七年级数学下册期末测试卷及答案doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下册期末测试卷及答案doc
一、选择题
1.如图,P 1是一块半径为1的半圆形纸板,在P 1的右上端剪去一个直径为1的半圆后得到图形P 2,然后依次剪去一个更小的半圆(其直径为前一个被剪去的半圆的半径)得到图形P 3、P 4…P n …,记纸板P n 的面积为S n ,则S n -S n +1的值为( )
A .12n
π⎛⎫ ⎪⎝⎭
B .14n
π⎛⎫ ⎪⎝⎭
C .21
12n π+⎛⎫ ⎪⎝⎭
D .21
12n π-⎛⎫ ⎪⎝⎭
2.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠CDE ;④∠A+∠ADC=180°.其中,能推出AB ∥DC 的条件为( )
A .①④
B .②③
C .①③
D .①③④ 3.下列运算结果正确的是( ) A .32a a a ÷=
B .()
2
2
5a a =
C .236a a a =
D .()3
326a a =
4.下列线段能构成三角形的是( ) A .2,2,4
B .3,4,5
C .1,2,3
D .2,3,6
5.新冠病毒(2019﹣nCoV )是一种新的Sarbecovirus 亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA 病毒,其遗传物质是所有RNA 病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm ,平均直径为100nm (纳米).1米=109纳米,100nm 可以表示为( )米. A .0.1×10﹣6
B .10×10﹣8
C .1×10﹣7
D .1×1011
6.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )
A .120︒
B .108︒
C .112︒
D .114︒
7.下列各式从左到右的变形,是因式分解的是( ) A .a 2-5=(a+2)(a-2)-1
B .(x+2)(x-2)=x 2-4
C .x 2+8x+16=(x+4)2
D .a 2+4=(a+2)2-4
8.如图所示的四个图形中,∠1和∠2是同位角...
的是( )
A .②③
B .①②③
C .①②④
D .①④
9.△ABC 是直角三角形,则下列选项一定错误的是( )
A .∠A -∠B=∠C
B .∠A=60°,∠B=40°
C .∠A+∠B=∠C
D .∠A :∠B :∠C=1:1:2
10.一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,下图描述了他上班途中的情景,下列四种说法:李师傅上班处距他家2000米;李师傅路上耗时20分钟;修车后李师傅的速度是修车前的4倍;李师傅修车用了5分钟,其中错误的是( )
A .0个
B .1个
C .2个
D .3个
二、填空题
11.若a m =5,a n =3,则a m +n =_____________. 12.计算()()12x x --的结果为_____;
13.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多acm ,则正方形的面积与长方形的面积的差为_____(用含有字母a 的代数式表示).
14.实数x ,y 满足方程组27
28x y x y +=⎧⎨+=⎩
,则x +y =_____.
15.计算(﹣2xy )2的结果是_____.
16.若29x kx -+是完全平方式,则k =_____.
17.小明在拼图时,发现8个样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm 的小正方形,则每个小长方形的面积为__________2mm .
18.阅读材料:①1的任何次幂都等于1;②﹣1的奇数次幂都等于﹣1;③﹣1的偶数次幂都等于1;④任何不等于零的数的零次幂都等于1,试根据以上材料探索使等式(2x+3)
x+2016
=1成立的x 的值为_____.
19.每个生物携带自身基因的载体是生物细胞的DNA ,DNA 分子的直径只有0.0000002cm ,将0.0000002用科学记数法表示为_________. 20.已知代数式2x-3y 的值为5,则-4x+6y=______.
三、解答题
21.第19届亚运会将于2022年在杭州举行,“丝绸细节”助力杭州打动世界.杭州丝绸公司为亚运会设计手工礼品,投入W 元钱,若以2条领带和1条丝巾为一份礼品,则刚好可制作600份礼品;若以1条领带和3条丝巾为一份礼品,则刚好可制作400份礼品. (1)若24W =万元,求领带及丝巾的制作成本是多少? (2)若用W 元钱全部用于制作领带,总共可以制作几条?
(3)若用W 元钱恰好能制作300份其他的礼品,可以选择a 条领带和b 条丝巾作为一份礼品(两种都要有),请求出所有可能的a 、b 的值. 22.(类比学习)
小明同学类比除法240÷16=15的竖式计算,想到对二次三项式x 2+3x +2进行因式分解的方法:
1516240
1 6 8080 0 222
132
2222 0
x x x x x x x x +++++++ 即(x 2+3x +2)÷(x +1)=x +2,所以x 2+3x +2=(x +1)(x +2). (初步应用)
小明看到了这样一道被墨水污染的因式分解题:x 2+□x +6=(x +2)(x +☆),(其中□、☆代表
两个被污染的系数),他列出了下列竖式:
22
262
(2)6
2 0
x x x x x x x x +++++-++☆
☆☆
得出□=___________,☆=_________.
(深入研究)
小明用这种方法对多项式x 2+2x 2-x -2进行因式分解,进行到了:x 3+2x 2-x -2=(x +2)(*).(*代表一个多项式),请你利用前面的方法,列出竖式,将多项式x 3+2x 2-x -2因式分解.
23.如图 1,直线GH 分别交,AB CD 于点 ,
E F (点F 在点E 的右侧),若12180︒∠+∠= (1)求证://AB CD ;
(2)如图2所示,点M N 、在
,AB CD 之间,且位于,E F 的异侧,连MN , 若23M N ∠=∠,则,,AEM NFD N ∠∠∠三个角之间存在何种数量关系,并说明理由.
(3)如图 3 所示,点M 在线段EF 上,点N 在直线CD 的下方,点P 是直线AB 上一点(在E 的左侧),连接,,MP PN NF ,若2,2MPN MPB NFH HFD ∠=∠∠=∠,则请直接写出PMH ∠与N ∠之间的数量
24.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点. (1)画出△ABC 向右平移4个单位后得到的△A 1B 1C 1; (2)图中AC 与A 1C 1的关系是:_____. (3)画出△ABC 的AB 边上的高CD ;垂足是D ; (4)图中△ABC 的面积是_____.
25.已知:如图,直线BD 分别交射线AE 、CF 于点B 、D ,连接A 、D 和B 、C ,
12180∠+∠=,A C ∠=∠,AD 平分BDF ∠,求证:
()1//AD BC ;
()2BC 平分DBE ∠.
26.在如图所示的正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的顶点都在正方形网格的格点(网格线的交点)上.
(1)画出△ABC 先向右平移5个单位长度,再向上平移2个单位长度所得的△A 1B 1C 1; (2)画出△ABC 的中线AD ;
(3)画出△ABC 的高CE 所在直线,标出垂足E : (4)在(1)的条件下,线段AA 1和CC 1的关系是 27.计算: (1)2
1122⎛⎫⎛⎫-
⨯- ⎪ ⎪⎝⎭⎝⎭
; (2)m 2•m 4+(﹣m 3)2; (3)(x +y )(2x ﹣3y ); (4)(x +3)2﹣(x +1)(x ﹣1).
28.3321130y x --=,|1|24z x y -=--+,求x y z ++的平方根.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.C 解析:C 【分析】
首先分析题意,找到规律,并进行推导得出答案. 【详解】 根据题意得,n ≥2, S 1=12π×12=12π, S 2=12π﹣12π×(1
2
)2, … S n =
12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(1
2
)n ﹣1]2,
S n +1=
12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n ﹣1]2﹣12π×[(1
2
)n ]2, ∴S n ﹣S n +1=12π×(12)2n =(1
2
)2n +1π. 故选C . 【点睛】
考查学生通过观察、归纳、抽象出数列的规律的能力.
2.D
解析:D 【详解】
解:①∵∠1=∠2,∴AB ∥CD ,故本选项正确; ②∵∠3=∠4,∴BC ∥AD ,故本选项错误; ③∵∠A=∠CDE ,∴AB ∥CD ,故本选项正确; ④∵∠A+∠ADC=180°,∴AB ∥CD ,故本选项正确. 故选D.
3.A
解析:A 【分析】
根据同底数幂的除法、同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,逐项判定即可. 【详解】
解:32a a a ÷=,A 正确,
()
2
24a a =,B 错误,
235a a a =,C 错误,
()
3
328a a =,D 错误,
故选:A . 【点睛】
此题主要考查了同底数幂的除法,同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,熟练掌握运算方法是解题的关键.
4.B
解析:B 【解析】
试题分析:A 、2+2=4,不能构成三角形,故本选项错误;
B 、3、4、5,满足任意两边之和大于第三边,能构成三角形,故本选项正确;
C 、1+2=3,不能构成三角形,故本选项错误;
D 、2+3<6,不能构成三角形,故本选项错误. 故选B .
考点:三角形三边关系.
5.C
解析:C
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:100nm=100×10﹣9m
=1×10﹣7m,
故选:C.
【点睛】
本题是对科学记数法知识的考查,熟练掌握负指数幂知识是解决本题的关键.
6.C
解析:C
【分析】
设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−24°,再由第2次折叠得到∠C′FB=∠BFC=x−24°,于是利用平角定义可计算出x =68°,接着根据平行线的性质得∠A′EF=180°−∠B′FE=112°,所以∠AEF=112°.
【详解】
如图,设∠B′FE=x,
∵纸条沿EF折叠,
∴∠BFE=∠B′FE=x,∠AEF=∠A′EF,
∴∠BFC=∠BFE−∠CFE=x−24°,
∵纸条沿BF折叠,
∴∠C′FB=∠BFC=x−24°,
而∠B′FE+∠BFE+∠C′FE=180°,
∴x+x+x−24°=180°,
解得x=68°,
∵A′D′∥B′C′,
∴∠A′EF=180°−∠B′FE=180°−68°=112°,
∴∠AEF=112°.
故选:C.
【点睛】
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形.7.C
解析:C
【分析】
根据因式分解的定义逐个判断即可.
【详解】
A、不是因式分解,故本选项不符合题意;
B、不是因式分解,故本选项不符合题意;
C、是因式分解,故本选项符合题意;
D、不是因式分解,故本选项不符合题意;
故选:C.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.
8.C
解析:C
【分析】
根据同位角的定义逐一判断即得答案.
【详解】
解:图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,
所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角
....
故选:C.
【点睛】
本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.
9.B
解析:B
【分析】
根据三角形内角和定理得出∠A+∠B+∠C=180°,和选项求出∠C(或∠B或∠A)的度数,再判断即可.
【详解】
解:A、∵∠A﹣∠B=∠C,
∴∠A=∠B+∠C,
∵∠A+∠B+∠C=180°,
∴2∠A=180°,
∴∠A=90°,
∴△ABC是直角三角形,故A选项是正确的;
B、∵∠A=60°,∠B=40°,
∴∠C=180°﹣∠A﹣∠B
=180°﹣60°﹣40°
=80°,
∴△ABC是锐角三角形,故B选项是错误的;
C、∵∠A+∠B=∠C,∠A+∠B+∠C=180°,
∴2∠C=180°,
∴∠C=90°,
∴△ABC是直角三角形,故C选项是正确的;
D、∵∠A:∠B:∠C=1:1:2,
∴∠A+∠B=∠C,
∵∠A+∠B+∠C=180°,
∴2∠C=180°,
∴∠C=90°,
∴△ABC是直角三角形,故D选项是正确的;
故选:B.
【点睛】
本题考查了三角形的内角和定理的应用,主要考查学生的推理能力和辨析能力.
10.B
解析:B
【分析】
观察图象,明确每一段行驶的路程、时间,即可做出判断.
【详解】
由图可知,当时间为离家20分钟时,李师傅到达单位,所以说法一和说法二正确;
从出发到10分钟时,李师傅的速度为1000÷10=100(米∕分钟),
在出发后15分钟到20分钟,李师傅的速度为(2000-1000)÷(20-15)=200(米∕秒),修车后李师傅的速度是修车前的2倍,所以说法三错误;
在出发后10分钟到15分钟,李师傅修车用了15-10=5(分钟),所以说法四正确,
故选:B.
【点睛】
此题考查了函数的图象,会从图象中提取有效信息,理解因变量与自变量的关系是解答的关键.
二、填空题
11.15
【分析】
根据幂的运算公式即可求解.
【详解】
∵am=5,an=3,
∴am+n= am×an=5×3=15
故答案为:15.
【点睛】
此题主要考查幂的运算,解题的关键是熟知同底数幂的逆运
解析:15
【分析】
根据幂的运算公式即可求解.
【详解】
∵a m=5,a n=3,
∴a m+n= a m×a n=5×3=15
故答案为:15.
【点睛】
此题主要考查幂的运算,解题的关键是熟知同底数幂的逆运算.
12.【分析】
原式利用多项式乘多项式法则计算即可得到结果.
【详解】
原式=x²−2x−x+2=x²−3x+2,
故答案为:x²−3x+2.
【点睛】
点评:此题考查了多项式乘多项式,熟练掌握运算法则
解析:2-32
x x
【分析】
原式利用多项式乘多项式法则计算即可得到结果.
【详解】
原式=x²−2x−x+2=x²−3x+2,
故答案为:x²−3x+2.
【点睛】
点评:此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.
13.【分析】
设长方形的宽为xcm,根据“图(1)的正方形的周长与图(2)的长方形的周长相等”求得正方形的边长,最后由长方形与正方形的面积公式计算正方形的面积与长方形的面积的差.
【详解】
解:设长方
解析:2
4
a 【分析】
设长方形的宽为xcm ,根据“图(1)的正方形的周长与图(2)的长方形的周长相等”求得正方形的边长,最后由长方形与正方形的面积公式计算正方形的面积与长方形的面积的差.
【详解】
解:设长方形的宽为xcm ,则长方形的长为(x +a )cm ,
∵图(1)的正方形的周长与图(2)的长方形的周长相等,
∴正方形的边长为:2()242
x a x x a +++=, ∴正方形的面积与长方形的面积的差为:22()2x a x x a +⎛⎫-+ ⎪⎝⎭ 22
2444
x ax a x ax ++=-- =2
4
a . 故答案为:2
4
a . 【点睛】
本题主要考查了列代数式,整式的混合运算,关键是读懂题意,正确列出代数式. 14.5
【分析】
方程组两方程左右两边相加即可求出所求.
【详解】
解:,
①②得:,
则,
故答案为:5.
【点睛】
本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法
解析:5
【分析】
方程组两方程左右两边相加即可求出所求.
【详解】
解:2728x y x y +=⎧⎨+=⎩①②

①+②得:3315x y +=,
则5x y +=,
故答案为:5.
【点睛】
本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
15.4x2y2.
【分析】
直接利用积的乘方运算法则计算得出答案.
【详解】
解:(﹣2xy)2=4x2y2.
故答案为:4x2y2.
【点睛】
本题考查了积的乘方运算,正确掌握运算法则是解题的关键.
解析:4x 2y 2.
【分析】
直接利用积的乘方运算法则计算得出答案.
【详解】
解:(﹣2xy )2=4x 2y 2.
故答案为:4x 2y 2.
【点睛】
本题考查了积的乘方运算,正确掌握运算法则是解题的关键.
16.【分析】
根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出的值 .
【详解】
解:∵是完全平方式,即

故答案为:.
【点睛】
此题考查了完全平方式, 熟练掌握完全平方公式
解析:6±
【分析】
根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出k 的值 .
【详解】
解:∵29x kx -+是完全平方式,即()2
293x kx x -+=±
236k ∴=±⨯=±.
故答案为:6±.
【点睛】
此题考查了完全平方式, 熟练掌握完全平方公式的结构特点是解本题的关键
17.【分析】
设小长方形的长是xmm ,宽是ymm .根据图(1),知长的3倍=宽的5倍,即3x=5y ;根据图(2),知宽的2倍-长=5,即2y+x=5,建立方程组.
【详解】
设小长方形的长是xmm ,宽
解析:2375mm
【分析】
设小长方形的长是xmm ,宽是ymm .根据图(1),知长的3倍=宽的5倍,即3x=5y ;根据图(2),知宽的2倍-长=5,即2y+x=5,建立方程组.
【详解】
设小长方形的长是xmm ,宽是ymm ,
根据题意得:3525x y y x =⎧⎨-=⎩ ,解得2515x y =⎧⎨=⎩
∴小长方形的面积为:22515375xy mm
【点睛】
此题的关键是能够分别从每个图形中获得信息,建立方程. 18.﹣1或﹣2或﹣2016
【分析】
根据1的乘方,﹣1的乘方,非零的零次幂,可得答案.
【详解】
解:①当2x+3=1时,解得:x =﹣1,
此时x+2016=2015,则(2x+3)x+2016=12
解析:﹣1或﹣2或﹣2016
【分析】
根据1的乘方,﹣1的乘方,非零的零次幂,可得答案.
【详解】
解:①当2x+3=1时,解得:x =﹣1,
此时x+2016=2015,则(2x+3)x+2016=12015=1,
所以x =﹣1.
②当2x+3=﹣1时,解得:x =﹣2,此时x+2016=2014,
则(2x+3)x+2016=(﹣1)2014=1,
所以x =﹣2.
③当x+2016=0时,x=﹣2016,此时2x+3=﹣4029,
则(2x+3)x+2016=(﹣4029)0=1,
所以x=﹣2016.
综上所述,当x=﹣1,或x=﹣2,或x=﹣2016时,代数式(2x+3)x+2016的值为1.
故答案为:﹣1或﹣2或﹣2016.
【点睛】
本题考查的是乘方运算,特别是乘方的结果为1的情况,分类讨论的思想是解题的关键.19.210-7
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决
解析:2⨯10-7
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
0.000 0002=2×10-7,
故答案为:2⨯10-7.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
20.-10
【分析】
原式前两项提取-2变形后,将已知代数式的值代入计算即可求出值.
【详解】
解:∵2x-3y=5,
∴原式=-2(2x-3y)=-2×5=-10.
故答案为:-10.
【点睛】
本题
解析:-10
【分析】
原式前两项提取-2变形后,将已知代数式的值代入计算即可求出值.
【详解】
解:∵2x-3y=5,
∴原式=-2(2x-3y )=-2×5=-10.
故答案为:-10.
【点睛】
本题考查了代数式求值,熟练掌握运算法则是解题的关键.
三、解答题
21.(1)领带的制作成本是120元,丝巾的制作成本是160元;(2)可以制作2000条领带;(3)42a b =⎧⎨
=⎩ 【分析】
(1)设领带及丝巾的制作成本是x 元和y 元,根据题意列出方程组求解即可; (2)由600(2)W x y =+与400(3)W x y =+可得到43y x =
,代入可得2000W x =,即可求得答案;
(3)根据44600(2)300()33
x x ax bx +
=+即可表达出a 、b 的关系式即可解答. 【详解】
解:(1)设领带及丝巾的制作成本是x 元和y 元, 则600(2)240000400(3)240000x y x y +=⎧⎨+=⎩
解得:120160x y =⎧⎨=⎩
答:领带的制作成本是120元,丝巾的制作成本是160元.
(2)由题意可得:600(2)W x y =+,且400(3)W x y =+,
∴600(2)400(3)x y x y +=+, 整理得:43
y x =,代入 600(2)W x y =+ 可得:4600(2)20003
W x x x =+
=, ∴可以制作2000条领带.
(3)由(2)可得:43y x =, ∴44600(2)300()33
x x ax bx +
=+ 整理可得:3420a b +=
∵a 、b 都为正整数,
∴42a b =⎧⎨=⎩
【点睛】
本题考查了二元一次方程组的综合应用,解题的关键是根据题意列出方程,并对已知条件进行适当的变形.
22.[初步应用]5,3;[深入研究]x 3+2x 2-x -2=(x +2)(x +1)(x -1);详见解析;
【分析】
[初步应用]列出竖式结合已知可得:2☆-6=0,2-=☆,求出□与☆即可.
[深入研究]列出竖式可得x 3+2x 2-x -2÷(x +2),即可将多项式x 3+2x 2-x -2因式分解.
【详解】
[初步应用]∵多项式x 2+□x +6能被x +2整除,
∴2☆-6=0,2-=☆,
∴☆= 3,□=5,
故答案为:5,3;
[深入研究]∵23232
1
222
2 2
2 0
x x x x x x x x x -++--+----, ∴()()
()()()3222221211x x x x x x x x +--=+-=++-. 【点睛】
本题考查整式的除法;理解题意,仿照整数的除法列出竖式进行运算是解题的关键.
23.(1)证明过程见解析;(2)12
N AEM NFD ∠=∠-∠,理由见解析;(3)13
∠N+∠PMH=180°. 【分析】
(1)根据同旁内角互补,两直线平行即可判定AB ∥CD ;
(2)设∠N=2α,∠M=3α,∠AEM=x ,∠NFD=y ,过M 作MP ∥AB ,过N 作NQ ∥AB 可得∠PMN=3α-x ,∠QNM=2α-y ,根据平行线性质得到3α-x =2α-y ,化简即可得到12
N AEM NFD ∠=∠-∠; (3)过点M 作MI ∥AB 交PN 于O ,过点N 作NQ ∥CD 交PN 于R ,根据平行线的性质可得∠BPM=∠PMI ,由已知得到∠MON=∠MPN+∠PMI=3∠PMI 及∠RFN=180°-∠NFH-
∠HFD=180°-3∠HFD ,根据对顶角相等得到∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM ,化简得到∠FNP+2∠PMI-2∠RFM=180°-∠PMH ,根据平行线的性质得到
3∠PMI+∠FNP+∠FNH=180°及3∠RFM+∠FNH=180°,两个等式相减即可得到∠RFM-
∠PMI=1
3
∠FNP,将该等式代入∠FNP+2∠PMI-2∠RFM=180°-∠PMH,即得到
1 3∠FNP=180°-∠PMH,即
1
3
∠N+∠PMH=180°.
【详解】
(1)证明:∵∠1=∠BEF,12180︒
∠+∠=
∴∠BEF+∠2=180°
∴AB∥CD.
(2)解:1
2
N AEM NFD ∠=∠-∠
设∠N=2α,∠M=3α,∠AEM=x,∠NFD=y 过M作MP∥AB,过N作NQ∥AB
∵//
AB CD,MP∥AB,NQ∥AB
∴MP∥NQ∥AB∥CD
∴∠EMP=x,∠FNQ=y
∴∠PMN=3α-x,∠QNM=2α-y
∴3α-x=2α-y
即α=x-y
∴1
2
N AEM NFD ∠=∠-∠
故答案为1
2
N AEM NFD ∠=∠-∠
(3)解:1
3
∠N+∠PMH=180°
过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R.
∵//
AB CD,MI∥AB,NQ∥CD
∴AB∥MI∥NQ∥CD
∴∠BPM=∠PMI
∵∠MPN=2∠MPB
∴∠MPN=2∠PMI
∴∠MON=∠MPN+∠PMI=3∠PMI
∵∠NFH=2∠HFD
∴∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD
∵∠RFN=∠HFD
∴∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM
∴∠MON+∠PRF+∠RFM=360°-∠OMF
即3∠PMI+∠FNP+180°-3∠RFM+∠RFM=360°-∠OMF ∴∠FNP+2∠PMI-2∠RFM=180°-∠PMH
∵3∠PMI+∠PNH=180°
∴3∠PMI+∠FNP+∠FNH=180°
∵3∠RFM+∠FNH=180°
∴3∠PMI-3∠RFM+∠FNP=0°
即∠RFM-∠PMI=1
3
∠FNP
∴∠FNP+2∠PMI-2∠RFM=∠FNP-2(∠RFM-∠PMI)=180°-∠PMH
∠FNP-2×1
3
∠FNP=180°-∠PMH
1
3
∠FNP=180°-∠PMH
即1
3
∠N+∠PMH=180°
故答案为1
3
∠N+∠PMH=180°
【点睛】
本题主要考查了平行线的判定与性质.解题的关键是正确作出辅助线,通过运用平行线性质
得到角之间的关系.
24.(1)画图见解析;(2)平行且相等;(3)画图见解析;(4)8
【分析】
(1)根据网格结构找出点A、B、C向右平移4个单位后的对应点A1、B1、C1的位置,然后顺次连接即可;
(2)根据平移的性质解答;
(3)延长AB,作出AB的高CD即可;
(4)利用△ABC所在的矩形的面积减去四周三个三角形的面积,列式计算即可得解.【详解】
解:(1)如图所示,
(2)根据平移的性质得出,AC与A1C1的关系是:平行且相等;
(3)如图所示,
(4)△ABC的面积=5×7-1
2
×7×5-
1
2
×7×2-
1
2
×5×1=8.
25.(1)见解析;(2)见解析.
【解析】
【分析】
()1求出1BDC
∠=∠,根据平行线的判定得出//
AB CF,根据平行线的性质得出
C EBC
∠=∠,求出A EBC
∠=∠,根据平行线的判定得出即可;
()2根据角平分线定义求出FDA ADB
∠=∠,根据平行线的性质得出FDA C
∠=∠,ADB DBC
∠=∠,C EBC
∠=∠,求出EBC DBC
∠=∠即可.
【详解】
()12180
BDC
∠+∠=,12180
∠+∠=,
1BDC
∴∠=∠,
//
AB CF
∴,
C EBC
∴∠=∠,
A C
∠=∠,
A EBC
∴∠=∠,
//
AD BC
∴;
()2AD平分BDF
∠,
FDA ADB ∴∠=∠,
//AD BC ,
FDA C ∴∠=∠,ADB DBC ∠=∠,
C EBC ∠=∠,
EBC DBC ∴∠=∠,
BC ∴平分DBE ∠.
【点睛】
本题考查了平行线的性质和判定,角平分线定义的应用,考查了学生运用性质进行推理的能力,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.
26.(1)见解析;(2)见解析;(3)见解析;(4)平行且相等
【分析】
(1)利用网格特点和平移的性质画出A 、B 、C 的对应点A 1、B 1、C 1即可;
(2)根据三角形中线的定义画出图形即可;
(3)根据三角形高的定义画出图形即可;
(4)根据平移的性质即可得出结论.
【详解】
解:(1)如图,△A 1B 1C 1即为所作图形;
(2)如图,线段AD 即为所作图形;
(3)如图,直线CE 即为所作图形;
(4)∵△A 1B 1C 1是由△ABC 平移得到,
∴A 和A 1,C 和C 1是对应点,
∴AA 1和CC 1的关系是:平行且相等.
【点睛】
本题考查了平移作图,平移的性质,三角形的高和中线的画法,熟练掌握平移的性质是解题的关键.
27.(1)18
-;(2)2m 6;(3)2x 2﹣xy ﹣3y 2;(4)6x +10.
【分析】
(1)根据同底数幂的乘法法则进行计算;
(2)先根据同底数幂的乘法法则和幂的乘方法则进行计算,再根据合并同类项法则进行计
算;
(3)根据多项式乘以多项式法则进行计算,再合并同类项;
(4)先根据完全平方公式,平方差公式进行计算,再合并同类项.
【详解】
解:(1)21122⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭
=3
12⎛⎫- ⎪⎝⎭ 18
=-; (2)m 2•m 4+(﹣m 3)2
=m 6+m 6
=2m 6;
(3)(x +y )(2x ﹣3y )
=2x 2﹣3xy +2xy ﹣3y 2
=2x 2﹣xy ﹣3y 2;
(4)(x +3)2﹣(x +1)(x ﹣1)
=x 2+6x +9﹣x 2+1
=6x +10.
【点睛】
此题考查的是幂的运算性质和整式的运算,掌握同底数幂的乘法法则、幂的乘方法则、多项式乘以多项式法则、完全平方公式和平方差公式是解决此题的关键. 28

【分析】
根据题意得到三元一次方程组,解方程组,求出x y z ++,最后求平方根即可.
【详解】
0=
,|1|z -=,
=
|1|0z -=,
∴2113024010y x x y z -+-=⎧⎪-+=⎨⎪-=⎩

解得231x y z =⎧⎪=⎨⎪=⎩

则6x y z ++=,
∴x y z ++
平方根为.
【点睛】
本题考查相反数的意义,非负数的表达,解三元一次方程组,求平方根等知识,综合性较强,解题关键是根据题意列出三元一次方程组.。

相关文档
最新文档