二项式定理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、整除问题
例 2、证明 、证明:99 -1 能被 1000 整除
10
七、其他应用
例5、求(1+x)+(1+x)2+ (1+x)3 + …+(1+x)2n 、 ) n ∈ N*的展开式中含 n的系数 的展开式中含x
练 习
展开式中x 求(1- x )6( 1 + x )4展开式中 3的系数 -
ቤተ መጻሕፍቲ ባይዱ
注:求二项式系数、项的系数或项的另 求二项式系数、 一种方法是利用二项式的通项公式
练习
1、 (
x a
2

a x
) 的展开式中,第五项是____________ 的展开式中,
6
2、 ( a −
3
1
a 第_________项
)15 的展开式中,不含 a 的项是 的展开式中,
应用
一、近似值计算
精确到0.01) 例1、计算(0.997)3的近似值 (精确到 、计算( ) 精确到
2 r n r n n n
3、特例: 、特例:
(1 + x) = 1 + C x + C x + L + C x + L + C x
n 1 n 2 n
例1、(1)求(1+2x ) 的展开式的第4项的系数 (1)求
7
1 8 2 (2)求 (2)求(x − ) 的展开式中x 的系数和中间项 x
x 3 9 (3)求 (3)求 ( + ) 的展开式常数项 3 x
二 项 式 定 理 应 用
1、二项式定理: 、二项式定理:
(a + b) = C a + C a b +L+ C a b +L+ C b
n 0 n n
1 n−1 n
r n−r r n
n n n
2、通项公式: 、通项公式:
Tr + 1 = C a
r n
n−r
b
r
( r = 0,1, 2, L n )
相关文档
最新文档