八年级第二学期3月份 自主检测数学试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为15cm ,在容器内壁离容器底部3cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿3cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为25cm ,则该圆柱底面周长为( )
A .20cm
B .18cm
C .25cm
D .40cm
2.如图,等腰直角△ABC 中,∠C =90°,点F 是AB 边的中点,点D 、E 分别在AC 、BC 边上运动,且∠DFE =90°,连接DE 、DF 、EF ,在此运动变化过程中,下列结论:①图中全等的三角形只有两对;②△ABC 的面积是四边形CDFE 面积的2倍;③CD +CE =2FA ;④AD 2+BE 2=DE 2.其中错误结论的个数有( )
A .1个
B .2个
C .3个
D .4个
3.如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在BC 上,BD =6,DC =2,点P 是AB 上的动点,则PC +PD 的最小值为( )
A .8
B .10
C .12
D .14
4.如图,在△ABC 中,∠BAC =90°,AC =2AB ,点D 是AC 的中点,将一块锐角为45°的直角三角板ADE 如图放置,连接BE ,EC .下列判
断:①△ABE ≌△DCE ;②BE =EC ;③BE ⊥EC ;④EC =3DE .其中正确的有( )
A .1个
B .2个
C .3个
D .4个
5.如图,ABC 中,有一点P 在AC 上移动.若56AB AC BC ===,,则
AP BP CP ++的最小值为( )
A .8
B .8.8
C .9.8
D .10
6.如图是一块长、宽、高分别为6cm 、4cm 、3cm 的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是( )
A .cm
B .cm
C .cm
D .9cm
7.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE 2+BG 2=2a 2+2b 2,其中正确结论有( )
A .0个
B .1个
C .2个
D .3个 8.如图,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45︒,若AD =4,CD =2,则BD 的长为
( )
A .6
B .7
C .5
D .259.在平面直角坐标系中,已知平行四边形ABCD 的点A (0,﹣2)、点B (3m ,4m +1)(m ≠﹣1),点C (6,2),则对角线BD 的最小值是( )
A .2
B .13
C .5
D .6
10.如图,在四边形ABCD 中,AD BC ∥,90D ︒∠=,4=AD ,3BC =.分别以点
A ,C 为圆心,大于
12
AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )
A .22
B .4
C .3
D .10
二、填空题
11.如图,ACB △和ECD 都是等腰直角三角形,CA CB =,CE CD =,ABC 的顶点A 在ECD 的斜边上.若3AE =,7AD =,则AC 的长为_________
12.在Rt ABC 中,90,30,2C A BC ∠=∠==,以ABC 的边AC 为一边的等腰三角形,它的第三个顶点在ABC 的斜边AB 上,则这个等腰三角形的腰长为_________.
13.《算法统宗》中有一道“荡秋干”的问题,其译文为:“有一架秋千,当它静止时,踏板上一点A 离地1尺,将它往前推送10尺(水平距离)时,点A 对应的点B 就和某人一样高,若此人的身高为5尺,秋干的绳索始终拉得很直,试问绳素有多长?”根据上述条件,秋干绳索长为________尺.
14.如图,在四边形ABCD 中,AC 平分∠BAD ,BC=CD=10,AC=17,AD=9,则AB=_____.
15.如图,长方体纸箱的长、宽、高分别为50cm 、30cm 、60cm ,一只蚂蚁从点A 处沿着纸箱的表面爬到点B 处.蚂蚁爬行的最短路程为_______cm.
16.如图,Rt△ABC 中,∠BCA =90°,AB =5,AC =2,D 为斜边AB 上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,连接EF ,则EF 的最小值是_____.
17.如图,E 为等腰直角△ABC 的边AB 上的一点,要使AE =3,BE =1,P 为AC 上的动点,则PB +PE 的最小值为____________.
18.在ABC 中,12AB AC ==,30A ∠=︒,点E 是AB 中点,点D 在AC 上,32DE =,将ADE 沿着DE 翻折,点A 的对应点是点F ,直线EF 与AC 交于点G ,那么DGF △的面积=__________.
19.如图,在Rt ABC ∆中,90ACB ∠=,2AC BC ==,D 为BC 边上一动点,作如图所示的AED ∆使得AE AD =,且45EAD ∠=,连接EC ,则EC 的最小值为__________.
20.如图的实线部分是由Rt ABC ∆经过两次折叠得到的.首先将Rt ABC ∆沿高CH 折叠,使
点B 落在斜边上的点B '处,再沿CM 折叠,使点A 落在CB '的延长线上的点A '处.若图中90ACB ∠=︒,15cm BC =,20cm AC =,则MB '的长为______.
三、解答题
21.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.
(2)求证:BED CDF △≌△.
(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.
22.已知a ,b ,c 满足88
a a -+-=|c ﹣17|+
b 2﹣30b +225,
(1)求a ,b ,c 的值; (2)试问以a ,b ,c 为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.
23.定义:如图1,点M 、N 把线段AB 分割成AM 、MN 和BN ,若以AM 、MN 、BN 为边的三角形是一个直角三角形,则称点M 、N 是线段AB 的勾股分割点.
(1)已知点M 、N 是线段AB 的勾股分割点,若2AM =,3MN =,求BN 的长; (2)如图2,在Rt ABC △中,AC BC =,点M 、N 在斜边AB 上,45MCN ∠=︒,求证:点M 、N 是线段AB 的勾股分割点(提示:把ACM 绕点C 逆时针旋转90︒);
(3)在(2)的问题中,15ACM ∠=︒,1AM =,求BM 的长.
24.已知ABC ∆中,如果过项点B 的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为ABC ∆的关于点B 的二分割线.例如:如图1,Rt ABC ∆中,90A ︒∠=,20C ︒∠=,若过顶点B 的一条直线BD 交AC 于点D ,若20DBC ︒∠=,显然直线BD 是ABC ∆的关于点B 的二分割线.
(1)在图2的ABC ∆中,20C ︒∠=,110ABC ︒∠=.请在图2中画出ABC ∆关于点B 的二分割线,且DBC ∠角度是 ;
(2)已知20C ︒∠=,在图3中画出不同于图1,图2的ABC ∆,所画ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.BAC ∠的度数是 ;
(3)已知C α∠=,ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.请求出BAC ∠的度数(用α表示).
25.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在ABC ∆中,AO 是BC 边上的中线,AB 与AC 的“广益值”就等于22AO BO -的值,可记为22AB AC OA BO ∇=-
(1)在ABC ∆中,若90ACB ∠=︒,81AB AC ∇=,求AC 的值.
(2)如图2,在ABC ∆中,12AB AC ==,120BAC ∠=︒,求AB AC ∇,BA BC ∇的值.
(3)如图3,在ABC ∆中,AO 是BC 边上的中线,24ABC S ∆=,8AC =,
64AB AC ∇=-,求BC 和AB 的长.
26.(1)如图1,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠. 求证:CA AD BC +=.
小明为解决上面的问题作了如下思考:
作ADC ∆关于直线CD 的对称图形A DC '∆,∵CD 平分ACB ∠,∴A '点落在CB 上,且CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可. 请根据小明的思考,写出该问题完整的证明过程.
(2)参照(1)中小明的思考方法,解答下列问题:
如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.
27.在ABC ∆中,90ACB ∠=︒,6AC BC ==,点D 是AC 的中点,点E 是射线DC 上一点,DF DE ⊥于点D ,且DE DF =,连接CF ,作FH CF ⊥于点F ,交直线AB 于点H .
(1)如图(1),当点E 在线段DC 上时,判断CF 和FH 的数量关系,并加以证明; (2)如图(2),当点E 在线段DC 的延长线上时,问题(1)中的结论是否依然成立?如果成立,请求出当ABC △和CFH △面积相等时,点E 与点C 之间的距离;如果不成立,请说明理由.
28.已知n 组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四
组:24,10,26;第五组:35,12,37;第六组:48,14,50;…
(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;
(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.
29.如图1,在正方形ABCD中,点E,F分别是AC,BC上的点,且满足DE⊥EF,垂足为点E,连接DF.
(1)求∠EDF= (填度数);
(2)延长DE交AB于点G,连接FG,如图2,猜想AG,GF,FC三者的数量关系,并给出证明;
(3)①若AB=6,G是AB的中点,求△BFG的面积;
②设AG=a,CF=b,△BFG的面积记为S,试确定S与a,b的关系,并说明理由.
30.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.
(2)如图1,求AF的长.
(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.
①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.
②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t 的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【分析】
将容器侧面展开,建立A 关于EG 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为最短路径,由勾股定理求出A ′D 即圆柱底面周长的一半,由此即可解题.
【详解】
解:如图,将圆柱展开,EG 为上底面圆周长的一半,
作A 关于E 的对称点A ',连接A B '交EG 于F ,
则蚂蚁吃到蜂蜜需爬行的最短路径为AF BF +的长,
即 25cm AF BF A B '+==,
延长BG ,过A '作A D BG '⊥于D ,
3cm AE A E '==,153315cm BD BG DG BG AE ∴=+=+=-+=,
Rt A DB '∴△中,由勾股定理得:2222251520cm A D A B BD ''=--=, ∴该圆柱底面周长为:20240cm ⨯=,
故选D .
【点睛】
本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.
2.B
解析:B
【分析】
结论①错误,因为图中全等的三角形有3对;结论②正确,由全等三角形的性质可以判断;结论③错误,利用全等三角形和等腰直角三角形的性质可以判断;结论④正确,利用全等三角形的性质以及直角三角形的勾股定理进行判断.
【详解】
连接CF ,交DE 于点P ,如下图所示
结论①错误,理由如下:
图中全等的三角形有3对,分别为△AFC ≌△BFC ,△AFD ≌△CFE ,△CFD ≌△BFE . 由等腰直角三角形的性质,可知FA=FC=FB ,易得△AFC ≌△BFC .
∵FC ⊥AB ,FD ⊥FE ,
∴∠AFD=∠CFE .
∴△AFD ≌△CFE (ASA ).
同理可证:△CFD ≌△BFE .
结论②正确,理由如下:
∵△AFD ≌△CFE ,
∴S △AFD =S △CFE ,
∴S 四边形CDFE =S △CFD +S △CFE =S △CFD +S △AFD =S △AFC =12
S △ABC , 即△ABC 的面积等于四边形CDFE 的面积的2倍.
结论③错误,理由如下:
∵△AFD ≌△CFE ,
∴CE=AD ,
∴2FA .
结论④正确,理由如下:
∵△AFD ≌△CFE ,
∴AD=CE ;
∵△CFD ≌△BFE ,
∴BE=CD .
在Rt △CDE 中,由勾股定理得:222CD CE DE +=,
∴222AD BE DE += .
故选B .
【点睛】
本题是几何综合题,考查了等腰直角三角形、全等三角形和勾股定理等重要几何知识点,综合性比较强.解决这个问题的关键在于利用全等三角形的性质.
3.B
解析:B
【分析】
过点C 作CO ⊥AB 于O ,延长CO 到C ′,使OC ′=OC ,连接DC ′,交AB 于P ,连接CP ,此时DP +CP =DP +PC ′=DC ′的值最小.由DC =2,BD =6,得到BC =8,连接
BC′,由对称性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.
【详解】
解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.
此时DP+CP=DP+PC′=DC′的值最小.
∵DC=2,BD=6,
∴BC=8,
连接BC′,由对称性可知∠C′BA=∠CBA=45°,
∴∠CBC′=90°,
∴BC′⊥BC,∠BCC′=∠BC′C=45°,
∴BC=BC′=8,
根据勾股定理可得DC′=2222
8610
BC BD
'+=+=.
故选:B.
【点睛】
此题考查了轴对称﹣线路最短的问题,确定动点P为何位置时 PC+PD的值最小是解题的关键.
4.C
解析:C
【分析】
根据AC=2AB,点D是AC的中点求出AB=CD,再根据△ADE是等腰直角三角形求出
AE=DE,并求出∠BAE=∠CDE=135°,然后利用“边角边”证明△ABE和△DCE全等,从而判断出①小题正确;根据全等三角形对应边相等可得BE=EC,从而判断出②小题正确;根据全等三角形对应角相等可得∠AEB=∠DEC,然后推出∠BEC=∠AED,从而判断出③小题正确;
2倍,用DE表示出AD,然后得到AB、AC,再根据勾股定理用DE与EC表示出BC,整理即可得解,从而判断出④小题错误.
【详解】
解:∵AC=2AB,点D是AC的中点,
∴CD=1
2
AC=AB,
∵△ADE是等腰直角三角形,
∴AE=DE,
∠BAE=90°+45°=135°,∠CDE=180°-45°=135°,
∴∠BAE=∠CDE ,
在△ABE 和△DCE 中,
AB CD BAE CDE AE DE =⎧⎪∠=∠⎨⎪=⎩

∴△ABE ≌△DCE (SAS ),故①小题正确;
∴BE=EC ,∠AEB=∠DEC ,故②小题正确;
∵∠AEB+∠BED=90°,
∴∠DEC+∠BED=90°,
∴BE ⊥EC ,故③小题正确;
∵△ADE 是等腰直角三角形,

DE ,
∵AC=2AB ,点D 是AC 的中点,

DE ,
DE ,
在Rt △ABC 中,BC 2=AB 2+AC 2=
DE )2+(
DE )2=10DE 2,
∵BE=EC ,BE ⊥EC ,
∴BC 2=BE 2+EC 2=2EC 2,
∴2EC 2=10DE 2,
解得
,故④小题错误,
综上所述,判断正确的有①②③共3个.
故选:C .
【点睛】
本题考查了全等三角形的判定与性质,等腰直角三角形的性质,准确识图,根据△ADE 是等腰直角三角形推出AE=DE ,∠BAE=∠CDE=135°是解题的关键,也是解决本题的突破口.
5.C
解析:C
【分析】
由AP+CP=AC 得到AP BP CP ++=BP+AC ,即计算当BP 最小时即可,此时BP ⊥AC ,根据三角形面积公式求出BP 即可得到答案.
【详解】
∵AP+CP=AC ,
∴AP BP CP ++=BP+AC ,
∴BP ⊥AC 时,AP BP CP ++有最小值,
设AH ⊥BC ,
∵56AB AC BC ===,
∴BH=3,
∴4AH ==,

11
22
ABC
S BC AH AC BP
=⋅=⋅,
∴11
645
22
BP ⨯⨯=⨯,
∴BP=4.8,
∴AP BP CP
++=AC+BP=5+4.8=9.8,
故选:C.
【点睛】
此题考查等腰三角形的三线合一的性质,勾股定理,最短路径问题,正确理解
AP BP CP
++时点P的位置是解题的关键.
6.C
解析:C
【解析】
【分析】
本题中蚂蚁要跑的路径有三种情况,知道当蚂蚁爬的是一条直线时,路径才会最短.蚂蚁爬的是一个长方形的对角线.展开成平面图形,根据两点之间线段最短,可求出解.
【详解】
解:如图1,当爬的长方形的长是(4+6)=10,宽是3时,需要爬行的路径的长
==cm;
如图2,当爬的长方形的长是(3+6)=9,宽是4时,需要爬行的路径的长
==cm;
如图3,爬的长方形的长是(3+4)=7时,宽是6时,需要爬行的路径的长==cm.
所以要爬行的最短路径的长cm.
故选C.
【点睛】
本题考查平面展开路径问题,本题关键知道蚂蚁爬行的路线不同,求出的值就不同,有三种情况,可求出值找到最短路线.
7.D
解析:D
【解析】
分析:由四边形ABCD与四边形EFGC都为正方形,得到四条边相等,四个角为直角,利用SAS 得到三角形BCE与三角形DCG全等,利用全等三角形对应边相等即可得到BE=DG,利用全等三角形对应角相等得到∠CBM=∠MDO,利用等角的余角相等及直角的定义得到∠BOD为直角,利用勾股定理求出所求式子的值即可.
详解:①∵四边形ABCD和EFGC都为正方形,
∴CB=CD,CE=CG,∠BCD=∠ECG=90°,
∴∠BCD+∠DCE=∠ECG+∠DCE,即∠BCE=∠DCG.
在△BCE和△DCG中,CB=CD,∠BCE=∠DCG,CE=CG,
∴△BCE≌△DCG,
∴BE=DG,
故结论①正确.
②如图所示,设BE交DC于点M,交DG于点O.
由①可知,△BCE≌△DCG,
∴∠CBE=∠CDG,即∠CBM=∠MDO.
又∵∠BMC=∠DMO,∠MCB=180°-∠CBM-∠BMC,∠DOM=180°-∠CDG-∠MDO,
∴∠DOM=∠MCB=90°,
∴BE⊥DG.
故②结论正确.
③如图所示,连接BD、EG,
由②知,BE ⊥DG ,
则在Rt △ODE 中,DE 2=OD 2+OE 2,
在Rt △BOG 中,BG 2=OG 2+OB 2,
在Rt △OBD 中,BD 2=OD 2+OB 2,
在Rt △OEG 中,EG 2=OE 2+OG 2,
∴DE 2+BG 2=(OD 2+OE 2)+(OB 2+OG 2)=(OD 2+OB 2)+(OE 2+OG 2)=BD 2+EG 2.
在Rt △BCD 中,BD 2=BC 2+CD 2=2a 2,
在Rt △CEG 中,EG 2=CG 2+CE 2=2b 2,
∴BG 2+DE 2=2a 2+2b 2.
故③结论正确.
故选:D.
点睛:本题考查了旋转的性质、全等三角形的判定与性质、正方形的性质.
8.A
解析:A
【解析】
【分析】作AD′⊥AD ,AD′=AD ,连接CD′,DD′,根据等式的性质,可得∠BAD 与∠CAD′的关系,根据SAS ,可得△BAD 与△CAD′的关系,根据全等三角形的性质,可得BD 与CD′的关系,根据勾股定理,可得答案.
【详解】作AD′⊥AD ,AD′=AD ,连接CD′,DD′,
则有∠AD′D=∠D′AD=45︒,
∵∠BAC+∠CAD=∠DAD′+∠CAD ,
即∠BAD=∠CAD′,
在△BAD 与△CAD′中,''BC CA BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩
, ∴△BAD ≌△CAD′(SAS ),
∴BD=CD′,
∠DAD′=90°,由勾股定理得

∠D′DA+∠ADC=90°,由勾股定理得

故选A.
【点睛】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,勾股定理,添加辅助线作出全等图形是解题关键.
9.D
解析:D
【分析】
先根据B(3m,4m+1),可知B在直线y=4
3
x+1上,所以当BD⊥直线y=
4
3
x+1时,BD最
小,找一等量关系列关于m的方程,作辅助线:过B作BH⊥x轴于H,则BH=4m+1,利用三角形相似得BH2=EH•FH,列等式求m的值,得BD的长即可.
【详解】
解:如图,
∵点B(3m,4m+1),
∴令
3
41
m x
m y
=


+=


∴y=4
3
x+1,
∴B在直线y=4
3
x+1上,
∴当BD⊥直线y=4
3
x+1时,BD最小,
过B作BH⊥x轴于H,则BH=4m+1,
∵BE在直线y=4
3
x+1上,且点E在x轴上,
∴E(−34,0),G(0,1) ∵F 是AC 的中点 ∵A(0,−2),点C(6,2),
∴F(3,0)
在Rt △BEF 中,
∵BH 2=EH ⋅FH ,
∴(4m+1)2=(3m+
34
)(3−3m) 解得:m 1=−14(舍),m 2=15
, ∴B(35,95), ∴BD=2BF=2×2
239(3)55⎛⎫-+ ⎪⎝⎭
=6, 则对角线BD 的最小值是6;
故选:D .
【点睛】
本题考查了平行四边形的性质,利用待定系数法求一次函数的解析式,三角形相似的判定,圆形与坐标特点,勾股定理等知识点.本题利用点B 的坐标确定其所在的直线的解析式是关键. 10.A
解析:A
【分析】
连接FC ,根据基本作图,可得OE 垂直平分AC ,由垂直平分线的性质得出=AF FC .再根据ASA 证明FOA BOC ∆≅∆,那么==3AF BC ,等量代换得到==3FC AF ,利用线段的和差关系求出==1FD AD AF -.然后在直角FDC ∆中利用勾股定理求出CD 的长.
【详解】
解:如图,连接FC ,则=AF FC .
AD BC ∵∥,
FAO BCO ∴∠=∠.
在FOA ∆与BOC ∆中,
FAO BCO OA OC
AOF COB ∠=∠⎧⎪=⎨⎪∠=∠⎩
, ()FOA BOC ASA ∴∆≅∆,
3AF BC ∴==,
3FC AF ∴==,431FD AD AF =-=-=.
在FDC ∆中,90D ︒∠=,
222CD DF FC ∴+=,
22213CD ∴+=, 22CD
∴=.
故选A .
【点睛】
本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF 与DF 是解题的关键.
二、填空题
11.5
【分析】
由题意可知,AC =BC ,DC =EC ,∠DCE =∠ACB =90°,∠D =∠E =45°,求出∠ACE =
∠BCD 可证△ACE ≌△BCD ,可得AE =BD =3,∠ADB =90°,由勾股定理求出AB 即可得到AC 的长.
【详解】
解:如图所示,连接BD ,
∵△ACB 和△ECD 都是等腰直角三角形,
∴AC =BC ,DC =EC ,∠DCE =∠ACB =90°,∠D =∠E =45°,
且∠ACE =∠BCD =90°-∠ACD ,
在ACE 和BCD 中,
AC=BC ACE=BCD CE=CD ⎧⎪∠∠⎨⎪⎩
∴△ACE ≌△BCD (SAS ),
∴AE =BD =3,∠E =∠BDC =45°, ∴∠ADB =∠ADC+∠BDC =45°+45°=90°, ∴AB =22AD +BD =7+3=10,
∵AB=2BC ,
∴BC =2×AB=52
, 故答案为:5.
【点睛】
本题考查了全等三角形的判定和性质,等腰直角三角形的性质以及勾股定理等知识,添加恰当的辅助线构造全等三角形是解题的关键.
12.23或2
【分析】
先求出AC 的长,再分两种情况:当AC 为腰时及AC 为底时,分别求出腰长即可.
【详解】
在Rt ABC 中,90,30,2C A BC ∠=∠==,
∴AB=2BC=4,
∴22224223AC AB BC =-=-=,
当AC 为腰时,则该三角形的腰长为23;
当AC 为底时,作AC 的垂直平分线交AB 于点D ,交AC 于点E ,如图,此时△ACD 是等腰三角形,则AE=3,
设DE=x ,则AD=2x ,
∵222AE DE AD +=,
∴222(3)(2)x x +=
∴x=1(负值舍去),
∴腰长AD=2x=2,
故答案为:32
【点睛】
此题考查勾股定理的运用,结合线段的垂直平分线的性质,等腰三角形的性质,解题时注意:“AC 为一边的等腰三角形”没有明确AC 是等腰三角形的腰或底,故应分为两种情况解题,这是此题的易错之处.
13.5
【分析】
设绳索x 尺,过点B 向地面及AO 作垂线BE 、BC ,构成直角三角形OBE ,利用勾股定理求出x 的值
【详解】
如图, 过点B 作BC ⊥OA 于点C ,作BD 垂直于地面,延长OA 交地面于点D 由题意知AD=1,BE=5,BC=10
设绳索x 尺,则OA=OB=x
∴OC=x+1-5=x-4
在Rt △OBC 中,OB 2=OC 2+BC 2
∴222
(4)10x x =-+
得x=14.5(尺)
故填14.5 ,
【点睛】
此题考察勾股定理的实际运用,理解题意作辅助线构建直角三角形是解题关键. 14.21
【分析】
在AB 上截取AE=AD ,连接CE ,过点C 作CF ⊥AB 于点F ,先证明△ADC ≌△AEC ,得出AE=AD=9,CE=CD=BC =10的长度,再设EF=BF=x ,在Rt △CFB 和Rt △CFA 中,由勾股定理求出x ,再根据AB=AE+EF+FB 求得AB 的长度.
【详解】
如图所示,在AB 上截取AE=AD ,连接CE ,过点C 作CF ⊥AB 于点F ,
∵AC 平分∠BAD ,
∴∠DAC=∠EAC .
在△AEC 和△ADC 中,
AE AD DAC EAC
AC AC ⎧⎪∠∠⎨⎪⎩===
∴△ADC ≌△AEC (SAS ),
∴AE=AD=9,CE=CD=BC =10,
又∵CF ⊥AB ,
∴EF=BF ,
设EF=BF=x .
∵在Rt△CFB中,∠CFB=90°,
∴CF2=CB2-BF2=102-x2,
∵在Rt△CFA中,∠CFA=90°,
∴CF2=AC2-AF2=172-(9+x)2,即102-x2=172-(9+x)2,
∴x=6,
∴AB=AE+EF+FB=9+6+6=21,
∴AB的长为21.
故答案是:21.
【点睛】
考查全等三角形的判定和性质、勾股定理和一元二次方程等知识,解题的关键是作辅助线,构造全等三角形,再运用用方程的思想解决问题.
15.100
【解析】
蚂蚁有三种爬法,就是把正视和俯视(或正视和侧视,或俯视和侧视)二个面展平成一个长方形,然后求其对角线:
第一种情况:如图1,把我们所看到的前面和上面组成一个平面,
则这个长方形的长和宽分别是90cm和50cm,
则所走的最短线段AB==10cm;
第二种情况:如图2,把我们看到的左面与上面组成一个长方形,
则这个长方形的长和宽分别是110cm和30cm,
所以走的最短线段AB==10cm;
第三种情况:如图3,把我们所看到的前面和右面组成一个长方形,
则这个长方形的长和宽分别是80cm和60cm,
所以走的最短线段AB==100cm;
三种情况比较而言,第三种情况最短.
故答案为100cm.
点睛:本题考查了立体图形中的最短路线问题;通常应把立体几何中的最短路线问题转化为平面几何中的求两点间距离的问题;注意长方体展开图形应分情况进行探讨.
1625
【解析】
试题分析:根据勾股定理可求出BC=1,然后根据∠BCA=90°,DE⊥AC,DF⊥BC,证得四
边形CEDF是矩形,连接CD,则CD=EF,当CD⊥AB时,CD最短,即EF=CD=25 5
.
25
点睛:本题考查了勾股定理的运用,矩形的判定和性质以及垂线段最短的性质,同时也考查了学生综合运用性质进行推理和计算的能力.
17.5
【解析】
试题分析:作点B 关于AC 的对称点F ,构建直角三角形,根据最短路径可知:此时PB +PE 的值最小,接下来要求出这个最小值,即求EF 的长即可,因此要先求AF 的长,证明△ADF ≌△CDB ,可以解决这个问题,从而得出EF =5,则PB +PE 的最小值为5.
解:如图,过B 作BD ⊥AC ,垂足为D ,并截取DF =BD ,连接EF 交AC 于P ,连接PB 、AF ,则此时PB +PE 的值最小,
∵△ABC 是等腰直角三角形,
∴AB =CB ,∠ABC =90°,AD =DC ,
∴∠BAC =∠C =45°,
∵∠ADF =∠CDB ,
∴△ADF ≌△CDB ,
∴AF =BC ,∠FAD =∠C =45°,
∵AE =3,BE =1,
∴AB =BC =4,
∴AF =4,
∵∠BAF =∠BAC +∠FAD =45°+45°=90°,
∴由勾股定理得:EF 22AF AE +2243+,
∵AC 是BF 的垂直平分线,
∴BP =PF ,
∴PB +PE =PF +PE =EF =5,
故答案为5.
点睛:本题主要考查最短路径问题.解题的关键在于要利用轴对称知识,结合两点之间线段最短来求解.
18.39或639
【分析】
通过计算E 到AC 的距离即EH 的长度为3,所以根据DE 的长度有两种情况:①当点D 在H 点上方时,②当点D 在H 点下方时,两种情况都是过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,利用含30°的直角三角形的性质和勾股定理求出AH,DH 的长度,进而可求AD 的长度,然后利用角度之间的关系证明AG GE =,再利用等腰三角形的性质求出GQ 的长度,最后利用2DGF AED AEG S
S S =-即可求解.
【详解】
①当点D 在H 点上方时,
过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,
12AB = ,点E 是AB 中点,
162
AE AB ∴== . ∵EH AC ⊥,
90AHE ∴∠=︒ .
30,6A AE ∠=︒=,
132EH AE ∴=
= , 22226333AH AE EH ∴=-=-=. 32DE =,
2222(32)33DH DE EH ∴=-=-= ,
DH EH ∴=,333AD AH DH =-=,
45EDH ∴∠=︒,
15AED EDH A ∴∠=∠-∠=︒ .
由折叠的性质可知,15DEF AED ∠=∠=︒,
230AEG AED ∴∠=∠=︒ ,
AEG A ∴∠=∠,
AG GE ∴= . 又GQ AE ⊥ ,
132
AQ AE ∴== . 30A ∠=︒ ,
12GQ AG ∴=. 222GQ AQ AG += , 即2
223(2)GQ GQ +=, 3GQ ∴= .
2DGF AED AEG S S S =- ,
112(333)36363922
DGF S ∴=⨯⨯-⨯-⨯⨯=-; ②当点D 在H 点下方时,
过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,
12AB = ,点E 是AB 中点,
162
AE AB ∴== . ∵EH AC ⊥,
90AHE ∴∠=︒.
30,6A AE ∠=︒= ,
132EH AE ∴=
= , 22226333AH AE EH ∴=-=-=.
32DE =,
2222(32)33DH DE EH ∴=-=-= ,
DH EH ∴=,3AD AH DH =+=,
45DEH ∴∠=︒ ,
90105AED A DEH ∴∠=︒-∠+∠=︒ .
由折叠的性质可知,105DEF AED ∠=∠=︒,
218030AEG AED ∴∠=∠-︒=︒ ,
AEG A ∴∠=∠,
AG GE ∴= .
又GQ AE ⊥ ,
132
AQ AE ∴== . 30A ∠=︒,
12
GQ AG ∴= . 222GQ AQ AG += , 即2
223(2)GQ GQ +=,
GQ ∴= .
2DGF AED AEG S S S =- ,
11
23)36922
DGF S ∴=⨯⨯⨯-⨯=,
综上所述,DGF △的面积为9或9.
故答案为:9或9.
【点睛】
本题主要考查折叠的性质,等腰三角形的判定及性质,等腰直角三角形的性质,勾股定理,含30°的直角三角形的性质,能够作出图形并分情况讨论是解题的关键.
19.2-【分析】
根据已知条件,添加辅助线可得△EAC ≌△DAM (SAS ),进而得出当MD ⊥BC 时,CE 的值最小,转化成求DM 的最小值,通过已知值计算即可.
【详解】
解:如图所示,在AB 上取AM=AC=2,
∵90ACB ∠=,2AC BC ==,
∴∠CAB=45°,
又∵45EAD ∠=,
∴∠EAC+∠CAD=∠DAB+∠CAD=45°,
∴∠EAC =∠DAB ,
∴在△EAC 与△DAB 中
AE=AD ,∠EAF =∠DAB ,AC =AM ,
∴△EAC ≌△DAM (SAS )
∴CE=MD ,
∴当MD ⊥BC 时,CE 的值最小,
∵AC=BC=2, 由勾股定理可得2222AB AC BC =
+=,
∴222=-BM ,
∵∠B=45°,
∴△BDM 为等腰直角三角形,
∴DM=BD ,
由勾股定理可得222+BD DM =BM
∴DM=BD=22-
∴CE=DM=22-
故答案为:22-
【点睛】
本题考查了动点问题及全等三角形的构造,解题的关键是作出辅助线,得出全等三角形,找到CE 最小时的状态,化动为静.
20.3
【分析】
根据题意利用折叠后图形全等,并利用等量替换和等腰三角形的性质进行综合分析求解.
【详解】
解:由题意可知','ACM A CM BCH B CH ≅≅,
∵15cm BC =,20cm AC =,
∴'15,'20,BC B C cm AC A C cm ====''20155A B cm =-=,
∵90ACB ∠=︒,
∴'A M AB ⊥(等量替换),CH AB ⊥(三线合一),
∴25,AB cm = 利用勾股定理假设MB '的长为m ,'257AM AM m ==-,则有222(257)5m m +-=,
解得3m =,
所以MB '的长为3.
【点睛】
本题考查几何的翻折问题,熟练掌握并综合利用等量替换和等腰三角形的性质以及勾股定
理分析是解题的关键.
三、解答题
21.(1)90°;(2)证明见解析;(3
)变化,24l +≤<.
【分析】
(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求
DAE=∠DEA=30°,由三角形内角和定理可求解;
(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;
(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.
【详解】
解:(1)∵△ABC 是等边三角形,
∴AB=AC=BC=2,∠ABC=∠ACB=60°,
∵AD=DE
∴∠DAE=∠DEA=30°,
∴∠ADB=180°-∠BAD-∠ABD=90°,
故答案为:90°;
(2)∵AD=DE=DF ,
∴∠DAE=∠DEA ,∠DAF=∠DFA ,
∵∠DAE+∠DAF=∠BAC=60°,
∴∠DEA+∠DFA=60°,
∵∠ABC=∠DEA+∠EDB=60°,
∴∠EDB=∠DFA ,
∵∠ACB=∠DFA+∠CDF=60°,
∴∠CDF=∠DEA ,
在△BDE 和△CFD 中
∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩

∴△BDE ≌△CFD (ASA )
(3)∵△BDE ≌△CFD ,
∴BE=CD ,
∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,
当D 点在C 或B 点时,
AD=AC=AB=2,
此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;
当D 点在BC 的中点时,
∵AB=AC ,
∴BD=112
BC =,AD ==
此时22l AD =+=
综上可知24l +≤<.
【点睛】
本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.
22.(1)a =8,b =15,c =17;(2)能,60
【分析】
(1)根据算术平方根,绝对值,平方的非负性即可求出a 、b 、c 的值;
(2)根据勾股定理的逆定理即可求出此三角形是直角三角形,由此得到面积和周长
【详解】
解:(1)∵a ,b ,c |c ﹣17|+b 2﹣30b +225,
21||7(15)c b +-﹣,
∴a ﹣8=0,b ﹣15=0,c ﹣17=0,
∴a =8,b =15,c =17;
(2)能.
∵由(1)知a =8,b =15,c =17,
∴82+152=172.
∴a 2+c 2=b 2,
∴此三角形是直角三角形,
∴三角形的周长=8+15+17=40; 三角形的面积=
12
×8×15=60. 【点睛】
此题考查算术平方根,绝对值,平方的非负性,勾股定理的逆定理判断三角形的形状.
23.(12)见解析;(3)2
【分析】
(1)分两种分割法利用勾股定理即可解决问题;
(2)如图,过点A 作AD ⊥AB ,且AD=BN .只要证明△ADC ≌△BNC ,推出CD=CN ,∠ACD=∠BCN ,再证明△MDC ≌△MNC ,可得MD=MN ,由此即可解决问题;
(3)过点B 作BP ⊥AB ,使得BP=AM=1,根据题意可得△CPB ≌△CMA ,△CMN ≌△CPN ,利用全等性质推出∠BNP=30°,从而得到NB 和NP 的长,即得BM.
【详解】
解:(1)当MN 最长时,,
当BN 最长时,
(2)证明:如图,过点A 作AD ⊥AB ,且AD=BN ,
在△ADC 和△BNC 中,
AD BN DAC B AC BC =⎧⎪∠=∠⎨⎪=⎩

∴△ADC ≌△BNC (SAS ),
∴CD=CN ,∠ACD=∠BCN ,
∵∠MCN=45°,
∴∠DCA+∠ACM=∠ACM+∠BCN=45°,
∴∠MCD=∠MCN ,
在△MDC 和△MNC 中,
CD CN MCD MCN CM CM =⎧⎪∠=∠⎨⎪=⎩

∴△MDC ≌△MNC (SAS ),
∴MD=MN
在Rt △MDA 中,AD 2+AM 2=DM 2,
∴BN 2+AM 2=MN 2,
∴点M ,N 是线段AB 的勾股分割点;
(3)过点B 作BP ⊥AB ,使得BP=AM=1,
根据(2)中过程可得:△CPB ≌△CMA ,△CMN ≌△CPN , ∴∠AMC=∠BPC=120°,AM=PB=1,
∠CMN=∠CPN=∠A+∠ACM=45°+15°=60°,
∴∠BPN=120°-60°=60°,
∴∠BNP=30°,
∴NP=2BP=2=MN ,
∴22213-=,
∴BM=MN+BN=23+.
【点睛】
本题是三角形的综合问题,考查了全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
24.(1)作图见解析,20DBC ∠=︒;(2)作图见解析,35BAC ∠=︒;(3)∠A =45°或90°或90°-2α或1452
α︒-,或α=45°时45°<∠BAC <90°.
【分析】
(1)根据二分割线的定义,只要把∠ABC 分成90°角和20°角即可;
(2)可以画出∠A=35°的三角形;
(3)设BD 为△ABC 的二分割线,分以下两种情况.第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形;第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形分别利用直角三角形的性质、等腰三角形的性质和三角形的内角和定理解答即可.
【详解】
解:(1)ABC ∆关于点B 的二分割线BD 如图4所示,20DBC ∠=︒;
故答案为:20°;
(2)如图所示:∠BAC=35°;
(3)设BD 为△ABC 的二分割线,分以下两种情况.
第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形,易知∠C 和∠DBC 必为底角, ∴∠DBC =∠C =α.
当∠A =90°时,△ABC 存在二分分割线;
当∠ABD =90°时,△ABC 存在二分分割线,此时∠A =90°-2α;。

相关文档
最新文档