高青县一中2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高青县一中2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.定义某种运算S=a⊗b,运算原理如图所示,则式子+的值为()
A.4 B.8 C.10 D.13
2.设全集U=M∪N=﹛1,2,3,4,5﹜,M∩∁U N=﹛2,4﹜,则N=()
A.{1,2,3} B.{1,3,5} C.{1,4,5} D.{2,3,4}
3.如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.4 B.8 C.12 D.20
【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力.
4.使得(3x2+)n(n∈N+)的展开式中含有常数项的最小的n=()
A.3 B.5 C.6 D.10
5. 设函数f (x )=
则不等式f (x )>f (1)的解集是( )
A .(﹣3,1)∪(3,+∞)
B .(﹣3,1)∪(2,+∞)
C .(﹣1,1)∪(3,+∞)
D .(﹣∞,
﹣3)∪(1,3)
6. 设0<a <1,实数x ,y 满足,则y 关于x 的函数的图象形状大致是( )
A .
B .
C .
D .
7. 如图甲所示, 三棱锥P ABC - 的高8,3,30PO AC BC ACB ===∠= ,,M N 分别在BC 和PO 上,且(),203CM x PN x x ==∈(,,图乙的四个图象大致描绘了三棱锥N AMC -的体积y 与 的变化关系,其中正确的是( )
A .
B . C. D .1111] 8. 若直线:1l y kx =-与曲线
C :1
()1e
x f x x =-+没有公共点,则实数k 的最大值为( )
A .-1
B .
1
2
C .1
D 【命题意图】考查直线与函数图象的位置关系、函数存在定理,意在考查逻辑思维能力、等价转化能力、运算求解能力.
9. 已知全集为R ,集合{}
|23A x x x =<->或,{}2,0,2,4B =-,则()
R A B =ð( )
A .{}2,0,2-
B .{}2,2,4-
C .{}2,0,3-
D .{}0,2,4 10.已知全集U=R ,集合M={x|﹣2≤x ﹣1≤2}和N={x|x=2k ﹣1,k=1,2,…}的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有( )
A .3个
B .2个
C .1个
D .无穷多个
11.若f (x )=sin (2x+θ),则“f (x )的图象关于x=对称”是“θ=﹣
”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分又不必要条件
12.已知函数f (x )=Asin (ωx+φ)(a >0,
ω>0,|φ|<)的部分图象如图所示,则f (x )的解析式是( )
A .f (x )=sin (3x+)
B .f (x )=sin (2x+)
C .f (x )=sin (x+)
D .f (x )=sin (2x+)
二、填空题
13.函数y=f (x )的图象在点M (1,f (1))处的切线方程是y=3x ﹣2,则f (1)+f ′(1)= .
14.已知定义在R 上的奇函数()f x 满足(4)()f x f x +=,且(0,2)x ∈时2()1f x x =+,则(7)f 的值为 ▲ . 15.如图,函数f (x )的图象为折线 AC B ,则不等式f (x )≥log 2(x+1)的解集是 .
16.等差数列{}n a 的前项和为n S ,若37116a a a ++=,则13S 等于_________.
17.如图是某赛季甲乙两名篮球运动员每场比赛得分的茎叶图,则甲乙两人比赛得分的中位数之和是 .
18.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n=8时S n 取得最大值,则d 的取值范围为 .
三、解答题
19.如图,在Rt △ABC 中,∠ACB=
,AC=3,BC=2,P 是△ABC 内一点.
(1)若P 是等腰三角形PBC 的直角顶角,求PA 的长;
(2)若∠BPC=
,设∠PCB=θ,求△PBC 的面积S (θ)的解析式,并求S (θ)的最大值.
20.(本小题满分12分)
如图(1),在三角形PCD 中,AB 为其中位线,且2BD PC =,若沿AB 将三角形PAB 折起,使
PAD θ∠=,构成四棱锥P ABCD -,且
2PC CD
PF CE
==. (1)求证:平面 BEF ⊥平面PAB ; (2)当 异面直线BF 与PA 所成的角为
3
π
时,求折起的角度.
21.已知函数f (x )=4sinxcosx ﹣5sin 2x ﹣cos 2x+3.
(Ⅰ)当x ∈[0,
]时,求函数f (x )的值域;
(Ⅱ)若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足=,
=2+2cos (A+C ),
求f (B )的值.
22.【常州市2018届高三上武进区高中数学期中】已知函数()()2
21ln f x ax a x x =+--,R a ∈.
⑴若曲线()y f x =在点()()
1,1f 处的切线经过点()2,11,求实数a 的值; ⑵若函数()f x 在区间()2,3上单调,求实数a 的取值范围; ⑶设()1
sin 8
g x x =,若对()10,x ∀∈+∞,[]20,πx ∃∈,使得()()122f x g x +≥成立,求整数a 的最小值.
23.已知椭圆G:=1(a>b>0)的离心率为,右焦点为(2,0),斜率为1的直线l与椭圆
G交与A、B两点,以AB为底边作等腰三角形,顶点为P(﹣3,2).
(Ⅰ)求椭圆G的方程;
(Ⅱ)求△PAB的面积.
24.(本小题满分12分)设f(x)=-x2+ax+a2ln x(a≠0).
(1)讨论f(x)的单调性;
(2)是否存在a>0,使f(x)∈[e-1,e2]对于x∈[1,e]时恒成立,若存在求出a的值,若不存在说明理由.
高青县一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】 C
【解析】解:模拟执行程序,可得,当a ≥b 时,则输出a (b+1),反之,则输出b (a+1),
∵2tan =2,lg =﹣1,
∴(2tan )⊗lg
=(2tan
)×(lg
+1)=2×(﹣1+1)=0,
∵lne=1,()﹣1
=5,
∴lne ⊗(
)﹣1
=()﹣1
×(lne+1)=5×(1+1)=10,
∴+=0+10=10. 故选:C .
2. 【答案】B
【解析】解:∵全集U=M ∪N=﹛1,2,3,4,5﹜,M ∩C u N=﹛2,4﹜, ∴集合M ,N 对应的韦恩图为 所以N={1,3,5} 故选B
3. 【答案】C
【解析】由三视图可知该几何体是四棱锥,且底面为长6,宽2的矩形,高为3,所以此四棱锥体积为
123123
1
=⨯⨯,故选C. 4. 【答案】B
【解析】解:(3x 2
+)n
(n ∈N +)的展开式的通项公式为T r+1=
•(3x 2)n ﹣r •2r •x ﹣3r =•x 2n
﹣5r ,
令2n ﹣5r=0,则有n=,
故展开式中含有常数项的最小的n 为5,
故选:B .
【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
5. 【答案】A
【解析】解:f (1)=3,当不等式f (x )>f (1)即:f (x )>3 如果x <0 则 x+6>3可得 x >﹣3,可得﹣3<x <0.
如果 x ≥0 有x 2
﹣4x+6>3可得x >3或 0≤x <1
综上不等式的解集:(﹣3,1)∪(3,+∞) 故选A .
6. 【答案】A
【解析】解:0<a <1,实数x ,y
满足,即
y=
,故函数y 为偶函数,它的图象关于y 轴对称, 在(0,+∞)上单调递增,且函数的图象经过点(0,1),
故选:A .
【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题.
7. 【答案】A 【解析】

点:几何体的体积与函数的图象.
【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,题目新颖,属于中档试题.
8. 【答案】C
【解析】令()()()()1
11e
x g x f x kx k x =--=-+
,则直线l :1y kx =-与曲线C :()y f x =没有公共点,等价于方程()0g x =在R 上没有实数解.假设1k >,此时()010g =>,1
1
11101e k g k -⎛⎫
=-+< ⎪-⎝⎭
.又函
数()g x 的图象连续不断,由零点存在定理,可知()0g x =在R 上至少有一解,与“方程()0g x =在R 上没有实数解”矛盾,故1k ≤.又1k =时,()1
0e
x g x =>,知方程()0g x =在R 上没有实数解,所以k 的最大值为1,故选C .
9. 【答案】A 【解析】
考点:1、集合的表示方法;2、集合的补集及交集. 10.【答案】B
【解析】解:根据题意,分析可得阴影部分所示的集合为M ∩N , 又由M={x|﹣2≤x ﹣1≤2}得﹣1≤x ≤3, 即M={x|﹣1≤x ≤3}, 在此范围内的奇数有1和3.
所以集合M ∩N={1,3}共有2个元素, 故选B .
11.【答案】B
【解析】解:若f (x )的图象关于x=对称,
则2×
+θ=
+k π,
解得θ=﹣+k π,k ∈Z ,此时θ=﹣
不一定成立, 反之成立,
即“f (x )的图象关于x=对称”是“θ=﹣”的必要不充分条件,
故选:B
【点评】本题主要考查充分条件和必要条件的判断,结合三角函数的对称性是解决本题的关键.
12.【答案】D
【解析】解:由图象知函数的最大值为1,即A=1,
函数的周期T=4(﹣)=4×=,
解得ω=2,即f (x )=2sin (2x+φ),
由五点对应法知2×+φ=

解得φ=

故f (x )=sin (2x+), 故选:D
二、填空题
13.【答案】 4 .
【解析】解:由题意得f ′(1)=3,且f (1)=3×1﹣2=1
所以f (1)+f ′(1)=3+1=4.
故答案为4.
【点评】本题主要考查导数的几何意义,要注意分清f (a )与f ′(a ).
14.【答案】2- 【解析】1111]
试题分析:(4)()T 4f x f x +=⇒=,所以(7)(1)(1) 2.f f f =-=-=- 考点:利用函数性质求值
15.【答案】 (﹣1,1] .
【解析】解:在同一坐标系中画出函数f (x )和函数y=log 2(x+1)的图象,如图所示:
由图可得不等式f (x )≥log 2(x+1)的解集是:(﹣1,1],. 故答案为:(﹣1,1]
16.【答案】26 【解析】
试题分析:由题意得,根据等差数列的性质,可得371177362a a a a a ++==⇒=,由等差数列的求和 11313713()13262
a a S a +===. 考点:等差数列的性质和等差数列的和.
17.【答案】 64 .
【解析】解:由图可知甲的得分共有9个,中位数为28
∴甲的中位数为28
乙的得分共有9个,中位数为36
∴乙的中位数为36
则甲乙两人比赛得分的中位数之和是64
故答案为:64.
【点评】求中位数的关键是根据定义仔细分析.另外茎叶图的茎是高位,叶是低位,这一点一定要注意.
18.【答案】 (﹣1,﹣) .
【解析】解:∵S n =7n+
,当且仅当n=8时S n 取得最大值,
∴,即,解得:,
综上:d 的取值范围为(﹣1,﹣).
【点评】本题主要考查等差数列的前n 项和公式,解不等式方程组,属于中档题.
三、解答题
19.【答案】
【解析】解:(1)∵P 为等腰直角三角形PBC 的直角顶点,且BC=2,
∴∠PCB=
,PC=,
∵∠ACB=,∴∠ACP=,
在△PAC 中,由余弦定理得:PA 2=AC 2+PC 2﹣2AC •PC •cos
=5, 整理得:PA=;
(2)在△PBC中,∠BPC=,∠PCB=θ,
∴∠PBC=﹣θ,
由正弦定理得:==,
∴PB=sinθ,PC=sin(﹣θ),
∴△PBC的面积S(θ)=PB•PCsin=sin(﹣θ)sinθ=sin(2θ+)﹣,θ∈(0,),
则当θ=时,△PBC面积的最大值为.
【点评】此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.20.【答案】(1)证明见解析;(2)
2
3
π
θ=.
【解析】
试题分析:(1)可先证BA PA
⊥,BA AD
⊥从而得到BA⊥平面PAD,再证CD FE
⊥,CD BE
⊥可得CD⊥平面BEF,由//
CD AB,可证明平面BEF⊥平面PAB;(2)由PADθ
∠=,取BD的中点G,连接,
FG AG,可得PAG
∠即为异面直线BF与PA所成的角或其补角,即为所折起的角度.在三角形中求角即可. 1
试题解析:
(2)因为PADθ
∠=,取BD的中点G,连接,
FG AG,所以//
FG CD,1
2
FG CD
=,又//
AB CD,1
2
AB CD
=,所以//
FG AB,FG AB
=,从而四边形ABFG为平行四边形,所以//
BF AG,得;同时,
因为PA AD =,PAD θ∠=,所以PAD θ∠=,故折起的角度23
πθ=.
考点:点、线、面之间的位置关系的判定与性质.
21.【答案】
【解析】解:(Ⅰ)f (x )=4
sinxcosx ﹣5sin 2
x ﹣cos 2x+3=2sin2x ﹣
+3=2
sin2x+2cos2x=4sin (2x+).
∵x ∈[0,
],
∴2x+∈[,], ∴f (x )∈[﹣2,4].
(Ⅱ)由条件得 sin (2A+C )=2sinA+2sinAcos (A+C ),
∴sinAcos (A+C )+cosAsin (A+C )=2sinA+2sinAcos (A+C ),
化简得 sinC=2sinA ,
由正弦定理得:c=2a ,
又b=,
由余弦定理得:a2=b2+c2﹣2bccosA=3a2+4a2﹣4
a2cosA ,解得:cosA=,
故解得:A=
,B=,C=,
∴f (B )=f ()=4sin =2.
【点评】本题考查了平方关系、倍角公式、两角和差的正弦公式及其单调性、正弦定理、余弦定理,考查了推理能力和计算能力,属于中档题.
22.【答案】⑴2a =⑵11,,64⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭
⑶2 【解析】试题分析:(1)根据题意,对函数f x ()求导,由导数的几何意义分析可得曲线y f x =()
在点11f (,())处的切线方程,代入点
211(,),计算可得答案; (2)由函数的导数与函数单调性的关系,分函数在(23,)上单调增与单调减两种情况讨论,综合即可得答案;
(3)由题意得,2min max f x g x +≥()(), 分析可得必有()()215218
f x ax a x lnx +--≥= ,对f x ()求导,对a 分类讨论即可得答案.
试题解析:
⑵()()()
211'ax x f x x -+=,
∴若函数()f x 在区间()2,3上单调递增,则210y ax =-≥在()2,3恒成立,
410
{ 610
a a -≥∴-≥,得1
4a ≥;
若函数()f x 在区间()2,3上单调递减,则210y ax =-≤在()2,3恒成立,
410
{ 610a a -≤∴-≤,得1
6a ≤,
综上,实数a 的取值范围为11,,64⎛⎤
⎡⎫
-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭;
⑶由题意得,()()min max 2f x g x +≥,
()max 1
28g x g π⎛⎫== ⎪⎝⎭,
()min 158f x ∴≥,即()()215
21ln 8f x ax a x x =+--≥,
由()()()()()
222112111'221ax a x ax x f x ax a x x x +---+=+--==,
当0a ≤时,()10f <,则不合题意;
当0a >时,由()'0f x =,得12x a =
或1x =-(舍去), 当102x a <<
时,()'0f x <,()f x 单调递减, 当12x a
>时,()'0f x >,()f x 单调递增. ()min 11528
f x f a ⎛⎫∴=≥ ⎪⎝⎭,即117ln 428a a --≥, 整理得,()117ln 2228
a a -⋅≥, 设()1ln 2h x x x =-,()21102h x x x
∴=+>',()h x ∴单调递增, a Z ∈,2a ∴为偶数, 又()172ln2
48h =-<,()174ln488
h =->, 24a ∴≥,故整数a 的最小值为2。

23.【答案】
【解析】解:(Ⅰ)由已知得,c=,,
解得a=,又b 2
=a 2﹣c 2=4,
所以椭圆G 的方程为.
(Ⅱ)设直线l 的方程为y=x+m ,
由得4x 2+6mx+3m 2﹣12=0.①
设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2)(x 1<x 2),AB 的中点为E (x 0,y 0),
则x 0==﹣,
y 0=x 0+m=,
因为AB 是等腰△PAB 的底边,
所以PE ⊥AB ,
所以PE的斜率k=,
解得m=2.
此时方程①为4x2+12x=0.
解得x1=﹣3,x2=0,
所以y1=﹣1,y2=2,
所以|AB|=3,此时,点P(﹣3,2).
到直线AB:y=x+2距离d=,
所以△PAB的面积s=|AB|d=.
24.【答案】
【解析】解:(1)f(x)=-x2+ax+a2ln x的定义域为{x|x>0},f′(x)=-2x+a+a 2
x
=-2(x+a
2
)(x-a)
x.
①当a<0时,由f′(x)<0得x>-a
2

由f′(x)>0得0<x<-a
2.
此时f(x)在(0,-a
2
)上单调递增,
在(-a
2
,+∞)上单调递减;
②当a>0时,由f′(x)<0得x>a,
由f′(x)>0得0<x<a,
此时f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.(2)假设存在满足条件的实数a,
∵x∈[1,e]时,f(x)∈[e-1,e2],
∴f(1)=-1+a≥e-1,即a≥e,①
由(1)知f(x)在(0,a)上单调递增,
∴f(x)在[1,e]上单调递增,
∴f(e)=-e2+a e+e2≤e2,即a≤e,②
由①②可得a=e,
故存在a=e,满足条件.。

相关文档
最新文档