逻辑智力题50例(答案1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
逻辑智力题50例(答案1)
智力题1(海盗分金币)-
解题思路1:
首先从5号海盗开始,因为他是最安全的,没有被扔下大海的风险,因此他的策略也最为简单,即最好前面的人全都死光光,那么他就可以独得这100枚金币了。
接下来看4号,他的生存机会完全取决于前面还有人存活着,因为如果1号到3号的海盗全都喂了鲨鱼,那么在只剩4号与5号的情况下,不管4号提出怎样的分配方案,5号一定都会投反对票来让4号去喂鲨鱼,以独吞全部的金币。哪怕4号为了保命而讨好5号,提出(0,100)这样的方案让5号独占金币,但是5号还有可能觉得留着4号有危险,而投票反对以让其喂鲨鱼。因此理性的4号是不应该冒这样的风险,把存活的希望寄托在5号的随机选择上的,他惟有支持3号才能绝对保证自身的性命。
再来看3号,他经过上述的逻辑推理之后,就会提出(100,0,0)这样的分配方案,因为他知道4号哪怕一无所获,也还是会无条件的支持他而投赞成票的,那么再加上自己的1票就可以使他稳获这100金币了。
但是,2号也经过推理得知了3号的分配方案,那么他就会提出(98,0,1,1)的方案。因为这个方案相对于3号的分配方案,4号和5号至少可以获得1枚金币,理性的4号和5号自然会觉得此方案对他们来说更有利而支持2号,不希望2号出局而由3号来进行分配。这样,2号就可以屁颠屁颠的拿走98枚金币了。
不幸的是,1号海盗更不是省油的灯,经过一番推理之后也洞悉了2号的分配方案。他将采取的策略是放弃2号,而给3号1枚金币,同时给4号或5号2枚金币,即提出(97,0,1,2,0)或(97,0,1,0,2)的分配方案。由于1号的分配方案对于3号与4号或5号来说,相比2号的方案可以获得更多的利益,那么他们将会投票支持1号,再加上1号自身的1票,97枚金币就可轻松落入1号的腰包了。
解题思路2:
为更清晰表达,我们将上述分析列表如下:
1号强盗 2号强盗 3号强盗 4号强盗 5号强盗
1号强盗方案A 97 0 1 2 0
1号强盗方案B 97 0 1 0 2
2号强盗方案 98 0 1 1
3号强盗方案 100 0 0
4号强盗方案 0 100
5号强盗方案 100
标准答案:
1号海盗分给3号1枚金币,4号或5号2枚金币,自己则独得97枚金币,即分配方案为(97,0,1,2,0)或(97,0,1,0,2)。
<><><><><><><><><>
试题拓展:
5个海盗抢得100枚金币后,讨论如何进行公正分配。他们商定的分配原则是:
(1)抽签确定各人的分配顺序号码(1,2,3,4,5);
(2)由抽到1号签的海盗提出分配方案,然后5人进行表决,如果方案得到超过半数的人反对,就将1号扔进大海喂鲨鱼;否则,就按照他的方案进行分配;
(3)如果1号被扔进大海,则由2号提出分配方案,然后由剩余的4人进行表决,当且仅当超过半数的人反对时,才会被扔入大海,否则按照他的提案进行分配;
(4)依此类推。
这里假设每一个海盗都是绝顶聪明而理性,他们都能够进行严密的逻辑推理,并能很理智的判断自身的得失,即能够在保住性命的前提下得到最多的金币。同时还假设每一轮表决后的结果都能顺利得到执行,那么抽到1号的海盗应该提出怎样的分配方案才能使自己既不被扔进海里,又可以得到更多的金币呢?
答案:1号海盗分给3号、4号各1枚金币,自己则独得98枚金币,即分配方案为(97,0,1,1,0)。
分析列表如下:
1号强盗 2号强盗 3号强盗 4号强盗 5号强盗
1号强盗方案 98 0 1 0 1
2号强盗方案 99 0 1 0
3号强盗方案 99 0 1
4号强盗方案 100 0
5号强盗方案 \\
智力题2(猜牌问题)- -
解题思路:
由第一句话“P先生:我不知道这张牌。”可知,此牌必有两种或两种以上花色,即可能是A、Q、4、5。如果此牌只有一种花色,P先生知道这张牌的点数,P先生肯定知道这张牌。
由第二句话“Q先生:我知道你不知道这张牌。”可知,此花色牌的点数只能包括A、Q、4、5,符合此条件的只有红桃和方块。Q先生知道此牌花色,只有红桃和方块花色包括A、Q、4、5,Q先生才能作此断言。
由第三句话“P先生:现在我知道这张牌了。”可知,P先生通过“Q先生:我知道你不知道这张牌。”判断出花色为红桃和方块,P先生又知道这张牌的点数,P先生便知道这张牌。据此,排除A,此牌可能是Q、4、5。如果此牌点数为A,P先生还是无法判断。
由第四句话“Q先生:我也知道了。”可知,花色只能是方块。如果是红桃,Q先生排除A后,还是无法判断是Q还是4。
综上所述,这张牌是方块5。
参考答案:
这张牌是方块5。
智力题3(燃绳问题)- -
解题思路:
烧一根这样的绳,从头烧到尾1个小时。由此可知,头尾同时烧共需半小时。同时烧两根这样的绳,一个烧一头,一个烧两头;当烧两头的绳燃尽时,共要半小时,烧一头的绳继续烧还需半小时;如果此时将烧一头的绳的
另一头也点燃,那么只需十五分钟。
参考答案:
同时燃两根这样的绳,一个烧一头,一个烧两头;等一根燃尽,将另一根掐灭备用。标记为绳2。再找一根这样的绳,标记为绳1。一头燃绳1需要1个小时,再两头燃绳2需十五分钟,用此法可计时一个小时十五分钟。
智力题4(乒乓球问题)- -
解题思路:
1、我们不妨逆向推理,如果只剩6个乒乓球,让对方先拿球,你一定能拿到第6个乒乓球。理由是:如果他拿1个,你拿5个;如果他拿2个,你拿4个;如果他拿3个,你拿3个;如果他拿4个,你拿2个;如果他拿5个,你拿1个。
2、我们再把100个乒乓球从后向前按组分开,6个乒乓球一组。100不能被6整除,这样就分成17组;第1组4个,后16组每组6个。
3、这样先把第1组4个拿完,后16组每组都让对方先拿球,自己拿完剩下的。这样你就能拿到第16组的最后一个,即第100个乒乓球。
参考答案:
先拿4个,他拿n个,你拿6-n,依此类推,保证你能得到第100个乒乓球。(1<=n<=5)
<><><><><><><><><>
试题拓展:
1、假设排列着100个乒乓球,由两个人轮流拿球装入口袋,能拿到第100个乒乓球的人为胜利者。条件是:每次拿球者至少要拿2个,但最多不能超过7个,问:如果你是最先拿球的人,你该拿几个?以后怎么拿就能保证你能得到第100个乒乓球?(先拿1个,他拿n个,你拿9-n,依此类推)
2、假设排列着X个乒乓球,由两个人轮流拿球装入口袋,能拿到第X个乒乓球的人为胜利者。条件是:每次拿球者至少要拿Y个,但最多不能超过Z个,问:如果你是最先拿球的人,你该拿几个?以后怎么拿就能保证你能得到第X个乒乓球?(先拿X/(Y+Z)的余数个,他拿n个,你拿(Y+Z)-n,依此类推。当然必须保证X/(Y+Z)的余数不等于0)
智力题5(喝汽水问题)- -
解题思路1:
一开始20瓶没有问题,随后的10瓶和5瓶也都没有问题,接着把5瓶分成4瓶和1瓶,前4个空瓶再换2瓶,喝完后2瓶再换1瓶,此时喝完后手头上剩余的空瓶数为2个,把这2个瓶换1瓶继续喝,喝完后把这1个空瓶换1瓶汽水,喝完换来的那瓶再把瓶子还给人家即可,所以最多可以喝的汽水数为:20+10+5+2+1+1+1=40
解题思路2:
先看1元钱最多能喝几瓶汽水。喝1瓶余1个空瓶,借商家1个空瓶,2个瓶换1瓶继续喝,喝完后把这1个空瓶还给商家。即1元钱最多能喝2瓶汽水。20元钱当然最多能喝40瓶汽水。
解题思路3:
两个空瓶换一瓶汽水,可知纯汽水只值5角钱。20元钱当然最多能喝40瓶的纯汽水。N元钱当然最多能喝2N瓶汽水。
参考答案:
40瓶
<><><><><><><><><>
试题拓展:
1、1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有N元钱,最多可以喝到几瓶汽水?(答案2N)
2、9角钱一瓶汽水,喝完后三个空瓶换一瓶汽水,问:你有18元钱,最多可以喝到几瓶汽水?(答案30)
3、1元钱一瓶汽水,喝完后四个空瓶换一瓶汽水,问:你有15元钱,最多可以喝到几瓶汽水?(答案20)
智力题6(分割金条)- -
解题思路:
本题实质问题是数字表示问题。由1、2两个数字可表示1-3三个数字。由1、2、4三个数字可表示1-7七个数字(即1,2,1+2,4,4+1,4+2,4+2+1)。由1、2、4、8四个数字可表示1-15十五个数字。依此类推。
参考答案:
把金条分成1/7、2/7和4/7三份。这样,第1天我就可以给他1/7;第2天我给他2/7,让他找回我1/7;第3天我就再给他1/7,加上原先的2/7就是3/7;第4天我给他那块4/7,让他找回那两块1/7和2/7的金条;第5天,再给他1/7;第6天和第2天一样;第7天给他找回的那个1/7。
<><><><><><><><><>
试题拓展:
1、你让工人为你工作15天,给工人的回报是一根金条。金条平分成相连的15段,你必须在每天结束时给他们一段金条,如果只许你三次把金条弄断,你如何给你的工人付费?(1/15,2/15,4/15,8/15)
2、你让工人为你工作31天,给工人的回报是一根金条。金条平分成相连的31段,你必须在每天结束时给他们一段金条,如果只许你四次把金条弄断,你如何给你的工人付费?(1/31,2/31,4/31,8/31,16/31)
3、你让工人为你工作(2^n)-1天,给工人的回报是一根金条。金条平分成相连的(2^n)-1段,你必须在每天结束时给他们一段金条,如果只许你n-1次把金条弄断,你如何给你的工人付费?(1/((2^n)-1),2/((2^n)-1),4/((2^n)-1),...)
4.人民币为什么只有1、2、5、10的面值?(便于找零钱。理想状态下应是1、2、4、8,在现实生活中常用10进制,故将4、8变为5、10。只要2有两个,1、2、2、5、10五个数字可表示1-20。)