028The ISL12028 is an RTC device with 4k of EEPROM and includes an Fout/IRQ- pin for outputting an alarm interrupt or constant frequency clock, and a RESET- pin for outputting a hardware Reset signal for microcontroller or logic system reset or a watchdog timer reset. The Reset function was improved in the ISL12028 to perform a Reset even if the oscillator has not started or has been stopped. The X1228 device would not issue a Reset with a stopped oscillator. The ISL12028 can drop into an X1228 socket with no hardware changes required, but certain changes to the battery switchover and battery operation should be reviewed. See the ISL12028 data sheet for more details.There are only two changes that affect microcode or software. First, the change in general purpose EEPROM memory page size from 64 bytes to 16 bytes will require changes to the memory writing procedure. Second, the RTC registers require a full page write at a time instead of allowing a single byte write. A single byte write to the RTC registers will result in no update to those registers at all. Note that there are additional status and control bits added to the registers of the ISL12027, and their function should be reviewed as well. Review their function thoroughly before subsituting the ISL12028 for the X1228. Table 3 lists the complete hardware and register changes. If the additional functionality is not needed, however, the device default setting from the factory emulates the older device functionality.Note that the ISL12029 device has been introduced as well, and is the same as the ISL12028 in all respects except for an open drain IRQ-/Fout pin instead of the CMOS output pin found on the ISL12028. This change will reduce battery current drain in applications where the circuitry that connect to this pin is powered down in battery backup mode.FUNCTION OLD X1226NEW ISL12026SOFTWARE?Battery Switchover Device switches to battery mode onceV CC<V BAT Device switches to battery when 1) V CC<V BAT AND2) V CC<V TRIP with option to work the oldway (called "LP Mode")NOBattery Switchover Hysteresis on V DD negative transistiononly in legacy mode Hysteresis on both V DD negative and positive transistionsNOBattery Current 1.25µA battery backup current800nA battery backup current NO Power Supply Min rise/fall times for V CC only Max slew rate for V DD NOI2C Operation with Battery Device could work in battery backup aslong as V BAT>V TRIP and V BAT>V CC Selectable operation whether I2C is active in battery backup, or will not be active ifV BAT>V DDNOEEPROM64-byte page write16-byte page write YESStatus Register(None)Status bit to indicate oscillator stopped NO - Optional additionalfunctionalityStatus Register Legacy switchover only BSW mode bit to change from legacy tostandard mode for battery switchover NO - Optional additional functionalityControl Registers(None)Memory map to expand slightly from additionof bits NO - Optional additional functionalityRTC Registers Byte write or page write Page write ONLY YES Pin Names IRQ-/PHZ IRQ/Fout NO Pin Names V BACK V BAT NO Pin Names V CC V DD NO Clock Inputs External clocking on X1 with special input No external clocking NOFUNCTION OLD X1227NEW ISL12027SOFTWARE?Battery Switchover Device switches to battery mode onceV CC<V BAT Device switches to battery when 1) V CC<V BAT AND2) V CC<V RESET with option to work theold way (called "LP Mode")NOBattery Switchover Hysteresis on V DD negative transistiononly in legacy mode Hysteresis on both V DD negative and positive transistionsNOBattery Current 1.25µA battery backup current800nA battery backup current NO Power Supply Min rise/fall times for V CC only Max slew rate for V DD NOReset Trip Voltages 4 available reset thresholds with ±2.5%accuracy (old floating gate reference)5 available reset thresholds with ±1.5%accuracy (more accurate bandgap)NOReset Trip Voltages Thresholds adjusted using complicatedanalog voltage setting procedure Thresholds programmed (1 of 5) usingEEPROM registerNOI2C Operation with Battery Device could work as long asV BAT>V DD>V RESET Selectable operation whether I2C is active in battery backupNOOperation with NO Oscillator No reset, no I2C communication Reset will occur with no battery, I2C cancommunicateNOEEPROM64-byte page write16-byte page write YESStatus Register(None)Status bit to indicate oscillator stopped NO - Optional additionalfunctionalityStatus Register Legacy switchover only BSW mode bit to change from legacy tostandard mode for battery switchover NO - Optional additional functionalityControl Registers(None)Memory map to expand slightly from additionof bits NO - Optional additional functionalityRTC Registers Byte write or page write Page write ONLY - No single byte writes tosetup RTC registersYES Pin Names V BACK V BAT NO Pin Names V CC V DD NO Clock Inputs External clocking on X1 with special input No external clocking NOIntersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that the Application Note or Technical Brief is current before proceeding.For information regarding Intersil Corporation and its products, see FUNCTIONOLD X1228NEW ISL12028SOFTWARE?Battery SwitchoverDevice switches to battery mode once V CC <V BATDevice switches to battery when 1) V CC <V BAT AND 2) V CC <V RESET with option to work the old way (called "LP Mode")NO Battery Switchover Hysteresis on V DD negative transistion only in legacy modeHysteresis on both V DD negative and positive transistionsNO Battery Current 1.25µA battery backup current 800nA battery backup current NO Power Supply Min rise/fall times for V CC only Max slew rate for V DDNO Reset Trip Voltages 4 available reset thresholds with ±2.5% accuracy (old floating gate reference) 5 available reset thresholds with ±1.5% accuracy (more accurate bandgap)NO Reset Trip VoltagesThresholds adjusted using complicated analog voltage setting procedureThresholds programmed (1 of 5) using EEPROM registerNO I 2C Operation with Battery Device could work as long as V BAT >V DD >V RESETSelectable operation whether I 2C is active in battery backupNO Operation with NO Oscillator No reset, no I 2C communication Reset will occur with no battery, I 2C can communicateNO EEPROM 64-byte page write 16-byte page writeYESStatus Register (None)Status bit to indicate oscillator stopped NO - Optional additional functionalityStatus Register Legacy switchover only BSW mode bit to change from legacy to standard mode for battery switchoverNO - Optional additional functionalityControl Registers (None)Memory map to expand slightly from addition of bits NO - Optional additional functionality RTC Registers Byte write or page write Page write ONLY - No single byte writes to setup RTC registers YES Pin Names IRQ-/PHZ IRQ/Fout NO Pin Names V BACK V BAT NO Pin Names V CCV DDNO Clock InputsExternal clocking on X1 with special input No external clockingNO。

最新-电源管理芯片power20192019介绍 精品

最新-电源管理芯片power20192019介绍 精品

电源管理芯片power1208介绍摘要介绍莱迪思半导体公司推出的业界第一个混合信号的可编程逻辑器件1208的特征、结构和原理。

该器件的特点就是用一颗芯片就可完成对现代集成电路板上复杂电源的管理。

关键词可编程逻辑器件电源管理1208在对现代集成电路板的设计中,设计者们往往要使用一大堆的比较器、电阻器、电容器、定时器和逻辑器来实现对电路板电源的管理,而这样做的后果就是需要花费大量的时间和占用电路板的空间。

而莱迪思半导体公司推出的电源管理器1208就用单颗芯片实现了对电路板电源定序和监控功能完全管理!而且要重新更改设计时,只要对器件的2®配置内存重新编程就可以了。

首先我们先来了解一下莱迪思公司电源管理器系列产品见表1表1器件供电传感输入监督信号输出场效应管驱动器封装-1208124444-引脚-60464-- 44-引脚其中他们的输出节点各为8个和4个。

一.1208结构说明1208它综合了可编程逻辑和模拟的特性,如图10就是其基本组成框图。

它由六部分组成供电监控,场效应管驱动,可编程数字输出,可编程数字输入,可编程定时器,可编程时序和控制逻辑。

每一部分的特点如下1供电监控在供电监控这部分,它有12个精确的可编程门限比较器,每个比较器有192级,步长为1,精度为09。

每个比较器都含有一个低频干扰滤波器,而且每个比较器件都有一个在芯片的精度参考。

2驱动场效应管该部分它含有有4个可编程的高压电泵驱动器,每个驱动器的电流可设置成从05到50的32个不同的值,电压从8到12的8个不同的值。

而且在这部分其引脚可单独设置成开路模式以驱动逻辑电平信号。

3可编程数字输出这部分它提供了4个用于监控和报警的开路输出。

4可编程数字输入这个部分它提供的是4个用于去噪音的数字输入。

5可编程定时器1208它有一个以250频率工作的内置振荡器,并且提供32到524的延时。

实时时钟ISL1208的原理与应用

实时时钟ISL1208的原理与应用

478其中:引脚X1、X2接外部晶振输入端,可直接以32. 768kHz的晶体源驱动;Vbat接后备电源/电容,该引脚不用时接地;SDA为串行数据输入输出端;SCL为串行时钟输入端;IRQ/Fout为中断/频率输出端,可用作中断/频率输出;Vdd和GND为电源和接地端。

3. ISL1208内部结构及其工作原理ISL1208内部结构框图如图2。

由图可知,ISL1208主要包括:I2C接口控制单元、实时时钟控制逻辑、时钟分频器、电源管理单元和寄存器单元。

其中寄存器单元被分成四段:实时时钟、控制与状态、报警寄存器和用户SRAM;这四段寄存器各自含有不同的功能:实时时钟和报警寄存器用于写入/读出时间值和报警值,其写入形式为BCD码;控制与状态寄存器可完成对其他寄存器读写控制、报警与频率输出控制、模拟与数字微调控制等功能,其存储映射图如表1。

控制与状态寄存器(Control and Status)控制与状态寄存器包括状态寄存器、中断与报警寄存器、模拟微调与数字微调寄存器。

状态寄存器(SR):用来控制RTC失效、电池模式、报警触发、时钟计数器写保护、晶体振荡器使能以及状态位的自动复位或者提供相应的状态信息。

在时钟上电时,需将写RTC使能位WRTC置“1”,以便启动时钟计数。

中断控制寄存器(INT):主要用于控制时钟的周期性和单事件报警。

其中频率输出控制位FO3-FO0使能/禁止频率输出功能,并选择IRQ/FOUT引脚的输出频率(2-5Hz-215Hz)。

在频率模式被激活时它将覆盖IRQ/FOUT引脚上的报警模式。

报警使能位ALME使能/禁止报警功能,中断/报警模式位IM使能单周期定时事件(IM=0)/周期定时事件(IM=1)。

模拟微调寄存器(ATR):ATR0至ATR5为六位模拟微调位,可调整片内负载电容(CX1、CX2)的值,这一电容值用于RTC的频率补偿,其每一位都有不同的电容调节比重。

有效的片内串联负载电容CLOA D 的范围从4.5pF至20.25pF,中间值为12.5pF(默认)。

实时时钟说明文档

实时时钟说明文档

2.6 实时时钟模块电路设计现在流行的串行时钟芯片很多,如DSl302、DSl307、PcF8485等。

这些芯片接口简单、价格低廉、使用方便,被广泛地采用。

本模块使用的实时时钟芯为DSl302,是Dallas公司的一种具有涓细电流充电能力的实时时钟芯片,采用普通32.768kHz晶振。

主要特点是采用串行数据传输,可为掉电保护电源提供可编程的充电功能,并且可以关闭充电功能。

采用DS1302 作为记录测控系统中的数据记录,其软硬件设计简单,时间记录准确,既避免了连续记录的大工作量,又避免了定时记录的盲目性,给连续长时间的测量、控制系统的正常运行及检查都来了很大的方便,可广泛应用于长时间连续的测控系统中。

2.6.1 DS1302的结构及工作原理Ds1302是美国Dallas公司推出的一种高性能、低功耗、带RAM的实时时钟芯片,它可以对年、月、日、星期、时、分、秒进行计时,且具有闰年补偿功能,工作电压宽达2.5~5.5V。

采用三线接口与CPU进行同步通信,并可采用突发方式一次传送多个字节的时钟信号或RAM数据。

DS1302内部有一个31×8的用于临时性存放数据的RAM寄存器。

Dsl302是DS1202的升级产品,与DS1202兼容,但增加了主电源/后背电源双电源引脚,同时提供了对后背电源进行涓细电流充电的能力。

1、引脚功能及结构图DSl302的引脚如图2.13所示。

VCCl为后备电源,VCC2为主电源。

在主电源关闭的情况下,也能保持时钟的连续运行。

DSl302由VCCl或VCC2两者中的较大者供电。

当VCC2大于VCC1+0.2V时,VCC2给DSl302供电。

当VCC2小于VCC1时,DSl302由VCC1供电。

X1、X2为振荡源,外接32.768Hz晶振。

RST是复位,片选线,通过把RST输入驱动置高电平来启动所有的数据传送。

RST输入有两种功能:(1)RST接通控制逻辑,允许地址/命令序列送入移位寄存器。

USB总线转I2C总线接口芯片说明

USB总线转I2C总线接口芯片说明

USB总线转I2C总线接口芯片USB2I2C-S/T中文手册版本:3.0Ahttp:/1、USB2I2C概述USB2I2C是一个USB总线的转I2C总线的专用接口芯片。

通过USB2I2C芯片用户可以非常方便地实现PC 机USB总线和下位机端各种I2C/IIC设备(如,ATMEL公司的AT24CXX系列EEPROM;I2C总线8位并行IO口扩展芯片PCF8574/JLC1562;I2C接口实时时钟芯片DS1307/PCF8563/SD2000D/M41T80/ME901/ISL1208/;I2C 数据采集ADC芯片MCP3221(12bitADC)/ADS1100(16bitADC)/ADS1112(16bitADC)/MAX1238(12bitADC)/MAX1239(12bitADC);I2C接口数模转换DAC芯片DAC5574(8bitDAC)/DAC6573(10bitDAC)/DAC8571(16bitDAC)/;I2C接口温度传感器TMP101/TMP275/DS1621/MAX6625,等)之间的通信。

USB2I2C芯片上位机PC端提供简单易用的USBIOX.DLL动态库调用,可以方便地被VB,VC,Delphi等上位机开发工具调用。

相关例程在公司网站/cn/down.htm可以找到,您也可以通过代理商或经销商得到这些例程。

2、USB2I2C功能特点ٛ 2.1.概述ٛ●全速USB设备接口,兼容USBV2.0。

ٛ●直接实现I2C总线与上位PC机的连接,无需辅助MCU。

ٛ●片内置了USB上拉电阻,UD+和UD-引脚可直接连接到PC机USB总线上。

ٛ●外围元器件只需要一个12M晶体和两个电容。

ٛ●作为I2C总线的Host/Master主机端。

ٛ●I2C接口提供SCL和SDA信号线,支持SCL时钟4种不同传输速度:20KHz/100KHz/400KHz/750KHz。

ٛ●可以通过外部的低成本串行EEPROM定义厂商ID、产品ID、序列号等。

ISL1208

ISL1208
®Байду номын сангаас
ISL1208
I2C® Real Time Clock/Calendar
Data Sheet July 29, 2005 FN8085.3
Low Power RTC with Battery Backed SRAM
The ISL1208 device is a low power real time clock with timing and crystal compensation, clock/calendar, power fail indicator, periodic or polled alarm, intelligent battery backup switching and battery-backed user SRAM. The oscillator uses an external, low-cost 32.768kHz crystal. The real time clock tracks time with separate registers for hours, minutes, and seconds. The device has calendar registers for date, month, year and day of the week. The calendar is accurate through 2099, with automatic leap year correction.
Applications
• Utility Meters • HVAC Equipment • Audio/Video Components • Set Top Box/Television • Modems • Network Routers, Hubs, Switches, Bridges • Cellular Infrastructure Equipment • Fixed Broadband Wireless Equipment • Pagers/PDA • POS Equipment • Test Meters/Fixtures • Office Automation (Copiers, Fax)

精密时钟ISL1208的应用

精密时钟ISL1208的应用

精密时钟ISL1208及其在系统中的应用1 功能和特性简介ISL1208是Intersil公司的一款低功耗实时时钟集成电路,为用户提供了 2个字节的静态存储器。

它要求外置一个32.768 kHz的晶体振荡器以提供振荡源;提供I2C总线接口以方便与微处理器通信,最高传输速率达400 kHz。

专用的寄存器用于寄存时、分、秒、年、月、日和星期。

日历的有效范围值为2000~2099年,且能自动识别闰年。

与其他类型的实时时钟电路相比,ISL1208的突出优点在于:①频率补偿功能。

晶振频率的准确性关系到整个实时时钟的准确性,20 ppm的频率误差在一个月内将会累计产生1 min的误差。

晶体振荡器在不同的环境温度下均会产生频率漂移,为此必须根据不同的环境温度对实际工作频率进行补偿以确保振荡信号的准确性。

ISL1208采用数字式的电容容量调整方式,对晶振频率进行修正,修正范围达-94~+140 ppm。

②备用电源自动切换功能。

无需增加额外的元器件就可以在正常工作电源与备用电源之间进行切换。

备用电源可以是可充电电池,也可以是大容量电容。

③超低功耗。

ISL1208在5 V供电下的典型工作电流仅为2μA,一个0.47 F的电容可以维持其正常工作一个月的时间。

X1和X2为内部反相放大器的输入和输出引脚。

外置的32.768 kHz晶体振荡器连接到X1和X2,以产生实时时钟的基本振荡信号。

VBAT为备用电源提供端,当VDD电源失效时,VRAT端的备用电源立即生效;在外部供电中断的情况下,内部的时钟信号产生电路依旧可以正常工作。

SDA和SCL为连接到I2C总线的两个引脚。

SDA是开漏输出结构,可双向输入和输出,用于传输串行数据信号;SCL为I2C总线上的时钟信号线。

IRQ/FOUT是一个多功能引脚,通过对配置寄存器的设定,可以定义其为中断输出或固定频率输出端。

VDD和GND分别为电源端和地,ISL1208的工作电压为2.0~5.5 V。

ISL1208IB8Z-TK;ISL1208IB8Z;ISL1208IU8Z;ISL1208IB8Z-TKR5291;ISL1208IU8Z-TK;中文规格书,Datasheet资料

ISL1208IB8Z-TK;ISL1208IB8Z;ISL1208IU8Z;ISL1208IB8Z-TKR5291;ISL1208IU8Z-TK;中文规格书,Datasheet资料

®ISL1208I 2C ® Real Time Clock/CalendarLow Power RTC with Battery Backed SRAMThe ISL1208 device is a low power real time clock with timing and crystal compensation, clock/calendar, power fail indicator, periodic or polled alarm, intelligent battery backup switching and battery-backed user SRAM.The oscillator uses an external, low-cost 32.768kHz crystal. The real time clock tracks time with separate registers for hours, minutes, and seconds. The device has calendar registers for date, month, year and day of the week. The calendar is accurate through 2099, with automatic leap year correction.PinoutISL1208(8 LD MSOP , SOIC)TOP VIEWISL1208(8 LD TDFN)TOP VIEWFeatures•Real Time Clock/Calendar-Tracks Time in Hours, Minutes, and Seconds -Day of the Week, Day, Month, and Year •15 Selectable Frequency Outputs•Single Alarm-Settable to the Second, Minute, Hour, Day of the Week, Day, or Month-Single Event or Pulse Interrupt Mode •Automatic Backup to Battery or Super Capacitor •Power Failure Detection•On-Chip Oscillator Compensation• 2 Bytes Battery-Backed User SRAM •I 2C Interface-400kHz Data Transfer Rate •400nA Battery Supply Current•Same Pin Out as ST M41Txx and Maxim DS13xx Devices •Small Package Options-8 Ld MSOP and SOIC Packages -8 Ld TDFN Package •Pb-Free Available (RoHS Compliant)Applications•Utility Meters •HVAC Equipment •Audio/Video Components •Set-Top Box/Television •Modems•Network Routers, Hubs, Switches, Bridges •Cellular Infrastructure Equipment •Fixed Broadband Wireless Equipment •Pagers/PDA •POS Equipment •Test Meters/Fixtures•Office Automation (Copiers, Fax)•Home Appliances •Computer Products•Other Industrial/Medical/Automotive123487X1X2VBAT VDD IRQ/FOUT SCL SDAGND5623417658X1X2VBAT GNDVDD IRQ/FOUT SCL SDABlock DiagramOrdering InformationPART NUMBER PART MARKING V DD RANGE(V)TEMP . RANGE(°C)PACKAGEPKG. DWG. #ISL1208IU8AGS 2.7 to 5.5-40 to +858 Ld MSOPM8.118ISL1208IU8-TK*AGS 2.7 to 5.5-40 to +858 Ld MSOP Tape and ReelM8.118ISL1208IU8Z (Note)ANW 2.7 to 5.5-40 to +858 Ld MSOP (Pb-free)M8.118ISL1208IU8Z-TK*(Note)ANW2.7 to 5.5-40 to +858 Ld MSOP Tape and Reel (Pb-free)M8.118ISL1208IB81208 I 2.7 to 5.5-40 to +858 Ld SOICMDP0027ISL1208IB8-TK*1208 I 2.7 to 5.5-40 to +858 Ld SOIC Tape and Reel MDP0027ISL1208IB8Z (Note)1208 ZI 2.7 to 5.5-40 to +858 Ld SOIC (Pb-free)MDP0027ISL1208IB8Z-TK*(Note)1208 ZI 2.7 to 5.5-40 to +858 Ld SOICTape andReel (Pb-free)MDP0027ISL1208IRT8Z (Note)08TZ 2.7 to 5.5-40 to +858 Ld TDFN (Pb-free)L8.3x3AISL1208IRT8Z-TK*(Note)08TZ2.7 to 5.5-40 to +858 Ld TDFN Tape and Reel (Pb-free)L8.3x3A *Please refer to TB347 for details on reel specifications.NOTE:These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.I 2CINTERFACERTC CONTROL LOGICALARMFREQUENCYOUTRTC DIVIDERSDA BUFFER CRYSTAL OSCILLATORPORSWITCHSCL BUFFERSDA SCLX1X2V DDV BATIRQ/F OUTINTERNAL SUPPLYV TRIPSECONDSMINUTES HOURS DAY OF WEEKDATE MONTHYEARUSER SRAMCONTROL REGISTERSPin DescriptionsPINNUMBER SYMBOL DESCRIPTION1X1The X1 pin is the input of an inverting amplifier and is intended to be connected to one pin of an external 32.768kHz quartz crystal. X1 can also be driven directly from a 32.768kHz source.2X2The X2 pin is the output of an inverting amplifier and is intended to be connected to one pin of an external 32.768kHz quartz crystal.3VBAT This input provides a backup supply voltage to the device. V BAT supplies power to the device in the event that the V DD supply fails. This pin should be tied to ground if not used.4GND Ground5SDA Serial Data (SDA) is a bidirectional pin used to transfer serial data into and out of the device. It has an open drain output and may be wire OR’ed with other open drain or open collector outputs.6SCL The Serial Clock (SCL) input is used to clock all serial data into and out of the device.7IRQ/FOUT Interrupt Output/Frequency Output is a multi-functional pin that can be used as interrupt or frequency output pin. The function is set via the configuration register.8VDD Power supplyAbsolute Maximum Ratings Thermal InformationVoltage on V DD, V BAT, SCL, SDA, and IRQ Pins (Note 3) (respect to GND) . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 7.0V Voltage on X1 and X2 Pins(respect to GND) . . . . . . . . . . . . .-0.5V to V DD + 0.5 (V DD Mode)-0.5V to V BAT + 0.5 (V BAT Mode) Latchup (Note 4) ................Class II, Level B @ +85°C Thermal Resistance (Typical, Note 1)θJA (°C/W)θJC (°C/W) SOIC Package. . . . . . . . . . . . . . . . . . .95N/A MSOP Package . . . . . . . . . . . . . . . . . .128N/A TDFN Package (Note 2). . . . . . . . . . . .53.7 2.8 Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C Pb-free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . .see link below /pbfree/Pb-FreeReflow.aspCAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.NOTES:1.θJA is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. SeeTech Brief TB379.2.For θJC, the “case temp” location is the center of the exposed metal pad on the package underside.3.The V DD and SDA pins should not be subjected to negative voltage while the V BAT pin is biased, otherwise latchup can result. See theApplications section.4.Jedec Class II pulse conditions and failure criterion used. Level B exceptions are using a negative pulse limited to -0.5V.DC Operating Characteristics – RTC Temperature = -40°C to +85°C, unless otherwise stated.SYMBOL PARAMETER CONDITIONS NOTESMIN(Note 9)TYP(Note 8)MAX(Note 9)UNITSV DD Main Power Supply 2.7 5.5V V BAT Battery Supply Voltage 1.8 5.5VI DD1Supply Current V DD = 5V5, 626µAV DD = 3V 1.24µAI DD2Supply Current With I2C Active V DD = 5V5, 640120µAI DD3Supply Current (Low Power Mode)V DD = 5V, LPMODE = 15 1.45µAI BAT Battery Supply Current V BAT = 3V5400950nAI LI Input Leakage Current on SCL100nAI LO I/O Leakage Current on SDA100nAV TRIP V BAT Mode Threshold 1.6 2.2 2.6V V TRIPHYS V TRIP Hysteresis103075mV V BATHYS V BAT Hysteresis1550100mV IRQ/F OUTV OL Output Low Voltage V DD = 5VI OL = 3mA0.4VV DD = 2.7VI OL = 1mA0.4V Power-Down Timing Temperature = -40°C to +85°C, unless otherwise stated.SYMBOL PARAMETER CONDITIONS NOTESMIN(Note 9)TYP(Note 8)MAX(Note 9)UNITSV DD SR-V DD Negative Slewrate710V/ms Serial Interface Specifications Over the recommended operating conditions unless otherwise specified.SYMBOL PARAMETER TEST CONDITIONS NOTESMIN(Note 9)TYP(Note 8)MAX(Note 9)UNITSSERIAL INTERFACE SPECSV IL SDA and SCL Input Buffer LOW Voltage -0.30.3 xV DDVV IH SDA and SCL Input Buffer HIGH Voltage0.7 x V DD V DD + 0.3V Hysteresis SDA and SCL Input Buffer Hysteresis0.05 x V DD V V OL SDA Output Buffer LOW Voltage, Sinking 3mA0.4V C PIN SDA and SCL Pin Capacitance T A = +25°C, f = 1MHz, V DD = 5V, V IN =0V, V OUT = 0V10, 1110pF f SCL SCL Frequency400kHz t IN Pulse width Suppression Time at SDA and SCL InputsAny pulse narrower than the max spec is suppressed.50ns t AA SCL Falling Edge to SDA Output Data ValidSCL falling edge crossing 30% of V DD , until SDA exits the 30% to 70% of V DD window.900ns t BUFTime the Bus Must Be Free Before the Start of a New Transmission SDA crossing 70% of V DD during a STOP condition, to SDA crossing 70% of V DDduring the following START condition.1300nst LOW Clock LOW Time Measured at the 30% of V DD crossing.1300ns t HIGH Clock HIGH TimeMeasured at the 70% of V DD crossing.600ns t SU:STA START Condition Setup Time SCL rising edge to SDA falling edge. Both crossing 70% of V DD .600ns t HD:STA START Condition Hold Time From SDA falling edge crossing 30% of V DD to SCL falling edge crossing 70% of V DD .600ns t SU:DATInput Data Setup TimeFrom SDA exiting the 30% to 70% of V DD window, to SCL rising edge crossing 30% of V DD100nst HD:DATInput Data Hold Time From SCL falling edge crossing 30% of V DD to SDA entering the 30% to 70% of V DD window.20900nst SU:STO STOP Condition Setup Time From SCL rising edge crossing 70% of V DD , to SDA rising edge crossing 30% of V DD .600ns t HD:STO STOP Condition Hold Time From SDA rising edge to SCL falling edge. Both crossing 70% of V DD .600ns t DHOutput Data Hold TimeFrom SCL falling edge crossing 30% of V DD , until SDA enters the 30% to 70% of V DD window.nst R SDA and SCL Rise Time From 30% to 70% of V DD 10, 1120 + 0.1x Cb 300ns t F SDA and SCL Fall TimeFrom 70% to 30% of V DD10, 1120 +0.1 x Cb 300ns Cb Capacitive Loading of SDA or SCL Total on-chip and off-chip 10, 1110400pF RpuSDA and SCL Bus Pull-Up Resistor Off-ChipMaximum is determined by t R and t F .For Cb = 400pF, max is about 2k Ωto~2.5k Ω.For Cb = 40pF, max is about 15k Ω to ~20k Ω10, 111k ΩNOTES:5.IRQ and F OUT Inactive.6.LPMODE = 0 (default).7.In order to ensure proper timekeeping, the V DD SR- specification must be followed.8.Typical values are for T = +25°C and 3.3V supply voltage.9.Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization and are not production tested.10.Parameter is not 100% tested.11.These are I 2C specific parameters and are not tested, however, they are used to set conditions for testing devices to validate specification.Serial Interface SpecificationsOver the recommended operating conditions unless otherwise specified. (Continued)SYMBOL PARAMETERTEST CONDITIONSNOTESMIN (Note 9)TYP (Note 8)MAX (Note 9)UNITSSDA vs SCL TimingSymbol TabletSDA(OUTPUT TIMING)t t tWAVEFORM INPUTS OUTPUTSMust be steady Will be steadyMay change from LOW to HIGH Will change from LOW to HIGHMay change from HIGH to LOW Will change from HIGH to LOWDon’t Care: Changes Allowed Changing:State Not KnownN/A Center Line isHigh ImpedanceTypical Performance Curves Temperature is +25°C unless otherwise specifiedFIGURE 1.I BAT vs V BATFIGURE 2.I BAT vs TEMPERATURE AT V BAT = 3VFIGURE 3.I DD1 vs TEMPERATURE FIGURE 4.I DD1 vs V CC WITH LPMODE ON AND OFFFIGURE 5.I DD1 vs F OUT AT V DD = 3.3V FIGURE 6.I DD1 vs F OUT AT V DD= 5V1.52.02.53.0 3.54.0 4.55.05.5V BAT (V)I B A T (A )000E+0200E-9400E-9600E-9800E-91E-6-40-20020406080TEMPERATURE (°C)I B A T (A )1.0E-061.2E-061.4E-061.6E-061.8E-062.0E-062.2E-062.4E-06-40-2020406080TEMPERATURE (°C)I D D 1 (A )V CC = 5VV CC = 3.3V400.0E-9600.0E-9800.0E-91.0E-61.2E-61.4E-61.6E-61.8E-62.0E-62.2E-62.4E-62.53.03.54.0 4.55.05.5V CC (V)LPMODE = 0LPMODE = 1I D D 1 (A )1.2E-61.3E-61.4E-61.5E-61.6E-61.7E-61.8E-61.9E-62.0E-62.1E-6F OUT (Hz)1/828321024327681/21/321/161/41416644096I D D 1 (A )1.8E-61.9E-62.0E-62.1E-62.2E-62.3E-62.4E-62.5E-62.6E-62.7E-62.8E-62.9E-63.0E-6F OUT (Hz)1/828321024327681/21/321/161/41416644096I D D 1 (A )General DescriptionThe ISL1208 device is a low power real time clock with timing and crystal compensation, clock/calendar, power fail indicator, periodic or polled alarm, intelligent battery backup switching, and battery-backed user SRAM.The oscillator uses an external, low-cost 32.768kHz crystal. The real time clock tracks time with separate registers for hours, minutes, and seconds. The device has calendar registers for date, month, year and day of the week. The calendar is accurate through 2099, with automatic leap year correction.The ISL1208's powerful alarm can be set to anyclock/calendar value for a match. For example, every minute, every Tuesday or at 5:23 AM on March 21. The alarm status is available by checking the Status Register, or the device can be configured to provide a hardware interrupt via the IRQ pin. There is a repeat mode for the alarmallowing a periodic interrupt every minute, every hour, every day, etc.The device also offers a backup power input pin. This V BAT pin allows the device to be backed up by battery or Super Capacitor with automatic switchover from V DD to V BAT . The entire ISL1208 device is fully operational from 2.0V to 5.5V and the clock/calendar portion of the device remains fully operational down to 1.8V (Standby Mode).Pin DescriptionX1, X2The X1 and X2 pins are the input and output, respectively, of an inverting amplifier. An external 32.768kHz quartz crystal is used with the ISL1208 to supply a timebase for the real time clock. Internal compensation circuitry provides high accuracy over the operating temperature range from-40°C to +85°C. This oscillator compensation network can be used to calibrate the crystal timing accuracy overtemperature either during manufacturing or with an external temperature sensor and microcontroller for activecompensation. The device can also be driven directly from a 32.768kHz source at pin X1.V BATThis input provides a backup supply voltage to the device. V BAT supplies power to the device in the event that the V DD supply fails. This pin can be connected to a battery, a Super Cap or tied to ground if not used.IRQ/fOUT (Interrupt Output/Frequency Output)This dual function pin can be used as an interrupt orfrequency output pin. The IRQ/F OUT mode is selected via the frequency out control bits of the control/status register.•Interrupt Mode. The pin provides an interrupt signaloutput. This signal notifies a host processor that an alarm has occurred and requests action. It is an open drain active low output.•Frequency Output Mode. The pin outputs a clock signal which is related to the crystal frequency. The frequency output is user selectable and enabled via the I 2C bus. It is an open drain active low output.Serial Clock (SCL)The SCL input is used to clock all serial data into and out of the device. The input buffer on this pin is always active (not gated). It is disabled when the backup power supply on the V BAT pin is activated to minimize power consumption.Serial Data (SDA)SDA is a bidirectional pin used to transfer data into and out of the device. It has an open drain output and may be ORed with other open drain or open collector outputs. The input buffer is always active (not gated) in normal mode.An open drain output requires the use of a pull-up resistor. The output circuitry controls the fall time of the output signal with the use of a slope controlled pull-down. The circuit is designed for 400kHz I 2C interface speeds. It is disabled when the backup power supply on the VBAT pin is activated.V DD , GNDChip power supply and ground pins. The device will operate with a power supply from 2.0V to 5.5VDC. A 0.1µF capacitor is recommended on the VDD pin to ground.Functional DescriptionPower Control OperationThe power control circuit accepts a V DD and a V BAT input. Many types of batteries can be used with Intersil RTC products. For example, 3.0V or 3.6V Lithium batteries are appropriate, and battery sizes are available that can powerFIGURE 7.STANDARD OUTPUT LOAD FOR TESTING THEDEVICE WITH V DD = 5.0VSDA AND IRQ/fOUT1533Ω100pF5.0VFOR V OL = 0.4V AND I OL = 3mAEQUIVALENT AC OUTPUT LOAD CIRCUIT FOR V DD = 5VFIGURE 8.RECOMMENDED CRYSTAL CONNECTIONX1X2the ISL1208 for up to 10 years. Another option is to use a Super Cap for applications where V DD is interrupted for up to a month. See the “Application Section” on page 18 for more information.Normal Mode (V DD ) to Battery Backup Mode (V BAT )To transition from the V DD to V BAT mode, both of the following conditions must be met:Condition 1:V DD < V BAT - V BATHYS where V BATHYS ≈ 50mV Condition 2: V DD < V TRIPwhere V TRIP ≈ 2.2VBattery Backup Mode (V BAT ) to Normal Mode (V DD )The ISL1208 device will switch from the V BAT to V DD mode when one of the following conditions occurs:Condition 1:V DD > V BAT + V BATHYS where V BATHYS ≈ 50mV Condition 2:V DD > V TRIP + V TRIPHYS where V TRIPHYS ≈ 30mVThese power control situations are illustrated in Figures 9 and 10.The I 2C bus is deactivated in battery backup mode to provide lower power. Aside from this, all RTC functions areoperational during battery backup mode. Except for SCL and SDA, all the inputs and outputs of the ISL1208 are active during battery backup mode unless disabled via the control register. The User SRAM is operational in battery backup mode down to 2V.Power Failure DetectionThe ISL1208 provides a Real Time Clock Failure Bit (RTCF) to detect total power failure. It allows users to determine if the device has powered up after having lost all power to the device (both V DD and V BAT ).Low Power ModeThe normal power switching of the ISL1208 is designed to switch into battery backup mode only if the V DD power is lost. This will ensure that the device can accept a wide range of backup voltages from many types of sources while reliably switching into backup mode. Another mode, called LowPower Mode, is available to allow direct switching from V DD to V BAT without requiring V DD to drop below V TRIP . Since the additional monitoring of V DD vs V TRIP is no longer needed, that circuitry is shut down and less power is used while operating from V DD . Power savings are typically 600nA at V DD = 5V. Low Power Mode is activated via the LPMODE bit in the control and status registers.Low Power Mode is useful in systems where V DD is normally higher than V BAT at all times. The device will switch from V DD to V BAT when V DD drops below V BAT , with about 50mV of hysteresis to prevent any switchback of V DD afterswitchover. In a system with a V DD = 5V and backup lithium battery of V BAT = 3V, Low Power Mode can be used.However, it is not recommended to use Low Power Mode in a system with V DD = 3.3V ±10%, V BAT ≥ 3.0V, and when there is a finite I-R voltage drop in the V DD line.InterSeal™ Battery SaverThe ISL1208 has the InterSeal™ Battery Saver whichprevents initial battery current drain before it is first used. For example, battery-backed RTCs are commonly packaged on a board with a battery connected. In order to preserve battery life, the ISL1208 will not draw any power from the battery source until after the device is first powered up from the V DD source. Thereafter, the device will switchover to battery backup mode whenever V DD power is lost.Real Time Clock OperationThe Real Time Clock (RTC) uses an external 32.768kHz quartz crystal to maintain an accurate internal representation ofsecond, minute, hour, day of week, date, month, and year. The RTC also has leap-year correction. The clock also corrects for months having fewer than 31 days and has a bit that controls 24-hour or AM/PM format. When the ISL1208 powers up after the loss of both V DD and V BAT , the clock will not begin incrementing until at least one byte is written to the clock register.V BAT - V BATHYSV BATV BAT + V BATHYSBATTERY BACKUPMODEV DD V TRIP 2.2V 1.8VFIGURE 9.BATTERY SWITCHOVER WHEN V BAT < V TRIPFIGURE 10.BATTERY SWITCHOVER WHEN V BAT > V TRIPV TRIPV BAT V TRIP + V TRIPHYSBATTERY BACKUPMODEV DD V TRIP3.0V 2.2VAccuracy of the Real Time ClockThe accuracy of the Real Time Clock depends on the frequency of the quartz crystal that is used as the time base for the RTC. Since the resonant frequency of a crystal is temperature dependent, the RTC performance will also be dependent upon temperature. The frequency deviation of the crystal is a function of the turnover temperature of the crystal from the crystal’s nominal frequency. For example, a ~20ppm frequency deviation translates into an accuracy of ~1 minute per month. These parameters are available from the crystal manufacturer. The ISL1208 provides on-chip crystal compensation networks to adjust load capacitance to tune oscillator frequency from -94ppm to +140ppm. For more detailed information. See “Application Section” on page18.Single Event and InterruptThe alarm mode is enabled via the ALME bit. Choosing single event or interrupt alarm mode is selected via the IM bit. Note that when the frequency output function is enabled, the alarm function is disabled.The standard alarm allows for alarms of time, date, day of the week, month, and year. When a time alarm occurs in single event mode, an IRQ pin will be pulled low and the alarm status bit (ALM) will be set to “1”.The pulsed interrupt mode allows for repetitive or recurring alarm functionality. Hence, once the alarm is set, the device will continue to alarm for each occurring match of the alarm and present time. Thus, it will alarm as often as every minute (if only the nth second is set) or as infrequently as once a year (if at least the nth month is set). During pulsed interrupt mode, the IRQ pin will be pulled low for 250ms and the alarm status bit (ALM) will be set to “1”.NOTE:The ALM bit can be reset by the user or cleared automatically using the auto reset mode (see ARST bit).The alarm function can be enabled/disabled during battery backup mode using the FOBATB bit. For more information on the alarm, See “Alarm Registers” on page14.Frequency Output ModeThe ISL1208 has the option to provide a frequency output signal using the IRQ/FOUT pin. The frequency output mode is set by using the FO bits to select 15 possible output frequency values from 0kHz to 32kHz. The frequency output can be enabled/disabled during battery backup mode using the FOBATB bit.General Purpose User SRAMThe ISL1208 provides 2 bytes of user SRAM. The SRAM will continue to operate in battery backup mode. However, it should be noted that the I2C bus is disabled in battery backup mode. I2C Serial InterfaceThe ISL1208 has an I2C serial bus interface that provides access to the control and status registers and the user SRAM. The I2C serial interface is compatible with other industry I2C serial bus protocols using a bidirectional data signal (SDA) and a clock signal (SCL).Oscillator CompensationThe ISL1208 provides the option of timing correction due to temperature variation of the crystal oscillator for either manufacturing calibration or active calibration. The total possible compensation is typically -94ppm to +140ppm. Two compensation mechanisms that are available are as follows:1.An analog trimming (ATR) register that can be used toadjust individual on-chip digital capacitors for oscillator capacitance trimming. The individual digital capacitor is selectable from a range of 9pF to 40.5pF (based upon32.758kHz). This translates to a calculatedcompensation of approximately -34ppm to +80ppm. (See ATR description on page18).2.A digital trimming register (DTR) that can be used toadjust the timing counter by ±60ppm. (See DTRdescription on page18).Also provided is the ability to adjust the crystal capacitance when the ISL1208 switches from V DD to battery backup mode. See “Battery Backup Mode (V BAT) to Normal Mode (V DD)” on page9.Register DescriptionsThe battery-backed registers are accessible following a slave byte of “1101111x” and reads or writes to addresses [00h:13h]. The defined addresses and default values are described in Table 1. Address 09h is not used. Reads or writes to 09h will not affect operation of the device but should be avoided.REGISTER ACCESSThe contents of the registers can be modified by performing a byte or a page write operation directly to any register address.The registers are divided into 4 sections. These are:1.Real Time Clock (7 bytes): Address 00h to 06h.2.Control and Status (5 bytes): Address 07h to 0Bh.3.Alarm (6 bytes): Address 0Ch to 11h.er SRAM (2 bytes): Address 12h to 13h.There are no addresses above 13h.分销商库存信息:INTERSILISL1208IB8Z-TK ISL1208IB8Z ISL1208IU8ZISL1208IB8Z-TKR5291ISL1208IU8Z-TK ISL1208IRT8Z-TK ISL1208IRT8Z ISL1208IB8ZR5291ISL1208IB8Z-T7A ISL1208IU8Z-T7A ISL1208IU8ISL1208IB8ISL1208IB8-TK ISL1208IU8-TK。

EPSON 实时时钟芯片RX-8010SJ Application Manual介绍

EPSON 实时时钟芯片RX-8010SJ Application Manual介绍
,没有和 YEAR,MONTH,DAY 寄存器相关联, 因此,如果对应日期发生变化,那么该寄存器需要重新设定。 4) [DAY],[MONTH]寄存器,根据实际的闰年,闰月 进行自动调节。
----------------------------------------------------------------------------------------------------------------------------------------
1.
概述 这是一款内置 32.768k 晶体单元的实时时钟模块。除了具有计时、日历的基本功能以外, 还具有定时中断、固定周期中断、频率缺失检测、频率输出、用户 RAM 等功能。8 Pin 的 SOP 封装使之适合于多种小型化电子设备的应用。 2. 结构框图
RX-8010SJ 12.3 寄存器介绍及使用
12.3.1 时钟日历寄存器 在通讯开始后,时钟和日历的数据会保持不变,等到通讯结束后会自动更新。因此推荐 使用连续访问的方式一次性读取时间数据。 设置举例: 88 年 2 月 29 日 星期天 17:39:45
1) 2) 3)
[SEC],[MIN] 寄存器使用 60 进制的 BCD 码,数据范围 00 – 59 [HOUR]寄存器使用 24 进制 BCD 码,时间采用 24 小时格式。 [WEEK]寄存器用单独的一位来表示对应的星期。见下表:
RX-8010SJ
3. 引脚定义
3.1 引脚功能描述
4. 外观尺寸
RX-8010SJ
5. 推荐操作条件
6. 频率特性
RX-8010SJ
7. 电器特性 (直流)
8. IIC 总线时序特性
RX-8010SJ
9.使用中特别注意事项 9.1 上电 9.1.1 供电电压特性 * tR1 作为上电复位的限制条件,当不能满足这个条件时,不能正常实现上电复位。 必须通过软件对系统进行初始化设置。 *在短时间内电源频繁 ON/OFF 变化,会导致上电复位不可靠。在掉电以后,要保持 VDD= GND 这种状态 60 s 以上的时间以保证上电复位的可靠性。如果不能满足这个条 件,请通过软件的初始化来设置系统。

IIC时钟isl1208的AVR驱动

IIC时钟isl1208的AVR驱动
}
N_NOP(80);
RTC_SCL_L();
N_NOP(80);
return ReturnFlag;
}
//---------------------------------------------------------
//---------------------------------------------------------
//
// IIC起始
//
//---------------------------------------------------------
void IIC_Start(void)
}
return Data;
}
//---------------------------------------------------------
//
// 写入RTC寄存器
//
//---------------------------------------------------------
unsigned char Read_RTC_Reg(unsigned char Address)
{
unsigned char Data;
IIC_Start();
IIC_WriteByte(RTC_WRITE_ADDR);
if ( IIC_GetAck()==YES )
N_NOP(80);
N_NOP(80);
RTC_SCL_L();
N_NOP(80);
}
//---------------------------------------------------------

IIC介绍

IIC介绍

I2C总线定义I2C(Inter-Integrated Circuit)总线是一种由PHILIPS公司开发的两线式串行总线,用于连接微控制器及其外围设备。

I2C总线产生于在80年代,最初为音频和视频设备开发,如今主要在服务器管理中使用,其中包括单个组件状态的通信。

例如管理员可对各个组件进行查询,以管理系统的配置或掌握组件的功能状态,如电源和系统风扇。

可随时监控内存、硬盘、网络、系统温度等多个参数,增加了系统的安全性,方便了管理。

I2C总线特点I2C总线最主要的优点是其简单性和有效性。

由于接口直接在组件之上,因此I2 C总线占用的空间非常小,减少了电路板的空间和芯片管脚的数量,降低了互联成本。

总线的长度可高达25英尺,并且能够以10Kbps的最大传输速率支持40个组件。

I 2C总线的另一个优点是,它支持多主控(multimastering),其中任何能够进行发送和接收的设备都可以成为主总线。

一个主控能够控制信号的传输和时钟频率。

当然,在任何时间点上只能有一个主控。

I2C总线工作原理总线的构成及信号类型I2C总线是由数据线SDA和时钟SCL构成的串行总线,可发送和接收数据。

在CPU与被控IC之间、IC与IC之间进行双向传送,最高传送速率100kbps。

各种被控制电路均并联在这条总线上,但就像电话机一样只有拨通各自的号码才能工作,所以每个电路和模块都有唯一的地址,在信息的传输过程中,I2C总线上并接的每一模块电路既是主控器(或被控器),又是发送器(或接收器),这取决于它所要完成的功能。

CPU发出的控制信号分为地址码和控制量两部分,地址码用来选址,即接通需要控制的电路,确定控制的种类;控制量决定该调整的类别(如对比度、亮度等)及需要调整的量。

这样,各控制电路虽然挂在同一条总线上,却彼此独立,互不相关。

I2C总线在传送数据过程中共有三种类型信号,它们分别是:开始信号、结束信号和应答信号。

开始信号:SCL为高电平时,SDA由高电平向低电平跳变,开始传送数据。

一种超低功耗实时时钟[实用新型专利]

一种超低功耗实时时钟[实用新型专利]

专利名称:一种超低功耗实时时钟专利类型:实用新型专利
发明人:宋志东,杨建坡,杜凌,韦景豹申请号:CN201320704422.8
申请日:20131107
公开号:CN203734371U
公开日:
20140723
专利内容由知识产权出版社提供
摘要:本实用新型公开了一种超低功耗实时时钟,包括有直流电源、电池、双电源自动切换电路、时钟芯片和微控制单元,所述直流电源的输出端连接至双电源自动切换电路的第一输入端,所述电池的正极连接至双电源自动切换电路的第二输入端,所述双电源自动切换电路的输出端连接至时钟芯片的电源输入端,所述时钟芯片与微控制单元连接。

本实用新型实现了在系统上电时,MCU通过I2C总线从时钟芯片中读取硬件时钟,再更新系统时间;同时利用双电源自动切换电路实现直流电源和电池的自动切换,在直流电源处于工作状态时,电池切换到零功耗状态,从而增加电池的续航时间实现超低功耗。

本实用新型作为一种超低功耗实时时钟可广泛应用于arm平台嵌入式领域。

申请人:奥维通信股份有限公司
地址:110179 辽宁省沈阳市浑南新区高歌路6号
国籍:CN
代理机构:广州嘉权专利商标事务所有限公司
代理人:谭英强
更多信息请下载全文后查看。

Intersil推出面向消费类的实时时钟产品

Intersil推出面向消费类的实时时钟产品

Intersil推出面向消费类的实时时钟产品Intersil 公司宣布推出新型实时时钟系列产品。

该产品新增了4kb 可擦除可编程只读存储器(EEPROM)(2 百万次写周期)和CPU 监视功能,并专门针对受空间约束的应用提供了小型封装。

Intersil 的ISL12026/27/28/29 系列产品在电池后备模式下具有很低的功耗(电池供电电流仅为800nA),因此可在该模式下使用小电池或大电容,这对手持式应用来说是十分重要的。

ISL12027、ISL12028 和ISL12029 还新增了CPU 监视功能,这样设计就没有必要使用分立的上电复位和看门狗定时器器件,从而节省了电路板空间。

可靠性、低功耗和集成度低功耗、高集成度和小尺寸的结合使这些新型RTC 特别适于消费类应用,如DVDR(可记录DVD)和HDTV 设备、POS 机系统以及其它消费类电子设备。

工业应用包括电表、供暖、空调、通风和其它工业设备。

这些器件还可用于手持式应用中,如PDA、扫描仪、便携式医疗设备和其它手持式设备。

其它应用包括HVAC、电表、安全、防火监控和其它与安全相关的系统。

主要特点集成式EEPROM 和CPU 监视功能避免了分立器件的使用晶体频率补偿电池后备模式下功耗极低ISL12028 提供CMOS 输出;ISL12029 提供用于IRQb(中断请求总线)的开漏输出EEPROM 的写周期可达2 百万次目标应用消费类设备,如PDA、DVDR、音频和视频设备工业设备,包括HVAC、POS 机系统、电表、通信系统扫描仪、POS 机和其它手持式设备定价和供货信息Intersil 新型实时时钟系列产品现已供货。

ISL12026 和ISL12027 采用8 引脚SO 与TSSOP 封装。

ISL12026 采用SO 封装时,定价1.40 美元;采用TSSOP 封装时,定价1.45 美元。

ISL12027 采用SO 封装时,定价1.65 美元;采用TSSOP 封装时,定价1.70 美元。

Intersil公司带电池备份SRAM的实时时钟芯片ISL1208-武汉力源

Intersil公司带电池备份SRAM的实时时钟芯片ISL1208-武汉力源

THANKS
ቤተ መጻሕፍቲ ባይዱ
• Intersil公司RTC产品
– ISL1208(低成本,带电池备份SRAM,报警/频率输出) – X1205(低成本,双报警) – X1226/7/8(软件校准,4KbEEPROM、看门狗、频率输 出、双报警)
重点产品-ISL1208
特性:
• • • • • • • • • • 工作电压2.7V~5.5V 片内后备电池切换电路,400nA电池供电电流 闰年自动修正,计时年、月、日、星期、时、分、秒 2字节用户SRAM(支持后备电池) 400KHz的I2C标准总线接口 片内振荡频率补偿 定时报警输出 15种可选频率输出 引脚兼容ST公司M41Txx系列和Maxim公司DS13xx系列 封装:8引脚MSOP和SOIC;工作温度:-40℃~85℃。
ISL1208和晶体的推荐布线图
ISL1208开发工具—X12xx-EVM评估套件
RTC X12xx-EVM
¥159.00 简 单实 用 开 发必 备
注:X12xx-EVM 根据免费提供的样片,尾缀为;-05; -08; -26;-27;-28…...
X12xx-EVM
套件组成: • X12xx-EVM 评估板 • 标准RS232串口电缆一根 • 张CD盘,包含有关数据资料和软件 • X12xx-EVM 评估板使用说明书 运行环境: • 最低安装配置:Intel 486,内存 16M,硬盘空余空间 10M,1个有效的RS-232串行接口 • 可运行的平台:WINDOWS 98/NT/2000/XP 支持器件: X1205、X1226、X1227、X1228、X1208、 X1209,封装包括SOIC、TSSOP、MSOP。

产品应用问答(续):

INTERSIL英特矽尔代理

INTERSIL英特矽尔代理

采购INTERSIL(英特矽尔)品牌系列元件就上万联芯城,万联芯城为国内知名电子元器件分销商,只售原装现货产品,万联芯城与500家原厂品牌合作,把握优质货源渠道,掌握优势产品价格,为采购客户带来便利,节省成本。

点击进入万联芯城点击进入万联芯城INTERSIL代理公司英特矽尔代理是一家全球性的技术领先者,专门设计和制造高性能的类比半导体。

INTERSIL代理公司继续把重点放在领先的吸引力高性能模拟市场,英特矽尔代理将提供了一个可持续的长期模式的成功。

INTERSIL代理公司主营产品包括电源管理,放大器和缓冲器,音频和视频,数据转换器,接口电路等。

INTERSIL代理不断开发专用工艺和封装技术,同时利用内部制造和外部合作伙伴来推动产品差异化。

INTERSIL代理从多个领先半导体代工和封装/测试合作伙伴为80%以上的产品采购原材料和服务,为管理供应风险、成本以及满足客户的需求提供了所需的INTERSIL代理代理商供应保障INTERSIL代理公司今天宣布推出两款全新的微功率实时时钟/日历器件。

全新ISL1219/21是单一事件时间戳的理想解决方案,例如拆卸外壳导致质保失效的时刻或安全门开关等重复性事件。

“在这些超小型器件中,英特矽尔代理事件检测和时间标志功能在正常和电池模式下均可运行,”INTERSIL代理实时时钟产品部市场营销经理Rouben Gharagozian说,“这些具有增强型安全功能的微功率实时时钟可以满足各种应用需求,如安防、质保监控、数据收集和记录等。

”这些器件能够通过发出输出信号或在事件发生时停止实时时钟(RTC)寄存器以完成针对某一事件的时间戳。

输出信号中包含触发信号的事件发生的时间,具体到年、月、日、小时、分钟和秒。

ISL1219/21提供两种电源选项,即正常电源和备用电池电源。

除了I2C,所有的实时时钟功能在备用电池模式下都保持运行,除非被禁用。

用户SRAM(静态随机存取存储器)保持运行,直到电池电压下降到1.8伏以下为止。

HYM1208

HYM1208

→特点●实时时钟/日历按小时、分钟和秒追踪时间星期、日、月、年●15种可选择的频率输出●单路报警可设置为月、日、星期、时、分或秒单事件或脉冲中断模式●自动切换到后备电池或大电容●电源故障检测●片内振荡器补偿●电池后备供电的2字节用户SRAM ●I 2C 接口——400kHz 的数据传输速率●400nA 电池供电电流●与ST 公司的M41Txx Maxim 公司的DS13xx有相同的引脚输出●8引脚MSOP 和SOIC 封装→应用●机顶盒/电视机●HA VC 设备●网络路由器、集线器、开关、桥式电路●音频/视频元件●无线宽带固定设备●复费率电度表、IC 卡水表、IC 卡煤气表●蜂窝结构设备●寻呼机/PDA ●POS 设备●测试仪表/装置●调制解调器●办公自动化(复印机、传真机)●计算机产品●其它工业/医用/自动化设备→概述HYM1208是低功耗实时时钟,带定时与晶体补偿、时钟/日历、电源失效指示器、周期或轮询报警、智能后备电池切换和后备电池供电的用户SRAM 。

振荡器采用外部、低成本、32.768kHz 的晶体。

实时时钟用独立的时、分、秒寄存器跟踪时间,并且还带有日历寄存器用于存储日、月、年和星期。

日历精确到2099年,具有闰年自动修正功能。

联系人:邓旺孙137****6757QQ:278815928EMAIL:***************** MSN:*********************网址:→定购信息型号V DD范围温度范围(℃)封装类型HYM1208S 2.7V to5.5V0℃to+70℃8Ld MSOPHYM1208SN 2.7V to5.5V-40℃to+85℃8Ld MSOPHYM1208Z 2.7V to5.5V0℃to+70℃8Ld SOICHYM1208ZN 2.7V to5.5V-40℃to+85℃8Ld SOIC→方框图和管脚功能HYM1208(8引脚MSOP、SOIC顶视图)图1HYM1208内部框图管脚说明管脚序号符号功能管脚序号符号功能1X132.768kHz晶体5SDA串行数据SDA引脚2X232.768kHz晶体6SCL串行时钟SCL输入脚3V BAT后备电源7最大额定值参数名称符号测试条件额定值单位引脚对地电压V P -0.5~+7.0V 工作温度T A -40℃~+85℃℃贮存温度T S -55~+125℃焊接温度T H260(10秒)℃电特性直流电特性(温度=-40℃~+85℃,除非另有说明。

基于跳频通信的移动机械遥控系统

基于跳频通信的移动机械遥控系统

基于跳频通信的移动机械遥控系统乔旭兴【摘要】为解决在同一个工作区域多个无线通信网络容易彼此干扰无法协同工作的问题,以移动机械工程车辆为控制对象,设计JRCJ500无线遥控系统,由用户手持终端接收用户操作指令,现场控制器驱动远程设备动作,实现对车辆的远程操作控制与状态信息反馈;采用STM32L低功耗处理器设计无线通信模块,选择公用通信频段,基于跳频扩频通信技术,约定无线通信数据格式与跳频频点,通过简单高效的跳频图案生成算法,在每一帧数据中添加同步字头,实现了无线通信网络的快速同步组网,保证了通信的稳定性,实现了在限定工作区域多台无线通信设备同时工作的应用需求;由于采用模块化设计,系统具有良好的通用性和可移植性,能够在多种复杂恶劣工作场合实现远程控制功能.【期刊名称】《计算机测量与控制》【年(卷),期】2015(023)011【总页数】4页(P3671-3673,3682)【关键词】跳频通信;无线遥控;跳频算法;同步组网【作者】乔旭兴【作者单位】江苏自动化研究所,江苏连云港 222061【正文语种】中文【中图分类】TP23矿山、井下、高空、建筑工地、救援现场等很多工作场合,存在着诸多安全隐患,地理、空间等因素制约着人们的活动;而随着城镇化、现代化进程的加快,人们需要越来越频繁的在一些危险区域开展工作[1]。

无线遥控系统可以使得人们远离危险场所,在安全区域通过远程控制的方式操纵机械动作,完成相关工作;传统的移动机械遥控系统多采用定频通信方式,在某一个信道很容易受到干扰而导致整个系统无法正常工作,需要操作者频繁手动更改通信信道。

为解决这一问题,设计实现一种组网效率高、抗干扰强的无线遥控系统。

JRCJ500无线遥控系统由JRCJ500T用户手持操作终端和JRCJ500R设备现场控制器两部分组成,支持双向通信功能。

JRCJ500T是用户手持终端,集成模拟手柄、钮子开关、急停开关、旋钮等操控部件,接受用户操作指令,通过数据采集模块将操控部件的状态信息转换为数字信息,按照固定的编码协议打包封装,通过无线通信模块传送出去。

Intersil推出三款小巧、厚度极薄的实时时钟(RTC)器件

Intersil推出三款小巧、厚度极薄的实时时钟(RTC)器件

Intersil推出三款小巧、厚度极薄的实时时钟(RTC)器件
佚名
【期刊名称】《电子与电脑》
【年(卷),期】2009(000)008
【摘要】Intersil公司宣布,推出三款小巧、厚度极薄的实时时钟(RTC)器件-ISL12057、ISL12058和ISL12059,非常适用于低电压和便携式应用。

【总页数】1页(P65)
【正文语种】中文
【相关文献】
1.Microchip推出第一款独立实时时钟/日历(RTCC)系列 [J],
2.Intersil推出面向消费类和工业应用的高集成度、低功耗实时时钟系列产品 [J],
3.Microchip推出独立实时时钟/日历(RTCC)系列 [J],
4.Microchip推出独立实时时钟/日历(RTCC)系列器件 [J],
5.Intersil推出超小超薄实时时钟 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

INTERSIL公司产品ISL1208I2C®实时时钟日历数据手册2004年10月29日 FN8080.1带后备电池供电SRAM的低功耗实时时钟ISL1208是低功耗实时时钟带定时与晶体补偿时钟/日历电源失效指示器周期或轮询报警智能后备电池切换和后备电池供电的用户SRAM振荡器采用外部低成本32.768kHz的晶体实时时钟用独立的时分秒寄存器跟踪时间并且还带有日历寄存器用于存储日月年和星期日历精确到2099年具有闰年自动修正功能订购信息引脚排列图ISL12088引脚MSOP SOIC顶视图特性z 实时时钟日历按小时分钟和秒追踪时间星期日月年z15种可选择的频率输出z单路报警可设置为月日星期时分或秒单事件或脉冲中断模式z自动切换到后备电池或大电容z电源故障检测z片内振荡器补偿z电池后备供电的2字节用户SRAMz I2C接口400kHz的数据传输速率z400nA电池供电电流z与ST公司的M41Txx Maxim公司的DS13xx有相同的引脚输出z小型封装8引脚MSOP和SOIC封装应用z需给电表z HA VC设备z音频/视频元件z机顶盒/电视机z调制解调器z 网络路由器集线器开关桥式电路z蜂窝结构设备z无线宽带固定设备z寻呼机/PDAz POS设备z测试仪表/装置z 办公自动化复印机传真机z家用电器z计算机产品z其它工业/医用/自动化设备方框图引脚描述X1石英晶体的一个引脚电源失效时为器件供电串行数据SDA引脚是一个双向引脚用于将串行数据输入或输出器件它有一个漏极开路可以与其它的漏极开路输出或集电极开路输出线或SCL/频率输出端是多功能引脚通过配置极限参数V DD V BA T SCL SDA和IRQ引脚上的电压相对于地0.5V至7.0V+0.5V DD模式X1和X2引脚上的电压相对于地0.5V至V+0.5V BA T模式0.5V至V贮存温度65°C至+150°C引线温度焊接10秒 300°C注强度超出所列的极限参数可能导致器件的永久性损坏这些仅仅是极限参数并不意味着在极限条件下或在任何其它超出推荐工作条件所示参数的情况下器件能有效地工作延长在极限参数条件下的工作时间会影响器件的可靠性直流工作特性实时时钟温度=40°C至+85°C除非另有说明掉电时序温度=40°C至+85°C除非另有说明串行接口规格除非另有说明否则在推荐工作条件下工作串行接口规格除非另有说明否则在推荐工作条件下工作续表注1IRQ&F OUT无效2LPMODE低功耗模式位=0默认3为确保计时精确必须遵循V DD SR-规格4典型值是T=25电源电压为3.3V时的值SDA与SCL的时序关系符号表典型性能曲线图温度为25除非另有说明图1 I BAT与V BAT的关系曲线图2 I BAT与温度V BAT=3V时的关系曲线图3 I DD1与温度的关系曲线 图4 I DD1与V CC 低功耗模式激活与禁止的关系曲线图5 IDD1与F OUT V DD =3.3V 时的关系 图6 I DD1与F OUT V DD =5V 时的关系V DD =5V 时的等效交流输出负载电路图7 V DD =5.0V 时用于器件测试的标准输出负载 图8 晶体推荐连接法概述ISL1208是低功耗实时时钟带定时与晶体补偿时钟/日历电源失效指示器周期或轮询报警智能后备电池切换和后备电池供电的用户SRAM振荡器采用外部低成本32.768kHz 的晶体实时时钟用独立的时分秒寄存器跟踪时间并且还带有日历寄存器用于存储日月年和星期日历精确到2099年具有闰年自动修正功能ISL1208强大的报警功能能够被设置成任意的时钟日历值与报警相匹配例如可设置成每分钟每个星期二或者3月21日上午5:23报警报警状态可以在状态寄存器中查询或者可以设置器件通过IRQ 引脚提供一次硬件中断报警有一种重复模式允许产生每分钟每小时每天一次等的周期性中断该器件还有一个后备电源输入脚V BAT 该脚允许器件用电池或大容量电容进行后备供电可自动从V DD切换到VBA T 整个ISL1208器件的工作电压范围为2.0V 至5.5V 时钟日历部分在电压低至1.8V 时仍可工作待机模式引脚描述X1, X2X1和X2脚分别用作反相放大器的输入和输出端使用一个外部32.768kHz 的石英晶体为ISL1208实时时钟提供一个基准时间在-40到+85的工作温度范围内内部补偿电路可保证器件的高精度在工作温度范围内振荡器补偿网络在制造过程中或者在与外部温度传感器和微控制器一起使用来进行有效补偿时可以用于对晶体定时精度进行校准该器件也可以用X1引脚处32.768kHz 的晶体源驱动V BAT这个输入端为器件提供一个备用电源电压当V DD 电源失效时V BA T 为器件提供电源可将该引脚连接到电池大容量电容如果不用则应将其接地IRQ /FOUT 中断输出/频率输出这是一个双重功能引脚既可以用作中断输出也可以用作频率输出引脚通过控制/状态寄存器的频率输出控制位来选择IRQ /FOUT 模式z 中断模式引脚输出一个中断信号该信号通知主机处理器报警已经发生并请求动作它是一个低电平有效的漏极开路输出端z 频率输出模式引脚输出一个与晶体频率有关的时钟信号用户可以通过I 2C 总线来选择和激活频率输出它是一个低电平有效的漏极开路输出端串行时钟 (SCL)SCL 输入端被用作串行数据输入和输出的时钟同步信号该引脚上的输入缓冲器总是激活的未用门栅控制为使电源消耗最小V BA T 引脚的后备电源被激活时该引脚被禁止串行数据 (SDA)SDA 是一个双向引脚用于对器件输入或输出数据它是一个漏极开路输出可以与其它漏极开路或集电极开路输出端线或在正常模式下输入缓冲器总是有效未用门栅控制漏极开路输出需要使用上拉电阻输出电路使用一个斜率控制的下拉来控制输出信号的下降时间该电路是针对400kHz 速率的I 2C 接口而设计在V BA T 引脚的后备电源被激活时该引脚被禁止V DD GND芯片的电源与接地引脚器件在2.0V 到5.5V 的直流电源下工作建议在VDD 引脚和接地引脚之间外接一个0.1F 的电容功能介绍电源控制电源控制电路既接受V DD 也接受V BAT 输入许多类型的电池可以与INTERSIL 公司的实时时钟产品配套使用例如 3.0V 或3.6V 的锂电池就比较适合其现有的大小可为INTERSIL 公司的实时时钟器件供电长达10年在V DD 断电时另一种选择就是使用大容量的电容可持续供电一个月更多信息见应用部分从正常模式V DD 切换到后备电池供电模式V BAT要从V DD 过渡到V BA T 模式必须同时具备以下两个条件条件1V DD <V BA T V BA THYS 其中V BA THYS 50mV 条件2V DD <V TRIP 其中V TRIP 2.2V 从后备电池供电模式VBAT 切换到正常模式V DD在遇到以下条件之一时ISL1208会从V BA T 切换到V DD 模式条件1V DD >V BA T +V BA THYS 其中V BA THYS 50mV 条件2V DD >V TRIP +V TRIPHYS 其中V TRIPHYS 30mV这些电源控制情况如图9和图10所示图9 V BA T <V TRIP 时的电池切换 图10 V BA T >V TRIP 时的电池切换为提供更低的电源I 2C 总线在后备电池供电模式中被禁止除此之外在后备电池供电模式中实时时钟的所有功能均可实现除了SCL 和SDA 以外在后备电池供电模式中ISL1208所有的输入端和输出端均有效除非通过控制寄存器来禁止在后备电池供电模式低至2V 时用户SRAM 也可工作电源失效检测ISL1208有一个实时时钟失效位RTCF 用于检测总电源失效它在器件丢失所有电源VDD 和V BA T之后使用户可以确定器件是否已上电低功耗模式ISL1208正常的电源切换被设计成只有在丢失V DD 电源时才会进行即切换到后备电池供电模式这样可以确保在稳定地切换到后备模式后器件可接受各种电源提供的宽范围的后备电压还有一种模式称作低功耗模式可允许直接从VDD 切换到V BA T 不要求V DD 下降到V TRIP 以下因为不再需要对V DD 与V TRIP 的关系进行额外的监控该监控电路被关断这样在V DD 下工作时消耗的电能更少在V DD =5V 时可节约典型值为600nA 的电流通过控制与状态寄存器中的LPMODE 位低功耗模式位可以激活低功耗模式在V DD 总是高于V BA T 的系统中低功耗模式非常有用当V DD 下降到V BA T 以下时器件将从V DD 切换到V BA T 并且还有50mV 的滞后电压防止在切换之后器件再返回到V DD 电源在V DD =5V 并且有后备锂电池VBA T =3V 的系统中可以采用低功耗模式但是在V DD =3.3V 10%V BA T 3.0V 并且在V DD 电源线上有一定I-R 压降的系统中建议不要采用低功耗模式InterSeal TM 电池节约开关ISL1208带有InterSeal TM 电池节约开关可防止电池首次使用前的初始电池电流消耗例如带后备电池的实时时钟通常都封装在带电池的电路板内为了保留电池的使用寿命ISL1208将不会从电池电源处吸收任何电能直到器件首次以V DD 电源供电此后只要V DD 电源丢失器件就会切换到后备电池供电模式实时时钟工作实时时钟RTC 使用一个外部的32.768kHz 的石英晶体来保持内部精确的年月日星期时分秒显示RTC 具有闰年校正功能时钟对少于31日的月也能校正有一位控制24小时或上午/下午AM/PM 格式当ISL1208在V DD 和V BA T 都失掉以后再上电时时钟即停止工作直到在时钟寄存器中写入至少一个字节实时时钟的精度实时时钟的精度取决于石英晶体的频率被用作RTC 的基准时间因为晶体的谐振频率取决于温度所以RTC 的性能也取决于温度晶体的频率偏差是晶体正常频率的温度反转函数例如20ppm 的频率偏差转变为每月1分钟的精度这些参数来源于晶体生产厂家ISL1208可提供片内晶体补偿网络来调整–94ppm 至+185ppm 范围内的振荡器频率更多详细信息见应用部分单事件和中断报警模式通过ALME 位来激活通过IM 位可选择单事件或中断报警模式注意当频率输出功能被激活报警功能则被禁止标准报警允许进行包括时刻日期星期以及年的时间报警在单事件模式中当发生时间报警时IRQ引脚被拉低并且报警状态位ALM被置为1脉冲中断模式有重复报警的功能因此一旦报警被设置器件将在每当报警设置值与当前时间匹配时发出报警这样器件可能每分钟都发出报警如果时钟被设置成每过n秒就报警也可能一年进行一次报警如果时钟被设置成只有过n个月才报警在脉冲中断模式中IRQ引脚将被拉低250ms报警状态位ALM将被置为1注意ALM位可以由用户复位或者通过自动复位模式来自动清除见ARST位在后备电池供电模式中通过FOBATB位可以激活或禁止报警功能有关报警的更多信息见报警寄存器介绍频率输出模式利用IRQ/F OUT引脚ISL1208可以提供频率输出信号频率输出模式可以通过利用FO位从0Hz到32kHz中选择15个可能的输出频率值来设置在后备电池供电模式中通过FOBATB位就可以激活/禁止频率输出模式通用用户SRAMISL1208为用户提供了2字节的SRAM该SRAM在后备电池供电模式下也可以工作但是必须注意I2C总线在此模式中则被禁止I2C串行接口ISL1208有一个I2C串行总线接口通过它可以访问控制与状态寄存器及用户SRAM这个I2C串行接口可以与其它使用双向数据信号SDA和时钟信号SCL的工业I2C串行总线协议兼容振荡器补偿在制造校准或有效校准中由于晶体振荡器的温度发生变化ISL1208可以进行计时校正可能出现的总补偿通常在-94ppm到+167ppm之间以下有两种补偿方式1I SL1208用模拟微调寄存器ATR调整片内独立的数字电容达到振荡器电容微调的目的可以选择的独立数字电容的范围是9pF至40.5pF基于32.758kHz这样可以算出补偿约为-34ppm 到+80ppm见模拟微调寄存器介绍2数字微调寄存器DTR寄存器可以将计时器增加或减少60ppm见数字微调寄存器介绍切换到后备电池供电模式时ISL1208还能调整晶体电容在从VDD寄存器介绍寄存器可由后备电池供电在从地址1101111x之后可以访问并且可以读或写到地址[00h13h]地址定义和默认值如表1所示地址09h未用对09h进行读或写不会虽不会影响器件的工作但也应避免寄存器访问寄存器的内容可以通过对任意寄存器地址直接以字节写或页面写操作来修改寄存器被分成4段它们是1实时时钟7字节地址为00h至06h2控制与状态5字节地址为07h至0Bh3报警6字节地址为0Ch至11h4用户SRAM2字节地址为12h至13h没有超过13h的地址只有在WRTC位地址07h的位4被置为1时才能对实时时钟RTC寄存器00h至06h进行写操作每次只能对寄存器的一段进行多字节读或写操作对另一段访问需要一次新的操作读或写可以在该段的任何地址开始可以在任何时候任何地址对寄存器进行随机读操作这将返回那个寄存器地址的内容其它的寄存器可通过进行一次连续读操作来读出对于实时时钟和报警寄存器读指令将所有时钟寄存器的内容锁存到一个缓冲器因此时钟的更新不改变被读出的时间连续读不会导致从存储器阵列中输出数据在读操作结束时主机提供一个停止条件来终止操作并释放总线在读操作之后地址保留在先前的地址+1因而用户可以执行当前地址读并继续读下一个寄存器对控制与状态报警和用户SRAM寄存器进行写入之前不必设置WRTC位表1 寄存器的存储映射图实时时钟寄存器地址[00h06h]实时时钟寄存器RTC寄存器SC MN HR DT MO YR DW这些寄存器采用BCD码表示时间其中SC秒MN分的范围为0至59HR时可以是12时或24时制DT日期为1至31MO月为1至12YR年为0至99DW星期则为0到6星期寄存器DW提供星期状态它用三位DW2至DW0来表示一周中的7天该计数值不断地作0-1-2-3-4-5-6-0-1-2的循环数字值分配到星期中的某日是任意的可以由系统软件设计者决定缺省值定义为024小时时间如果HR寄存器中的MIL位为1则RTC使用24小时格式如果MIL位为0则RTC使用12小时格式这时H21位用作AM/PM指示器H21为1则显示PM时钟缺省为12小时格式H21=0闰年闰年加一个2月29日它是由年份数能被4除尽决定的年份数能被100除尽不是闰年除非它也能被400除尽这表明2000年是闰年而2100年不是ISL1208不会将2100年校正为闰年控制与状态寄存器地址[07h到0Bh]控制与状态寄存器包括状态寄存器中断与报警寄存器模拟微调与数字微调寄存器状态寄存器SR状态寄存器在存储器映射图中地址为07h这是一个易失性寄存器它用来控制RTC失效电池模式报警触发时钟计数器写保护晶体振荡器使能以及状态位的自动复位或者提供相应的状态报告表2 状态寄存器SR*实时时钟失效位RTCF在全部电源失效后该位被置1这是一个由硬件置位在ISL1208内部的只读位在器件失去全部电源后再上电时该位置位该位的置位与先加VDD 或VBA T无关只失去其中的一个电源并不导致RTCF位被置1整个电源失效以后向RTC的第一次有效写只要写一个字节即可将RTCF位复位为0*电池供电位BAT器件进入后备电池供电模式时该位置1它可以由用户手动复位或者通过使能自动复位位来进行自动复位见ARST位对状态寄存器中的这一位进行写操作只能将其设置为0而不是1*报警位AL这几位显示报警是否与实时时钟匹配如果相匹配则相应位被置1该位可以由用户手动复位为0或者通过使能自动复位位来进行自动复位见ARST位对状态寄存器中的这一位进行写操作只能将其设置为0而不是1注意在SR读操作期间发生的一次报警将对报警位置位则该报警位将保持置位到读操作完成之后*写RTC使能位WRTCWRTC位使能或禁止对RTC定时寄存器的写入该位的出厂缺省设置值为0在初始化或上电时WRTC必须置为1以使能RTC在完成一次有效的写操作有停止条件之后RTC开始计数在一次有效的写周期期间RTC内部1Hz的信号与停止条件同步*晶体振荡器使能位XTOSCB该位使能/禁止内部晶体振荡器当XTOSCB置为1时振荡器被禁止并且X1引脚允许外部32kHz 的信号来驱动RTC上电时XTOSCB位被清零*自动复位使能位ARST该位只能对BAT和ALM状态位的自动复位进行使能/禁止当ARST位被置为1时在对相应的状态寄存器进行一次有效的读操作有有效停止条件以后这两个状态位都复位为0若ARST被清零用户必须对BAT和ALM位进行手动复位中断控制寄存器INT表3 中断控制寄存器INT*频率输出控制位FO<30>这四位使能/禁止频率输出功能并选择IRQ/F OUT引脚的输出频率频率选择见表4在频率模式被激活时它将覆盖IRQ/F OUT引脚上的报警模式引脚的频率选择表4 FOUT*频率输出与中断位FOBATB在后备电池供电模式即V BA T 电源有效中该位使能/禁止F OUT /IRQ 引脚在后备电池供电模式中若FOBATB 位置为1则F OUT /IRQ 引脚被禁止这意味着频率输出和报警输出功能都被禁止同样在该模式中若FOBATB 位被清零F OUT /IRQ 引脚则被使能*低功耗模式位LPMODE该位激活/禁止低功耗模式LPMODE=0时器件处于正常模式并且在VDD <V BA T V BA THYS 同时V DD <V TRIP 时将采用V BA T 电源LPMODE=1时器件处于低功耗模式并且在V DD <V BA T V BA THYS时将采用VBA T 电源当V DD =5V 时若采用LPMODE=1的模式将节约600nA 左右电源电流见典型性能曲线图IDD 与V CC 低功耗模式激活与禁止的关系曲线*报警使能位ALME该位使能/禁止报警功能ALME 位置为1时报警功能被使能置为0时被禁止既可以进行单事件报警也可进行周期性中断报警见IM 位注意频率输出模式被使能时报警功能被禁止*中断/报警模式位IM该位使能/禁止报警功能的中断模式IM 位置为1时报警就会在中断模式中进行此时若RTC 按照报警寄存器0Ch 至11h 中定义的一样被这次报警触发一个低电平有效宽度为250ms 的脉冲就会出现在IRQ / F OUT 引脚上在IM 位被清零时报警在标准模式中进行此时IRQ / F OUT 引脚将保持低电平直到ALM 状态位被清零IM 位中断/报警频率0由报警设置单周期定时事件1由报警设置重复/复发定时事件模拟微调寄存器ATR*模拟微调寄存器ATR<50>图11 ATR 示意图从ATR0至ATR5六个模拟微调位调整片内负载电容的值这一电容值用于RTC 的频率补偿每一位都有一个不同的电容调节比重例如使用Citizen CFS-206晶体与不同的ATR 位组合可以对额定频率补偿提供预计从34ppm 至+80ppm 的ppm 补偿范围数字的和模拟的微调结合起来可以提供-94ppm 至+140ppm 的调整范围有效的片内串联负载电容C LOAD 的范围从4.5pF 至20.25pF 中间值为12.5pF 默认C LOAD 可以通过X1和X2引脚之间两个接地的数字控制电容器C X1和C X2改变见图11CX1和C X2的值可以通过下列公式计算出来C X =16*5b +8*b4+4*b3+2*b2+1*b1+0.5*b0+9pF 有效串联负载电容由CX1和C X2组成C LOAD =)2111(1Cx Cx +C LOAD =16*5b +8*b4+4*b3+2*b2+1*b1+0.5*b0+9/2 pF例如C LOAD ATR=00000=12.5pF C LOAD ATR100000=4.5pF C LOAD ATR011111=20.25pF 串联负载电容的整个范围从4.5pF 到20.25pF 每步调节0. 25pF 注意这些都是典型值* 电池模式ATR 选择BMATR 1:0因为晶体振荡器的精度取决于V DD /V BA T 的工作所以当器件在这两个电源之间切换时ISL1208还提供电容调整的功能数字微调寄存器DTR* 数字微调寄存器DTR<20>数字微调位DTR0DTR1和DTR2调整每秒钟的平均计数值和平均ppm 误差以获取更好的精度DTR2是一个符号位DTR2=0意味着频率补偿>0DTR2=1意味着频率补偿<0DTR1和DTR0是刻度位DTR1提供40ppm 调整DTR0提供20ppm 调整用以上三位可以表示60ppm 至+60ppm 的补偿范围见表5表5 数字微调寄存器DTR 寄存器DTR2DTR1DTR0预计频率ppm 0000默认001+20010+40011+601000101-20110-40111-60报警寄存器地址[0Ch 至11h]报警寄存器字节的设置与RTC 寄存器字节相同不同的是每个字节的最高有效位可用作使能位使能=1使能位规定哪些报警寄存器秒分等可以将报警寄存器和实时寄存器之间进行比较注意没有与年对应的报警字节报警功能起着将报警寄存器与RTC 寄存器进行比较的作用当RTC 增加时一旦报警寄存器与RTC 寄存器相匹配就会触发一次报警任意一个报警寄存器多个寄存器或者所有的寄存器都可以因一次匹配而激活有两种报警模式单事件和周期性中断模式z 通过将ALME 位置1将IM 位置0同时禁止频率输出来激活单事件模式这种模式允许报警寄存器和RTC寄存器之间的一次性匹配一旦相匹配ALM位置1IRQ输出将被拉低并且保持这种状态直到ALM位复位这可以通过手动进行或者使用自动复位功能实现z通过将ALME位置1将IM位置1同时禁止频率输出来激活中断模式每当有报警产生时IRQ输出都会经受脉冲这意味着一旦设置中断模式报警每当报警与当前时间相匹配时都会进行报警这种模式对保密照相机或供需电表读数等微处理器应用中的每小时或每天的硬件中断很便利为清除一次报警可通过写操作将状态寄存器中的ALM位置0注意如果ARST位置为1地址07h位7则在状态寄存器被读取时ALM位会自动清零以下是单事件和周期性中断模式报警的实例例1以单事件中断设置报警IM=0单事件报警将在1月1日的上午11:30发生1将报警寄存器设置如下2A LME位也可以设置成xx表示其它控制位在这些寄存器被设置以后当RTC恰好达到1月1日上午11:30时秒数从59变为00后通过将状态寄存器中的ALM位置1同时将IRQ输出拉低就可以产生一次报警例2每分钟一次的脉冲中断IM=1当秒钟寄存器处于30秒时中断以1分钟为间隔1将报警寄存设置如下2将中断寄存器设置如下xx表示其它控制位一旦寄存器被设置则可以在IRQ处看到以下波形RTC和报警寄存器都为30秒注意每当报警被触发状态寄存器的ALM位就会被置位但不需要被读取或清零用户寄存器地址[12h至13h]这些寄存器针对可由后备电池供电的2字节用户存储器I2C串行接口ISL1208支持双向总线协议该协议定义向总线发送数据的任何器件为发送器而接收数据的器件为接收器控制发送的器件称为主机而被控制的器件称为从机主机总是启动数据的传送并提供用于发送和接收操作的时钟所以ISL1208在所有的应用中用作从机通过I2C接口进行的所有通信都是从数据每个字节的最高有效位开始发送接口协议在SDA线上的数据只有当SCL为低LOW时才能改变状态当SCL为高HIGH时SDA状态的改变被当作开始START和停止STOP条件见图12对ISL1208上电时SDA引脚处于输入模式所有的I2C接口操作必须由开始条件引导开始条件是当SCL为高时SDA由高到低的变化ISL1208不断地监视SDA和SCL线上的开始条件并且在该条件被满足以前不响应任何命令见图12在上电期间开始条件被忽略所有的I2C接口操作必须由停止条件来终止停止条件是当SCL为高时SDA由低到高的变化见图12在读操作结束时或者对存储器进行写操作结束时的停止条件仅仅是将器件置于待机模式应答ACK是一个用来表示数据传送成功的软件协议发送器件无论是主机或从机在发送8位后将释放SDA总线在第九个时钟周期中接收器将SDA线拉低作为对接收到8位数据的应答见图13在识别到带有有效的标识字节的开始条件后ISL1208将用一个应答来作为响应而且在成功地接收到一个地址字节以后ISL1208将再用一个应答来作为响应在接收到写操作之后的数据字节以后ISL1208将以一个应答来作为响应而主机在接收到读操作之后的数据字节以后也必须以一个应答来响应图12 有效的数据变化开始和停止条件图13 接收器发出的应答响应图14 字节写序列。

相关文档
最新文档