2019届高考数学大一轮复习 第十一章 统计与统计案例 11.1学案 理 北师大版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§11.1随机抽样
最新考纲
考情考向分析
1.理解随机抽样的必要性和重要性.
2.会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样的方法. 在抽样方法的考查中,系统抽样,分层抽样是考查的重点,题型主要以选择题和填空题为主,属于中低档题.
1.抽样调查
(1)抽样调查
通常情况下,从调查对象中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此对调查对象的某项指标作出推断,这就是抽样调查.
(2)总体和样本
调查对象的全体称为总体,被抽取的一部分称为样本.
(3)抽样调查与普查相比有很多优点,最突出的有两点:
①迅速、及时;
②节约人力、物力和财力.
2.简单随机抽样
(1)简单随机抽样时,要保证每个个体被抽到的概率相同.
(2)通常采用的简单随机抽样的方法:抽签法和随机数法.
3.分层抽样
(1)定义:将总体按其属性特征分成若干类型(有时称作层),然后在每个类型中按照所占比例随机抽取一定的样本.这种抽样方法通常叫作分层抽样,有时也称为类型抽样.
(2)分层抽样的应用范围:
当总体是由差异明显的几个部分组成时,往往选用分层抽样.
4.系统抽样
系统抽样是将总体中的个体进行编号,等距分组,在第一组中按照简单随机抽样抽取第一个样本,然后按分组的间隔(称为抽样距)抽取其他样本.这种抽样方法有时也叫等距抽样或机械抽样.
题组一思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)简单随机抽样是一种不放回抽样.( √)
(2)简单随机抽样每个个体被抽到的机会不一样,与先后有关.( ×)
(3)抽签法中,先抽的人抽中的可能性大.( ×)
(4)系统抽样在第1段抽样时采用简单随机抽样.( √)
(5)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.( ×)
(6)分层抽样中,每个个体被抽到的可能性与层数及分层有关.( ×)
题组二教材改编
2.在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间的全体是( ) A.总体B.个体
C.样本的容量D.从总体中抽取的一个样本
答案 A
解析由题目条件知,5 000名居民的阅读时间的全体是总体;其中1名居民的阅读时间是个体;从5 000名居民某天的阅读时间中抽取的200名居民的阅读时间是从总体中抽取的一个样本,样本容量是200.
3.某公司有员工500人,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人,为了调查员工的身体健康状况,从中抽取100名员工,则应在这三个年龄段分别抽取人数为( )
A.33,34,33 B.25,56,19
C.20,40,30 D.30,50,20
答案 B
解析因为125∶280∶95=25∶56∶19,
所以抽取人数分别为25,56,19.
4.某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号,29号,42号学生在样本中,那么样本中还有一个学生的学号是( )
A.10 B.11 C.12 D.16
答案 D
解析从被抽中的3名学生的学号中可以看出学号间距为13,所以样本中还有一个学生的学号是16,故选D.
题组三易错自纠
5.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( ) A.5,10,15,20,25 B.3,13,23,33,43
C.1,2,3,4,5 D.2,4,6,16,32
答案 B
解析间隔距离为10,故可能的编号是3,13,23,33,43.
6.甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.
答案 1 800
解析分层抽样中各层的抽样比相同.样本中甲设备生产的产品有50件,则乙设备生产的产品有30件.在4 800件产品中,甲、乙设备生产的产品总数比为5∶3,所以乙设备生产的产品的总数为1 800件.
题型一简单随机抽样
1.某班级有男生20人,女生30人,从中抽取10人作为样本,其中一次抽样结果是:抽到了4名男生,6名女生,则下列命题正确的是( )
A.这次抽样中可能采用的是简单随机抽样
B.这次抽样一定没有采用系统抽样
C.这次抽样中每个女生被抽到的概率大于每个男生被抽到的概率
D.这次抽样中每个女生被抽到的概率小于每个男生被抽到的概率
答案 A
解析利用排除法求解.这次抽样可能采用的是简单随机抽样,A正确;这次抽样可能采用系统抽样,男生编号为1~20,女生编号为21~50,间隔为5,依次抽取1号,6号,…,46号便可,B错误;这次抽样中每个女生被抽到的概率等于每个男生被抽到的概率,C和D 均错误,故选A.
2.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )
78166572080263140702436997280198
32049234493582003623486969387481
A.08 B .07 C .02 D .01 答案 D
解析 由题意知前5个个体的编号为08,02,14,07,01.
3.利用简单随机抽样,从n 个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为1
3,则在整个抽样过程中,每个个体被抽到的概率为( )
A.14
B.1
3 C.51
4 D.1027
答案 C 解析 由题意知9n -1=13,得n =28,所以整个抽样过程中每个个体被抽到的概率为1028=5
14
,故选C.
思维升华 应用简单随机抽样应注意的问题
(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.
(2)在使用随机数法时,如遇到三位数或四位数,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去.
题型二 系统抽样
典例 (1)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示: 13 0 0 3 4 5 6 6 8 8 8 9 14 1 1 1 2 2 2 3 3 4 4 5 5 5 6 6 7 8 15 0
1
2
2
3
3
3
若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是( ) A .3 B .4 C .5 D .6 答案 B
解析 由题意知,将1~35号分成7组,每组5名运动员,成绩落在区间[139,151]内的运动员共有4组,故由系统抽样法知,共抽取4名.故选B.
(2)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( )
A .11
B .12
C .13
D .14 答案 B
解析 由84042=20,即每20人抽取1人,所以抽取编号落入区间[481,720]的人数为
720-480
20=240
20=12. 引申探究
1.若本例(2)中条件不变,若号码“5”被抽到,那么号码“55”________被抽到.(填“能”或“不能”) 答案 不能
解析 若55被抽到,则55=5+20n ,n =2.5,n 不是整数.故不能被抽到.
2.若本例(2)中条件不变,若在编号为[481,720]中抽取8人,则样本容量为________. 答案 28
解析 因为在编号[481,720]中共有720-480=240人,又在[481,720]中抽取8人, 所以抽样比应为240∶8=30∶1,又因为单位职工共有840人,所以应抽取的样本容量为
84030=28.
思维升华 (1)系统抽样适用的条件是总体容量较大,样本容量也较大.
(2)使用系统抽样时,若总体容量不能被样本容量整除,可以先从总体中随机地剔除几个个体,从而确定分段间隔.
(3)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定. 跟踪训练 将参加夏令营的600名学生按001,002,…,600进行编号.采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分别住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,则三个营区被抽中的人数依次为( ) A .26,16,8 B .25,17,8 C .25,16,9 D .24,17,9
答案 B
解析 由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N +)组抽中的号码是3+12(k -1).令3+12(k -1)≤300,得k ≤103
4,
因此第Ⅰ营区被抽中的人数是25;令300<3+12(k -1)≤495,得103
4<k ≤42,因此第Ⅱ营区
被抽中的人数是42-25=17;第Ⅲ营区被抽中的人数为50-25-17=8.
题型三 分层抽样
命题点1 求总体或样本容量
典例 (1)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n 等于( ) A .9 B .10 C .12 D .13 答案 D
解析 ∵360=n 120+80+60
,∴n =13.
(2)某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽出容量为n 的样本,其中甲种产品有18件,则样本容量n 等于( ) A .54 B .90 C .45 D .126 答案 B
解析 依题意得3
3+5+7×n =18,解得n =90,即样本容量为90.
命题点2 求某层入样的个体数
典例 (1)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师的人数为( )
A.90 B .100 C .180 D .300 答案 C
解析 由题意得抽样比为3201 600=15
,
∴该样本中的老年教师的人数为900×1
5
=180.
(2)(2017·重庆一诊)我国古代数学专著《九章算术》中有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣( ) A .104人 B .108人 C .112人
D .120人
答案 B
解析 由题意可知,这是一个分层抽样的问题,其中北乡可抽取的人数为300×8 1008 100+7 488+6 912=300×8 100
22 500=108,故选B.
思维升华 分层抽样问题类型及解题思路
(1)求某层应抽个体数量:按该层所占总体的比例计算.
(2)已知某层个体数量,求总体容量或反之:根据分层抽样就是按比例抽样,列比例式进行计算.
(3)确定是否应用分层抽样:分层抽样适用于总体中个体差异较大的情况.
跟踪训练 (1)(2017·南昌一模)某校为了了解学生学习的情况,采用分层抽样的方法从高一1 000人,高二1 200人,高三n 人中抽取81人进行问卷调查,已知高二被抽取的人数为30,那么n 等于( ) A .860 B .720 C .1 020 D .1 040
答案 D
解析 分层抽样是按比例抽样的,
所以81× 1 2001 000+1 200+n
=30,解得n =1 040.
(2)已知某地区中小学生人数和近视情况分别如图①和图②所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为________.
答案 200,20
解析 该地区中小学生总人数为 3 500+2 000+4 500=10 000,
则样本容量为10 000×2%=200,其中抽取的高中生近视人数为2 000×2%×50%=20.
五审图表找规律
典例 (12分)某单位有2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:
人数管理技术开发营销生产共计
老年40404080200
中年80120160240600
青年40160280720 1 200
共计160320480 1 040 2 000
(1)若要抽取40人调查身体状况,则应怎样抽样?
(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?
(3)若要抽20人调查对天津全运会举办情况的了解,则应怎样抽样?
抽取40人调查身体状况
↓(观察图表中的人数分类统计情况)
样本人群应受年龄影响
↓(表中老、中、青分类清楚,人数确定)
要以老、中、青分层,用分层抽样
↓
要开一个25人的座谈会
↓(讨论单位发展与薪金调整)
样本人群应受管理、技术开发、营销、生产方面的影响
↓(表中管理、技术开发、营销、生产分类清楚,人数确定)
要以管理、技术开发、营销、生产人员分层,用分层抽样
↓
要抽20人调查对天津全运会举办情况的了解
↓ 可认为全运会是大众体育盛会,一个单位人员对情况了解相当)
将单位人员看作一个整体
↓(从表中数据看总人数为2 000)
人员较多,可采用系统抽样
规范解答
解(1)按老年、中年、青年分层用分层抽样法抽取,[1分]
抽取比例为402 000=1
50
.[2分]
故老年人、中年人、青年人各抽取4人,12人,24人.[4分] (2)按管理、技术开发、营销、生产分层用分层抽样法抽取,[5分] 抽取比例为252 000=1
80
,[6分]
故管理、技术开发、营销、生产各部门分别抽取2人,4人,6人,13人.[8分] (3)用系统抽样,
对全部2 000人随机编号,号码从0001~2000,每100号分为一组,从第一组中用简单随机抽样抽取一个号码,然后将这个号码分别加100,200,…,1 900,共20人组成一个样本.
[12分]
1.(2018·广东茂名月考)在一个容量为N 的总体中抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为
p 1,p 2,p 3,则( )
A .p 1=p 2<p 3
B .p 2=p 3<p 1
C .p 1=p 3<p 2
D .p 1=p 2=p 3
答案 D
解析 由随机抽样的知识知,三种抽样中,每个个体被抽到的概率都相等,故选D. 2.打桥牌时,将洗好的扑克牌(52张)随机确定一张为起始牌后,开始按次序搬牌,对任何一家来说,都是从52张总体中抽取一个13张的样本,则这种抽样方法是( ) A .系统抽样 B .分层抽样
C .简单随机抽样
D .非以上三种抽样方法 答案 A
解析 符合系统抽样的特点,故选A.
3.用简单随机抽样的方法从含有10个个体的总体中抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性分别是( ) A.110,110 B.310,15 C.15,310 D.310,310 答案 A
解析 在抽样过程中,个体a 每一次被抽中的概率是相等的,因为总体容量为10,故个体
a “第一次被抽到”的可能性与“第二次被抽到”的可能性均为1
10
,故选A.
4.将参加英语口语测试的1 000名学生编号为000,001,002,…,999,从中抽取一个容量为50的样本,按系统抽样的方法分为50组,如果第一组编号为000,001,002,…,019,且第一组随机抽取的编号为015,则抽取的第35个样本编号为( ) A .700 B .669 C .695 D .676 答案 C
解析 由题意可知,第一组随机抽取的编号为015,
分段间隔数k =N n =1 000
50
=20,由题意知抽出的这些号码是以15为首项,20为公差的等差
数列,则抽取的第35个样本编号为15+(35-1)×20=695.
5.某工厂的一、二、三车间在11月份共生产了3 600双皮靴,在出厂前检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a ,b ,c ,且a ,b ,c 成等差数列,则二车间生产的产品数为( ) A .800 B .1 000 C .1 200 D .1 500
答案 C
解析 因为a ,b ,c 成等差数列,所以2b =a +c ,所以从二车间抽取的产品数占抽取产品总数的13,根据分层抽样的性质可知,二车间生产的产品数占产品总数的1
3,所以二车间生产
的产品数为3 600×1
3
=1 200.故选C.
6.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( ) A .7 B .9 C .10 D .15 答案 C
解析 由系统抽样的特点知,抽取号码的间隔为960
32=30,抽取的号码依次为9,39,69,…,
939.落入区间[451,750]的有459,489,…,729,这些数构成首项为459,公差为30的等差数列,设有n 项,显然有729=459+(n -1)×30,解得n =10.所以做问卷B 的有10人. 7.(2018·湖南怀化模拟)某电视台为了调查“爸爸去哪儿”节目的收视率,现用分层抽样
的方法从4 300人中抽取一个样本,这4 300人中青年人1 600人,且中年人人数是老年人人数的2倍,现根据年龄采用分层抽样的方法进行调查,在抽取的样本中青年人有320人,则抽取的样本中老年人的人数为( ) A .90 B .180 C .270 D .360 答案 B
解析 设老年人有x 人,从中抽取y 人,则1 600+3x =4 300,得x =900,即老年人有900人,则9001 600=y 320,
得y =180.故选B.
8.(2017·雅礼中学月考)某中学教务处采用系统抽样方法,从学校高三年级全体1 000名学生中抽50名学生做学习状况问卷调查.现将1 000名学生从1到1000进行编号,求得间隔数k =20,即分50组每组20人.在第一组中随机抽取一个号,如果抽到的是17号,则第8组中应抽取的号码是( ) A .177 B .157 C .417 D .367 答案 B
解析 根据系统抽样的特点可知,抽取出的编号成首项为17,公差为20的等差数列,所以第8组应抽取的号码是17+(8-1)×20=157.
9.(2017·江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件. 答案 18
解析 ∵样本容量总体个数=60200+400+300+100=350,
∴应从丙种型号的产品中抽取3
50
×300=18(件).
10.(2017·潍坊模拟)某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山的比赛活动.每人都参与而且只能参与其中一项比赛,各年级参与比赛的人数情况如下表:
其中a ∶b ∶c =2∶3∶5,全校参与登山的人数占总人数的2
5.为了了解学生对本次活动的满
意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取的人
数为________. 答案 36
解析 根据题意可知,样本中参与跑步的人数为200×3
5=120,所以从高二年级参与跑步的
学生中应抽取的人数为120×3
2+3+5
=36.
11.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号,分为40组,分别为1~5,6~10,…,196~200,若第5组抽取号码为22,则第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.
答案 37 20
解析 将1~200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为22+3×5=37;由已知条件得,200名职工中40岁以下的职工人数为200×50%=100,设在40岁以下年龄段中应抽取x 人,则40200=x
100
,解得x =20.
12.某大学为了了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取__________名学生. 答案 60
解析 根据题意,应从一年级本科生中抽取的人数为
4
4+5+5+6
×300=60.
13.(2017·宁夏中卫二模)某市教育主管部门为了全面了解2017届高三学生的学习情况,决定对该市参加2017年高三第一次全省统一考试(后称统考)的32所学校进行抽样调查.将参加统考的32所学校进行编号,依次为1到32,现用系统抽样法抽取8所学校进行调查,若抽到的最大编号为31,则最小编号是( ) A .3 B .1 C .4 D .2 答案 A
解析 根据系统抽样的特点可知,总体分成8组,组距为32
8=4,若抽到的最大编号为31,
则最小编号是3.
14.某校共有学生2 000名,各年级男、女学生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为________.
一年级 二年级 三年级
女生 373 x
y 男生
377
370
z
答案 16
解析 由题意可知二年级女生有380人,那么三年级的学生人数应该是2 000-373-377-380-370=500,即总体中各个年级的人数比为3∶3∶2,故在分层抽样中应在三年级抽取的学生人数为64×2
8
=16.
15.(2018·泉州质检)某公司员工对户外运动分别持“喜欢”“不喜欢”和“一般”三种态度,其中持“一般”态度的比持“不喜欢”态度的多12人,按分层抽样方法从该公司全体员工中选出部分员工座谈户外运动,如果选出的人有6人对户外运动持“喜欢”态度,有1人对户外运动持“不喜欢”态度,有3人对户外运动持“一般”态度,那么这个公司全体员工中对户外运动持“喜欢”态度的有( ) A .36人 B .30人 C .24人 D .18人 答案 A
解析 设持“喜欢”“不喜欢”“一般”态度的人数分别为6x ,x,3x ,由题意可得3x -x =12,x =6,
∴持“喜欢”态度的有6x =36(人).
16.(2017·开封模拟)某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n 个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1人,则在采用系统抽样时,需要在总体中先剔除1个个体,求n .
解 总体容量为6+12+18=36.
当样本容量为n 时,由题意知,系统抽样的间隔为36n
,
分层抽样的比例是n 36,抽取的工程师人数为n 36×6=n 6,技术员人数为n 36×12=n
3,技工人数
为n 36×18=n
2
,
所以n 应是6的倍数,36的约数,即n =6,12,18. 当样本容量为(n +1)时,总体容量剔除以后是35人,
系统抽样的间隔为35
n+1,因为
35
n+1
必须是整数,
所以n只能取6,即样本容量n=6.。