1989小学数学奥林匹克试题

合集下载

1989全国小学数学奥数竞赛

1989全国小学数学奥数竞赛

1989年小学数学奥林匹克邀请赛初赛试题1.计算:。

_______)10921()921(10)4321()321(4)321()21(3)21(121=++++⨯+++--+++⨯++-++⨯+⋅+⨯- 2.1到1989这些自然数中的所有数字之和是 。

3.把若干个自然数1,2,3,………乘到一起,如果己知这个乘积的最末13位恰好都是零,那么最后出现的自然数最小应该是 。

4.在1,,,3121100199141,, 中选出若干个数,使它们的和大于3,至少要选 个数。

5.在下边的减法算式中,每一个字母代表一个数字,不同的字母代表不同的数字。

那么D +G = 。

FF FG A FE D B CB A )- 6.如图,ABFE 和CDEF 都是矩形,AB 的长是4厘米,BC 的长是3厘米,那么图中阴影部分的面积是 平方厘米。

7.甲乙两包糖的重量比是4∶1,如果从甲包取出10克放入乙包后,甲乙两包糖的重量比变为7∶5,那么两包糖的重量的总和是 克。

8.设1,3,9,27,81,243是六个给定的数,从这六个数中每次或者取一个,或者取几个不同的数求和(每个数只能取一次),可以得到一个新数,这样共得到63个新数。

如果把它们从小到大依次排列起来是1,3,4,9,10,12,……那么第60个数是 。

9.有甲、乙、丙三辆汽车各以一定的速度从A 地开往B 地,乙比丙晚出发10分钟,出发后40分钟追上丙。

甲比乙又晚出发20分钟,出发后1小时40分钟追上丙,那么甲出发后需要用 分钟才能追上乙。

10.有一个俱乐部,里面的成员可以分成两类,第一类是老实人,永远说真话;第二类是骗子,永远说假话。

某天俱乐部全体成员围着一张圆桌坐下,每个老实人的两旁都是骗子,每个骗子的两旁都是老实人。

记者问俱乐部成员张三:“俱乐部共有多少成员?”张三回答案:“有45人。

”李四说:“张三是老实人。

”那么张三是老实人还是骗子?答案:张三是 。

11.某工程如果由第一、二、三、小队合干需要12天才能完成;如果由第一、三、五小队合干需要7天才能完成;如果由第二、四、五小队合干需要4天才能完成;如果由第一、三、四小队合干需要42天才能完成。

奥林匹克数学竞赛试题及答案

奥林匹克数学竞赛试题及答案

奥林匹克数学竞赛试题及答案奥林匹克数学竞赛是一项国际性的数学竞赛,旨在激发中学生对数学的兴趣和热爱。

以下是一份奥林匹克数学竞赛的模拟试题及答案,供参考:奥林匹克数学竞赛模拟试题一、选择题(每题2分,共10分)1. 如果一个数的平方等于它本身,那么这个数是:A. 0B. 1C. -1D. 0或12. 下列哪个数不是有理数?A. πB. √2C. -3D. 1/33. 将一个圆分成三个扇形,每个扇形的圆心角都是120°,那么这三个扇形的面积之和等于:A. 圆的面积B. 圆面积的1/3C. 圆面积的2/3D. 圆面积的1/24. 如果一个三角形的三边长分别为a, b, c,且满足a^2 + b^2 =c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定5. 一个数列的前三项为1, 1, 2,从第四项开始,每一项都是前三项的和。

这个数列的第10项是:A. 144B. 145C. 146D. 147二、填空题(每题3分,共15分)6. 一个数的立方根等于它本身,这个数可以是______。

7. 如果一个直角三角形的两条直角边长分别为3和4,那么它的斜边长是______。

8. 一个圆的半径为5,那么它的周长是______。

9. 一个等差数列的前5项之和为50,如果这个数列的公差为3,那么它的首项是______。

10. 如果一个多项式f(x) = ax^3 + bx^2 + cx + d,其中a, b, c, d是整数,且f(1) = 5,f(-1) = -1,那么a - d的值是______。

三、解答题(每题5分,共20分)11. 证明:对于任意的正整数n,1^3 + 1^2 + 1 + ... + 1/n^3总是大于1/n。

12. 解不等式:2x^2 - 5x + 3 > 0。

13. 一个圆的直径为10,求圆内接正六边形的边长。

14. 给定一个等比数列的前三项分别为2, 6, 18,求这个数列的第20项。

1991—2001年小学数学奥林匹克参考答案

1991—2001年小学数学奥林匹克参考答案

1991—2001年小学数学奥林匹克参考答案预赛A 1、7又256分之1 2、321 3、119 4、7 5、18 6、3 7、840 8、6727 9、14 10、1200 11、22 12、185 决赛B 1、5/2 2、15/33 3、五4、120 5、4200 6、2又5分之2 7、1628 10、30 11、8 12、202000年小学数学奥林匹克参考答案预赛A 1、5151 2、89 3、130 4、250 5、196、487、180008、6429、245 2、34 3、109 4、星期一5、8 6、1047、12时8又29分之8分8、137 9、80 10、47 11、1002 12、225 决赛A 1、2又8分之5 2、170 3、19 4、98 5、1024 6、4 7、16 8、69 9、97 10、76 11、9 12、3/8 决赛B 1、100 2、1996 3、715 4、488 5、35 6、25 7、18 8、8 9、6 10、51 11、249734 2、29又280分之201 3、12 4、40 5、50平方厘米6、11比7 7、32或36 8、2 9、1999 10、2231 2、16又20分之9 3、9 4、20 5、85 6、7或28 7、3 8、12 9、115度12、a=5,b=1决赛B1、85051998年小学数学奥林匹克参考答案预赛A: 1、10 2、15805 3、1又8分之1 4、81 提示9828等于2的平方乘3 的立方乘7乘13,三个连续自然数是26、27、28 5、168 提示97+71=89+79 6、998 7、36个8、192把9、7套10、152个11、119 12、62 2、19425 3、3又8分之1 4、21 5、30 6、140 7、52 8、333棵9、49元10、12人11、12分12、840米决赛A: 1、325平方厘米4、21354 5、727 6、23个7、571个8、19735 9、25%10、8点15分11、15只12、24%决赛B: 1、375元预赛B 1、088 7、135 8、A+大,大8平方厘米9、除1997外,还有1799、1979、1889、1988、189867%5、同决赛A卷第5题6、46个7、81分8、587元9、25天10、56 11、同决赛A卷第11题12、同决赛A卷第12题决赛: 1、同决赛B卷第2题2、同决赛A卷第1题3、同决赛B卷第3题4、同决赛A卷第3题5、1:3 6、同决赛A卷第6题7、同决赛B卷第7题8、同决赛B卷第8题9、同决赛A卷第9题10、396 11、同决赛B卷第10题。

小学数学难题解法大全 第五部分 典型难题讲析(七~一) 数的计算

小学数学难题解法大全 第五部分 典型难题讲析(七~一) 数的计算

小学数学难题解法大全第五部分典型难题讲析(七之一)数的计算(一)数的计算1.四则计算【基本题】例1 计算7142.85÷3.7÷2.7×1.7×0.7(1991年全国小学数学奥林匹克初赛试题)讲析:本题的两个除数和乘数依次是3.7,2.7,1.7,0.7。

从数字上分析,不能运用简便运算。

所以,只能从左至右依次计算。

结果是850.85。

(1990年江西省“八一杯”小学数学竞赛试题)成假分数之后,分子都含有22的约数,于是可采用分配律计算。

(1994年全国小学数学奥林匹克决赛试题)讲析:两个分数的分母都是3,所以,可把小数化成分数计算。

【巧算题】(全国第三届“华杯赛”初赛试题)讲析:括号中的三个数如果直接通分,则比较繁琐。

经观察,可将三个分母分解质因数,求出公分母;在求公分母的过程中,不必急于求出具体的数,而可边算边约分,能使计算简便一些。

(1993年全国小学数学奥林匹克决赛试题)讲析:当把两个带分数化成假分数时,分子都是65。

于是,第一个括号中可提出一个65,第二个括号中可提出一个5,能使计算变得比较简便。

例3 计算:(全国第四届“华杯赛”复赛试题)讲析:经观察发现,可将整数部分与分数部分分开计算。

这时,每个带分数的分数部分,都可以拆分成两个单位分数之差,然后互相抵消。

计算就很简便了例4 计算:(1990年《小学生数学报》小学数学竞赛试题)除以两数之积,就等于分别除以这两个数。

然后可将它们重新组合计算为法分配律计算。

于是可将10.375分开,然后重新组合。

(1990年小学数学奥林匹克初赛试题)用字母代替去计算。

(长沙市小学数学奥林匹克集训队选拔赛试题)26.3乘以2.5。

这样计算,可较为简便。

原式=2.5×24.7+29×2.5+26.3×2.5=2.5×(24.7+29+26.3)=200。

例8 已知11×13×17×19=46189计算:3.8×8.5×11×39(广州市小学数学竞赛试题)讲析:根据已知条件来计算另一个算式的结果,应尽量将计算式化成与已知条件式相同或相似的式子。

最新整理小学数学奥林匹克竞赛试题(共六套)

最新整理小学数学奥林匹克竞赛试题(共六套)

小学数学奥林匹克竞赛试题(一)一、填空题1.三个连续偶数,中间这个数是m,则相邻两个数分别是___m-2____和___m+2_ __。

2.有一种三位数,它能同时被2、3、7整除,这样的三位数中,最大的一个是____966___,最小的一个是____126____。

解题过程:2×3×7=42;求三位数中42的倍数126、168、 (966)3.小丽发现:小表妹和读初三哥哥的岁数是互质数,积是144,小表妹和读初三哥哥的岁数分别是_____9____岁和____16____岁。

解题过程:144=2×2×2×2×3×3;(9、16)=14.一个四位数,它的第一个数字等于这个数中数字0的个数,第二个数字表示这个数中数字1的个数,第三个数字表示这个数中数字2的个数,第四个数字等于这个数中数字3的个数,那么这个四位数是____1210___。

5.2310的所有约数的和是__6912____。

解题过程:2310=2×3×5×7×11;约数和=(1+2)×(1+3)×(1+5)×(1+7)×(1+11)6.已知2008被一些自然数去除,得到的余数都是10,这些自然数共有____11____个。

解题过程:2008-10=1998;1998=2×33×37;约数个数=(1+1)×(1+3)×(1+1)=16(个)其中小于10的约数共有1,2,3,6,9;16-5=11(个)7.从1、2、3、…、1998、1999这些自然数中,最多可以取多少个数,才能使其中每两个数的差不等于4?__ 1000 __。

解题过程:1,5,9,13,……1997(500个)隔1个取1个,共取250个2,6,10,14,……1998(500个)隔1个取1个,共取250个3,7,11,15,……1999(500个)隔1个取1个,共取250个4,8,12,16,……1996(499个)隔1个取1个,共取250个8.黑板上写有从1开始的若干个连续的奇数:1,3,5,7,9,11,13…擦去其中的一个奇数以后,剩下的所有奇数之和为1998,那么擦去的奇数是____27____。

中国数学奥林匹克(CMO)历届试题及解答(1986-2005)

中国数学奥林匹克(CMO)历届试题及解答(1986-2005)

∈ Z.
1 3 2n+1 (2n + 1)ϕ = (2l + 3 = 2t + 3 2 )π (l ∈ Z). ∴ (2n + 1)(2k + 6 ) = 2l + 2 , 6 2 , n = 6t + 4(t ∈ Z). 5(2n+1) 5 ) = 2l + 3 = 2t + 3 或(2n + 1)(2k + 6 2, 6 2 , 5|4t + 3, t ≡ 3 (mod 5)(t ∈ Z).
+1 ∴ cos(n + 1)θ − cos nθ − 1 = −(2 sin 2n2 θ sin θ 2 + 1) = 0. +1 sin(n + 1)θ − sin nθ = 2 cos 2n2 θ sin θ 2 = 0. +1 +1 1 θ ∴ cos 2n2 θ = 0, sin 2n2 θ = ±1, sin θ 2 = ± 2 , 设 2 = ϕ. π (1)sin ϕ = 1 2 ,sin(2n + 1)ϕ = −1. ϕ = 2kπ + 6 或2kπ + 5π 6 ,k
设t = 5s + 3,则n = 6s + 4,总有6|n + 2. (2)sin ϕ = − 1 2 ,sin(2n + 1)ϕ = 1.显然以−ϕ代ϕ即有(1).所以6|n + 2.证毕. 2.把边长为1的正三角形ABC 的各边都n等分,过各分点平行于其它两边的直线, 将这三角形分成若干个 小三角形,这些小三角形的顶点都称为结点, 并且在每一结点上放置了一个实数.已知: (1)A, B, C 三点上放置的数分别为a, b, c. (2)在每个由有公共边的两个最小三角形组成的菱形之中, 两组相对顶点上放置的数之和相等. 试求:(1)放置最大数的点和放置最小数的点之间的最短距离. (2)所有结点上数的总和S . 解:(1)不难证明同一直线上相邻三个结点上放置的数中间一个为两边的等差中项,所以同一直线上的数 按顺序成等差数列. 若两端的数相等,则所有的数都相等.否则两端的数为最大的和最小的. 若a, b, c相等,显然所有数都相等,最短距离显然为0. 若a, b, c两两不等,最大的数与最小的数必出现在A, B, C 上,最短距离为1. 若a, b, c有两个相等但不与第三个相等,不妨设a = b > c,最小的数为c,最大的数出现在线段AB 的任意 结点上. 当n为偶数时,与C 最近的为AB 中点,最短距离为

小学五年级数学奥林匹克竞赛试卷及答案

小学五年级数学奥林匹克竞赛试卷及答案

一、填空(共30分,每小题3分)1. 两个数的和是61.6,其中一个数的小数点向右移动一位,就及另一个数相同。

两个数分别是( )、( )。

2. 有三根木料,打算把每根锯成3段,每锯开一处需要3分钟,全部锯完需要( )分钟。

3. 笑笑同学的家住在5楼,每层楼梯有16级,她从1楼走到5楼,共要走()级楼梯。

4. 把一张边长24厘米的正方形纸对折4次后得到一个小正方形,这个小正方形的面积是()平方厘米。

5. 一副扑克牌有54张,至少抽取()张扑克牌,方能使其中至少有两张牌有相同的点数。

6. 一个长方形的长为9厘米,把它的长的一边减少3厘米,另一边不变,面积就减少9平方厘米,这时变成的梯形面积是()平方厘米。

7. 小明和小英两人同时从甲、乙两地相向而行,小明每分钟行a米,小英每分钟行b米,行了4分钟两人相遇。

甲、乙两地的路程是( )米。

8.街道上有一排路灯,共40根,每相邻两根距离原来是45米,现在要改成30米,可以有( )根路灯不需要移动。

9.小明计算20道题目,规定做对一道题得5分,做错一道题反扣3分。

结果小明20道题都做,却只得了60分,问他做对了()题。

10. 五(1)班的同学去划船。

他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐9人。

这个班共有()名同学。

二、判断(正确的在括号里画“√”,错误的画“×”。

共15分,每小题3分)11. 用10张同样长的纸条接成一条长31厘米的纸带,如果每个接头都重叠1厘米,则每张纸条长4.1厘米。

( )12. 用三个长3厘米、宽2厘米,高1厘米的长方体,拼成一个大长方体,有3种拼法。

()13. 把一批圆木自上而下按1、2、3……14、15根放在一起,这批圆木共有240根。

()14. 在a÷b=5……3中,把a、b同时扩大3倍,商是5,余数是3。

( )15.右图中长方形的面积及()阴影部分的面积相等。

三、选择(把正确答案的序号填在括号里。

第四届中国数学奥林匹克(1989年)

第四届中国数学奥林匹克(1989年)

「家教吗」助您登上知识的高峰 更多试题下载请访问 第四届中国数学奥林匹克 (1989年)1. 在半径为1的圆周上,任意给定两个点集A 、B ,它们都由有限段互不相交的弧组成,其中B 的每段的长度都等于π/m ,m 是自然数。

用A j 表示将集合A 反时针方向在圆同上转动jπ/m 弧度所得的集合(j=1, 2, ...)。

求证:存在自然数k ,使得L(A j∩B)≧L(A)L(B)/(2π)。

这里L(x)表示组成点集x 的互示相交的弧段的长度之和。

2. 设x 1, x 2, ... , x n 都是正数(n ≧2)且x 1+ x 2+ ... +x n =1。

求证:。

3. 设S 为复平面上的单位圆同(即模为1的复数的集合),f 为从S 到S 的映射,对于任意S 的元素z ,定义f (1)(z)=f(z),f (2)(z)=f( f(z)),...,f (k)(z)=f( f (k-1)(z) )。

如果S 的元素c ,使得f (1)(z)≠c ,f (2)(c)≠c ,...,f (n-1)(c)≠c ,f (n)(c)≠c 。

则称c 为f 的n ─周期点。

设m 是大于1的自然数,f 定义为f(z)=z m ,试计算f 的1989─周期点的总数。

4. 设点D 、E 、F 分别在△ABC 的三边BC 、CA 、AB 上,且△AEF 、△BFD 、△CDE 的内切圆有相等的半径r ,又以r 0的R 分别表示△DEF 和△ABC 的内切圆半径。

求证:r+r 0=R 。

5. 空间中有1989个点,其中任何三点不共线,把它们分成点数各不相同的30组,在任何三个不同的组中各取一点为顶点作三角形。

6. 设f :(1, +∞)→(0, +∞)满足以下条件:对于任意实数x 、y>1,及u 、v>0,有f(x u y v )≦f(x)1/(4u) f(y)1/(4v)。

试确定所有这样的函数。

小学六年数学奥林匹克试题及复习资料

小学六年数学奥林匹克试题及复习资料

小学六年级数学奥林匹克竞赛题(含答案)某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为A人,则80分以下的人数是(A-2)/4,及格的就是A+22,不及格的就是A+(A-2)/4-(A+22)=(A-90)/4,而6*(A-90)/4=A+22,则A=314,80分以下的人数是(A-2)/4,也即是78,参赛的总人数314+78=392电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思,为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)}左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。

这时两人钱相等,求乙的存款答案取40%后,存款有9600×(1-40%)=5760(元)这时,乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。

再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1。

5倍再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍增加了3-1.5=1.5倍,说明30颗占1.5倍奶糖=30/1.5=20颗巧克力=1.5*20=30颗奶糖=20-10=10颗小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。

小学数学奥林匹克试题及答案

小学数学奥林匹克试题及答案

小学数学奥林匹克试题及答案小学数学奥林匹克试题预赛(A)卷1.计算:$(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)=\_\_\_\_\_\_\_\_\_\_\_$.2.计算:$\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{ 1}{6}+\dfrac{1}{7}=\_\_\_\_\_\_\_\_\_\_\_$.3.用两个3,一个1,一个2可组成种种不同的四位数,这些四位数共有$\_\_\_\_\_\_\_\_\_\_\_$个.4.在一本数学书的插图中,有100个平行四边形。

80个长方形。

40个菱形.这本书的插图中正方形最多有$\_\_\_\_\_\_\_\_\_\_\_$.5.如下图,已知正方形ABCD和正方形CEFG,且正方形ABCD每边长为10厘米,则图中阴影(三角形BFD)部分的面积为$\_\_\_\_\_\_\_\_\_\_\_$.6.在右上图中,三个圆的半径分别为1厘米、2厘米、3厘米,AB和CD垂直且过这三个圆的共有圆心O.图中阴影部分面积与非阴影部分的面积之比是$\_\_\_\_\_\_\_\_\_\_\_$.7.在下式的圆圈和方框中,分别填入适当的自然数,使等式成立.方框中应填$\_\_\_\_\_\_\_\_\_\_\_$.circ+7)\div 5-6\times 2=\square$$8.圆珠笔和铅笔的价格比是4:3.20支圆珠笔和21支铅笔共用71.5元,则圆珠笔的单价是每支$\_\_\_\_\_\_\_\_\_\_\_$元.9.将一个四位数的数字顺序颠倒过来,得到一个新的四位数.如果新数比原数大7992,那么所有符合这样条件的四位数中原数最大的是$\_\_\_\_\_\_\_\_\_\_\_$.10.两个带小数相乘,乘积四舍五入以后是22.5.已知这两个数都只有一位小数,且个位数字都是4,则这两个数的乘积四舍五入前是$\_\_\_\_\_\_\_\_\_\_\_$.11.下面三个正方形内的数有相同的规律,请你找出它们的规律,并填出B,C,然后确定A,那么A是$\_\_\_\_\_\_\_\_\_\_\_$.begin{matrix}9 & 1 \\2 &3 &。

全国小学四年级奥林匹克数学竞赛试题

全国小学四年级奥林匹克数学竞赛试题

全国小学四年级奥林匹克数学竞赛试题一、填空:(30分)1、300×48的积是一个( )位数,省略万后面的尾数约是( )。

(2分)2、过直线外一点可以画( )条直线与这条直线垂直,可以画( )条直线与这条直线平行,可以画( )条直线与这条直线相交。

(3分)3、在( )内填上“>”“<”或“=” 。

(3分)920÷23( )38 210×10( )21×100 19×560( )20×560 4、一个有余数的除法算式,商和除数都是25,要使余数最大,被除数是( )。

(2分)5、两个数相除商是7,余数是29,除数最小是( ),被除数最小是( )。

(3分)6、括号里最大能填几?(3分)40×( )< 236 ( )×86< 290 51×( )<4037、根据运算定律填空。

(3分)28×15+15×72= 15 ×( )25×44= 25 ×( )5×86×20= 86 ×( )8、一个数四舍五入后是10万,这个数最大是( ),最小是( )。

(2分)9、钟面上11时,时针和分针成( );3时,时针和分针成( );5时,时针和分针成( )。

(填上“直角”、“锐角”、“钝角”) (3分)10、31( )327≈32万,括里最小能填( );(1分)7( )1734594≈7亿,里最大能填( )。

(1分)二、判断:(对的在后面括号里打“√”,错的打“×”,5分)1、[345-(87+28)]÷23=345-(87+28)÷23………( )2、一、十、百、千、万都是计数单位。

…………( )3、估算493×29时,可以把29看作30,493看作500,这样估算的结果比实际值大。

( )4、在没有余数的除法里,被除数÷除数÷商=1。

小学一年级数学奥林匹克试卷25套+应用题专项训练6套+逻辑思维专项训练1套无水印

小学一年级数学奥林匹克试卷25套+应用题专项训练6套+逻辑思维专项训练1套无水印

6. 小影到商店买文具用品。她用所带钱的一半买了 1 支自动铅笔,她又用剩下的钱的一
半买了 1 支圆珠笔,还剩下 1 元钱。那么,小影原来有( )元钱。(25 分) 列式:
试卷 10(30 分钟) 1. 一个三角形,切去一个角,还有( )个角。(10 分)
想法: 2. 瓶装汽水厂规定每 2 个空瓶可以换 1 瓶汽水。妈妈为小明共买了 6 瓶汽水,那么他最
想法:
列式:
2. 找规律填数。(15 分)
(1) 2、4、6、8、( )、( )、( )、( )、18、20。
(2) 19、17、15、( )、( )、( )、( )。
(3) 0、1、1、2、3、5、( )、( )。
3. 填空。(15 分)
(1)2+( )=3+( )。
(2)10-( )=6+( )。
试卷 5(30 分钟) 1. 在 3、9、12、13 这四个数中选三个数写出四道算式。(20 分) ( )+( )=( ),( )+( )=( ); ( )-( )=( ),( )-( )=( )。 2. 新星小学美术兴趣小组有学生 9 人,书法兴趣小组的人数和美术兴趣小组的人数同样
多,这两个兴趣小组共有( )名学生。(10 分) 列式: 3. 小明每天早上、中午、晚上各吃 1 个枣。一星期中,小明共吃( )个枣。(20 分) 列式: 4. 小红用同样的钱可以买 3 只蛋糕或者 4 只面包,( )比( )贵。(10 分) 想法: 5. 3 个男同学与 3 个女同学进行打球比赛,如果每个男同学都要与每个女同学比赛 1 次, 一共需要比赛( )次。(10 分) 列式: 6. 一根木头锯成 5 段,要锯( )次。(10 分) 想法: 7. 50 名运动员参加比赛,号码从 1 排到 50。这些号码中共出现了( )个 1。(20 分) 想法:

小学六年级数学奥林匹克竞赛题(含答案)

小学六年级数学奥林匹克竞赛题(含答案)

小学六年级数学奥林匹克竞赛题(含答案)某市举行小学数学竞赛.结果不低于80分的人数比80分以下的人数的4倍还多2人.及格的人数比不低于80分的人数多22人.恰是不及格人数的6倍.求参赛的总人数?解:设不低于80分的为A人.则80分以下的人数是(A-2)/4.及格的就是A+22.不及格的就是A+(A-2)/4-(A+22)=(A-90)/4.而6*(A-90)/4=A+22.则A=314.80分以下的人数是(A-2)/4.也即是78.参赛的总人数314+78=392电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思.为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1.则现在的观众人数为(1+2/1)}左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1.则原来应收入1x元.而现在增加了原来的五分之一.就应该再*(1+5/1).减缩后得到(1+1/5x)}如此计算后得到总收入.使方程左右相等甲乙在银行存款共9600元.如果两人分别取出自己存款的40%.再从甲存款中提120元给乙。

这时两人钱相等.求乙的存款答案取40%后.存款有9600×(1-40%)=5760(元)这时.乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)由奶糖和巧克力糖混合成一堆糖.如果增加10颗奶糖后.巧克力糖占总数的60%。

再增加30颗巧克力糖后.巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖.巧克力占总数的60%.说明此时奶糖占40%.巧克力是奶糖的60/40=1。

5倍再增加30颗巧克力.巧克力占75%.奶糖占25%.巧克力是奶糖的3倍增加了3-1.5=1.5倍.说明30颗占1.5倍奶糖=30/1.5=20颗巧克力=1.5*20=30颗奶糖=20-10=10颗小明和小亮各有一些玻璃球.小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6.我就比你多2个了。

精选---小学四年级数学奥林匹克竞赛试题及答案

精选---小学四年级数学奥林匹克竞赛试题及答案

小学四年级数学奥林匹克竞赛试题及答案(每题8分,总共120分)一、选择。

(将正确的答案填在相应的括号内)1.找规律填数:(在横线上写出你发现的规律)21 26 19 24 ( ) ( ) 15 20 .(1)15,34 (2)17,18 (3)17,22 (4)23,252.甲乙两个数的和是218,如果再加上丙数,这时三个数的平均数比甲乙两数的平均数多5,丙数是( ).(1)124 (2) 122 (3)140 (4)1273.设X和Y是选自前500个自然数中的两个不同的数,那么(X+Y)÷(X-Y)的最大值是( ).(1)1000 (2) 990 (3)999 (4)9984.选择: 8746×7576 的积的末四位数字是 ( ).(1) 6797 (2) 9696 (3) 7669 (4) 67695.现有1分,2分和5分的硬币各四枚,用其中的一些硬币支付2角3分钱,一共有多少种不同的支付方法?(1)4 (2) 5 (3)10 (4)86.右图中,所有正方形的个数是( )个.(1)10 (2)8 (3)11 (4)97.用0--4五个数字组成的最大的五位数与最小的五位数相差( ). (1)30870 (2)32900 (3)32976 (4)100008.用0、5、8、7这四个数字,可以组成()个不同的四位数?(1)10 (2)18 (3)11 (4)99.学校进行乒乓球选拔赛,每个参赛选手都要和其他所有选手各赛一场,一共进行了21场比赛,有多少人参加了选拔赛?(1)7 (2)8 (3)11 (4)910 一个长方形的纸对折成三等份后变成了一个正方形,正方形的周长是40厘米,那么原来长方形的周长是多少?(1)70 (2)80 (3)100 (4)9611.小明每分钟走50米,小红每分钟走60 米,两人从相距660米的两村同时沿一条公路相对出发,8分钟后两人相距( )米.(1)75 (2)200 (3)220 (4)9012甲、乙、丙、丁四位同学的运动衫上印有不同的号码。

中国数学奥林匹克(CMO)历届试题及解答(1986-2005)

中国数学奥林匹克(CMO)历届试题及解答(1986-2005)

过P2 作 平 行 于BC 的 直 线
EP2 P3 . ABC .证毕.
DP2 P3 ,也就不大于S
5.能否把1,1,2,2,. . . ,1986,1986这些数排成一行, 使得两个1之间夹着1个数,两个2之间夹着2个数,. . . , 两 个1986之间夹着1986个数.请证明你的结论. 解:不能.假设可以做出这样的排列,将已排好的数按顺序编号为1,2,. . . ,3972. 当n为奇数时,两个n的编号奇偶性相同;当n为偶数时,两个n的编号奇偶性不同. 而1到1986之间有993个 偶数,所以一共有2k + 993个编号为偶数的数.(k ∈ N∗ ) 但是1到3972之间有1986个偶数,k = 496.5.矛 盾.所以不能按要求排成这样一行. √ 6.用任意的方式,给平面上的每一点染上黑色或白色. 求证:一定存在一个边长为1或 3的正三角形,它的
3
第二届中国数学奥林匹克(1987年)
北京 北京大学
1.设n为自然数,求证方程z n+1 − z n − 1 = 0有模为1的复根的充分必要条件是 n + 2可被6整除. 证明:当6|n + 2时,令z = ei 3 = ∴ z n+1 − z n − 1 = e ∴z
n+1 n −i π 3
π
1 2
2 2 a1 x2 1 + a2 x2 + · · · + an xn ; 2 2 a1 x2 1 + a2 x2 + · · · + an xn
0(i = 1, 2, . . . , n),则显然有a1 x1 + a2 x2 + · · · + an xn 0, ai −a1 > 0(i = 2, 3, . . . , n). ∴

全国小学四年级奥林匹克数学竞赛试题及答案.doc

全国小学四年级奥林匹克数学竞赛试题及答案.doc

全国小学四年级奥林匹克数学竞赛试题及答案全国小学四年级奥林匹克数学竞赛试题及答案全国小学四年级奥林匹克数学竞赛试题一、填空:(30分)1、300 48的积是一个( )位数,省略万后面的尾数约是( )。

(2分)2、过直线外一点可以画( )条直线与这条直线垂直,可以画( )条直线与这条直线平行,可以画()条直线与这条直线相交。

(3分)3、在内填上或=。

(3分)920 2338 2101021 10019 560 20 5604、一个有余数的除法算式,商和除数都是25,要使余数最大,被除数是()。

(2分)5、两个数相除商是7,余数是29,除数最小是( ),被除数最小是()。

(3分)6、括号里最大能填几?(3分)40 ( ) 236( ) 86 29051 () 4037、根据运算定律填空。

(3分)28 15+15 72= 15 ( )2544= 25 ( )5 86 20=86()8、一个数四舍五入后是10万,这个数最大是(),最小是( )。

(2分)9、钟面上11时,时针和分针成( );3时,时针和分针成();5时,时针和分针成( )。

(填上直角、锐角、钝角) (3分)10、31 327 32万,里最小能填();(1分)71734594 7亿, 里最大能填()。

(1分)11、如右图,1=2=3, 1=( )。

(2分)12、如右图,已知4=45,5=( ) ,6=() 。

(2分)二、判断:(对的在后面括号里打,错的打,5分)1、[345-(87+28)]23=345-(87+28)23 ()2、一、十、百、千、万都是计数单位。

( )3、估算49329时,可以把29看作30,493看作500,这样估算的结果比实际值大。

( )4、在没有余数的除法里,被除数除数商=1。

( )5、求一个数的近似数,只要把这个数的尾数去掉就可以。

()三、选择正确的答案的序号填在括号里:(每个选项各1分,共9分)1、两个锐角不能拼成一个( )。

小学数学奥林匹克试题及答案

小学数学奥林匹克试题及答案

小学数学奥林匹克试题及答案小学数学奥林匹克试题及答案数学奥林匹克是针对小学阶段学生的数学竞赛,旨在培养孩子的数学思维和解决问题的能力。

以下是一份小学数学奥林匹克试题及答案,供家长和老师们参考。

1、有一个正方形的池塘,池塘的边长为5米。

请问池塘的周长和面积分别是多少?解:池塘的周长是20米,面积是25平方米。

2、一只青蛙一次可以跳上1级台阶,也可以跳上2级。

请问这只青蛙跳n级台阶最少要跳几次?解:当n为偶数时,青蛙需要跳n/2次;当n为奇数时,青蛙需要跳(n+1)/2次。

3、小明有4个苹果,小红有3个苹果,他们把这些苹果放在一起,请问他们一共有多少个苹果?解:一共有7个苹果。

4、一个数的平方减去这个数的本身等于14,请问这个数是多少?解:这个数是7或-7。

5、小明从家到学校有5个红绿灯,每个红绿灯有3种状态:红灯、黄灯和绿灯。

请问小明从家到学校一共有多少种不同的红绿灯组合?解:小明从家到学校一共有3^5=243种不同的红绿灯组合。

希望以上试题和答案能够为家长和老师们提供一些帮助。

也建议家长们在平时的生活中多引导孩子发现生活中的数学问题,培养孩子的数学思维和解决问题的能力。

小学数学奥林匹克竞赛试题及答案小学数学奥林匹克竞赛试题及答案一、选择题1、以下哪个数是质数? A. 10 B. 17 C. 23 D. 25 答案:B2、下列哪个图形是正方形? A. ① B. ② C. ③ D. ④答案:C3、下列哪个算式的结果为偶数? A. 2 + 4 + 6 + ... + 100 B. 3 + 6 + 9 + ... + 99 C. 1 + 3 + 5 + ... + 99 D. 1 + 4 + 7 + ... + 100 答案:A二、填空题4、一个长方形的长比宽多2,若长和宽均为整数,则这个长方形的面积最小为______。

答案:641、若将1至200的整数均匀写在一张纸上,则纸上所有数字的总和为______。

1989年小学数学奥林匹克试卷

1989年小学数学奥林匹克试卷

1989小学数学奥林匹克试题初赛1、 计算:1-()2112+⨯-()()321213++⨯+-()()43213214+++⨯++-…-102192110+⋯++⨯+⋯++= 。

2、1到1989这些自然数中的所有数字之和是 。

3、把若干个自然数,2,3,……乘到一起,如果已知这个乘积的最末13位恰好都是零,那么最后出现的自然数最小应该是 。

4、在1,21,31,41,51,…,991,1001中选出若干个数,使它们的和大于3,至少要选 个数。

5、在右边的减法算式中,每一个字母代表一个数字,不同的字母代表不同的数字,那么D+G= 。

6、如图,ABFD 和CDEF 都是矩形,AB 的长是4厘米,BC 的长是3厘米,那么图中阴影部分的面积是 平方厘米。

7、甲乙两包糖的重量比是4:1,如果从甲包取出10克放入乙包后,甲乙两包糖的重量比变为7:5,那么两包糖重量的总和是 克。

8、设1,3,9,27,81,243是六个给定的数,从这六个数中每次或者取一个,或者取几个不同的数求和(每个数只能取一次),可以得到一个新数,这样共得到63个新数。

如果把它们从小到大依次排列起来是1,3,4,9,12……那么第60个数是 。

9、有甲、乙、丙三辆汽车各以一定的速度从A 地开往B 地,乙比丙晚出发10分钟,出发后40分钟追上丙。

甲比乙又晚出发20分钟,出发后1小时40分追上丙,那么甲出发后需用 分钟才能追上乙。

10、 有一个俱乐部,里面的成员可以分成两类,第一类是老实人,永远说真话;第二类是骗子,永远说假话。

某天俱乐部全体成员围着一张圆桌坐下,每个老实人的两旁 都是骗子,每个骗子的两旁都是老实人。

记者问俱乐部成员张三:俱乐部共有多少成员?张三回答:有45人。

李四说:张三是老实人。

那么张三是老实人还是骗子?张三是 。

11、某工程如果由第一、二、三小队合干需要12天才能完成;如果由第一、三、五小队合干需要7天完成;如果由第二、四、五小队合干4天完成;如果由第一、三、四小队合干需要42天才能完成。

历届小学奥数竞赛试题集(含答案)

历届小学奥数竞赛试题集(含答案)

2000小学数学奥林匹克试题预赛(A)卷1.计算: 12-22+32-42+52-62+…-1002+1012=________。

2.一个两位数等于其个位数字的平方与十位数字之和,这个两位数是________。

3.五个连续自然数,每个数都是合数,这五个连续自然数的和最小是________。

4.有红、白球若干个。

若每次拿出一个红球和一个白球,拿到没有红球时,还剩下50个白球;若每次拿走一个红球和3个白球,则拿到没有白球时,红球还剩下50个。

那么这堆红球、白球共有________个。

5.一个年轻人今年(2000年)的岁数正好等于出生年份数字之和,那么这位年轻人今年的岁数是________。

6.如右图, ABCD是平行四边形,面积为72平方厘米,E,F分别为AB,BC的中点,则图中阴影部分的面积为_____平方厘米。

7.a是由2000个9组成的2000位整数,b是由2000个8组成的2000位整数,则a×b的各位数字之和为________。

8.四个连续自然数,它们从小到大顺次是3的倍数、5的倍数、7的倍数、9的倍数,这四个连续自然数的和最小是____。

9.某区对用电的收费标准规定如下:每月每户用电不超过10度的部分,按每度0.45元收费;超过10度而不超过20度的部分,按每度0.80元收费;超过20度的部分,按每度1.50元收费。

某月甲用户比乙用户多交电费7.10元,乙用户比丙用户多交3.75元,那么甲、乙、丙三用户共交电费________元(用电都按整度数收费)。

10.一辆小汽车与一辆大卡车在一段9千米长的狭路上相遇,必须倒车,才能继续通行。

已知小汽车的速度是大卡车的速度的3倍,两车倒车的速度是各自速度的;小汽车需倒车的路程是大卡车需倒车的路程的4倍。

如果小汽车的速度是50千米/时,那么要通过这段狭路最少用________小时。

11.某学校五年级共有110人,参加语文、数学、英语三科活动小组,每人至少参加一组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1989年数学奥林匹克 预赛
1.计算:
-+++⨯++-++⨯+-+⨯-)
4321()321(4)321()21(321121)()
10321()9321(10++++⨯++++- = 。

2.1到1989这些自然数中的所有数字之和是 。

3.把若干个自然数,2,3,……乘到一起,如果已知这个乘积的最末13位
恰好都是零,那么最后出现的自然数最小应该是 。

4.在1,100
199151413121,,,,, 中选出若干个数,使它们的和大于3,至少要选 个数。

5.在右边的减法算式中,每一个字母代表一个 数字,不同的字母代表不同的数字, 那么D+G= 。

6.如图,ABFD 和CDEF 都 是矩形,AB 的 长是4厘米,BC 的长是3厘米,那么图中
阴影部分的面积是 平方厘米。

7.甲乙两包糖的重量比是4:1,如果从甲包取出10克放入乙包后,甲乙两
包糖的重量比变为7:5,那么两包糖重量的总和是 克。

8.设1,3,9,27,81,243是六个给定的数,从这六个数中每次或者取一
个,或者取几个不同的数求和(每个数只能取一次),可以得到一个新数,这样共得到63个新数。

如果把它们从小到大依次排列起来是1,3,4,9,12……那么第60个数是 。

9.有甲、乙、丙三辆汽车各以一定的速度从A 地开往B 地,乙比丙晚出发
10分钟,出发后40分钟追上丙。

甲比乙又晚出发20分钟,出发后1小时40分追上丙,那么甲出发后需用 分钟才能追上乙。

10.有一个俱乐部,里面的成员可以分成两类,第一类是老实人,永远说真
话;第二类是骗子,永远说假话。

某天俱乐部全体成员围着一张圆桌坐下,
每个老实人的两旁都是骗子,每个骗子的两旁都是老实人。

记者问俱乐部成_FFF EFAG ABCBD
员张三:俱乐部共有多少成员?张三回答:有45人。

李四说:张三是老实人。

那么张三是老实人还是骗子?张三是。

11.某工程如果由第一、二、三小队合干需要12天才能完成;如果由第一、
三、五小队合干需要7天完成;如果由第二、四、五小队合干4天完成;如果由第一、三、四小队合干需要42天才能完成。

那么这五个小队一起合干需要天才能完成这项工程。

12把一个两位数的个位数字与其十位数字交换后得到一个新数,它与原来的数加起来恰好是某个自然数的平方,这个和数是。

13.把自然数1,2,3,……,998,999分成三组,如果每一组数的平均数恰好相等地,那么这三个平均数的和是。

14.某种商品的价格是:每一个1分钱,每五个4分钱,每九个7分钱。

小赵的钱至多能买50个,小李的钱至多能买500个。

小李的钱比小赵的钱多分钱。

15.一个自行车选手在相距950千米的甲、乙两地之间训练,从甲地出发,去时每90千米休息一次;到达乙地并休息一天后再沿原路返回,每100千米休息一次。

他发现恰好有一个休息的地点与去时的一个休息地点相同,那么这个休息地点距甲地有千米。

16.现有四个自然数,它们的和是1111,如果要求这四个数的公约数尽可能地大,那么这四个数的公约数最大可能是。

17.桌面上有一条长度为100厘米的红色直线,另外有直径分别是2、3、7、15厘米的圆形纸片若干个,现在用这些圆形纸片将桌上的红线盖住,如果要使所用纸片的圆周长总和最短,那么这个周长总和是。

18.右图是一个边长为2厘米的正方体,
在正方体的上面的正中向下挖一个边
长为1厘米的正方体小洞;接着在小
1厘
洞的底面正中再向下挖一个边长为
2
米的小洞;第三个小洞的挖法与前两个
1厘米,那么最后得到的
相同,边长为
4
立体图形的表面积是平方厘米。

19.小明在左衣袋和右衣袋中分别装有6枚和8枚硬币,并且两衣袋中硬币的总钱数相等,当任意从左边衣袋取出两个硬币和右边衣袋的任意两个硬币交换时,左边衣袋的总钱数要么比原来的钱数多二分,要么比原来钱数少二分。

那么两个衣袋中共有钱。

20.从1,3,5,7,…97,99中最多可以选出个数,使它们当中的每一个数都不是另一个数的倍数。

相关文档
最新文档