攀枝花市民族中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

攀枝花市民族中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.如图可能是下列哪个函数的图象()
A.y=2x﹣x2﹣1 B.y=
C.y=(x2﹣2x)e x D.y=
2.袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是()
A.至少有一个白球;都是白球
B.至少有一个白球;至少有一个红球
C.恰有一个白球;一个白球一个黑球
D.至少有一个白球;红、黑球各一个
3.特称命题“∃x∈R,使x2+1<0”的否定可以写成()
A.若x∉R,则x2+1≥0 B.∃x∉R,x2+1≥0
C.∀x∈R,x2+1<0 D.∀x∈R,x2+1≥0
4.已知a为常数,则使得成立的一个充分而不必要条件是()
A.a>0 B.a<0 C.a>e D.a<e
5.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的()
A.必要不充分条件B.充分不必要条件
C.充分必要条件 D.既不充分也不必要条件
6.设全集U={1,2,3,4,5,6},设集合P={1,2,3,4},Q={3,4,5},则P∩(∁U Q)=()A.{1,2,3,4,6} B.{1,2,3,4,5} C.{1,2,5} D.{1,2}
7.随机变量x1~N(2,1),x2~N(4,1),若P(x1<3)=P(x2≥a),则a=()
A.1 B.2 C.3 D.4
8. 已知实数y x ,满足不等式组⎪⎩

⎨⎧≤-≥+≤-5342y x y x x y ,若目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则
实数m 的取值范围是( )
A .1-<m
B .10<<m
C .1>m
D .1≥m
【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.
9. 设集合 A={ x|﹣3≤2x ﹣1≤3},集合 B 为函数 y=lg ( x ﹣1)的定义域,则 A ∩B=( ) A .(1,2) B .[1,2] C .[1,2) D .(1,2]
10
.设实数
,则a 、b 、c 的大小关系为( )
A .a <c <b
B .c <b <a
C .b <a <c
D .a <b <c 11.正方体的内切球与外接球的半径之比为( ) A

B

C

D

12.某三棱锥的三视图如图所示,该三棱锥的表面积是 A
、28+ B
、30+ C
、56+ D 、
60+
二、填空题
13.设变量x ,y
满足约束条件
,则的最小值为 .
14.△ABC
外接圆半径为,内角A ,B ,C 对应的边分别为a ,b ,c ,若A=60°,b=2,则c 的值为 .
15.已知过球面上 ,,A B C 三点的截面和球心的距离是球半径的一半,且
2AB BC CA ===,则
球表面积是_________.
16.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于 .
17.曲线y=x+e x 在点A (0,1)处的切线方程是 .
18.函数()x f x xe =在点()()
1,1f 处的切线的斜率是 .
三、解答题
19.(本小题满分10分)选修4—5:不等式选讲 已知函数()f x x a =-,()a R ∈.
(Ⅰ)若当04x ≤≤时,()2f x ≤恒成立,求实数a 的取值; (Ⅱ)当03a ≤≤时,求证:()()()()f x a f x a f ax af x ++-≥-.
20.已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点.
(1)求椭圆C 的方程;
(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,
求出直线l 的方程;若不存在,说明理由.
21.(本小题满分12分)△ABC 的三内角A ,B ,C 的对边分别为a ,b ,c ,已知k sin B =sin A +sin C (k 为正常数),a =4c .
(1)当k =5
4
时,求cos B ;
(2)若△ABC 面积为3,B =60°,求k 的值.
22.设函数f (x )=lnx ﹣ax 2﹣bx .
(1)当a=2,b=1时,求函数f (x )的单调区间;
(2)令F (x )=f (x )+ax 2
+bx+(2≤x ≤3)其图象上任意一点P (x 0,y 0)处切线的斜率k ≤恒成立,求
实数a 的取值范围;
(3)当a=0,b=﹣1时,方程f (x )=mx 在区间[1,e 2
]内有唯一实数解,求实数m 的取值范围.
23.(本题满分12分)在ABC ∆中,已知角,,A B C 所对的边分别是,,a b c ,边7
2
c =
,且
tan tan tan 3A B A B +=-ABC ∆的面积为ABC S ∆=
a b +的值.
24.如图,四棱锥P ABC -中,,//,3,PA BC 4PA ABCD AD BC AB AD AC ⊥=====,M 为线段AD 上一点,2,AM MD N =为PC 的中点.
MN平面PAB;
(1)证明://
(2)求直线AN与平面PMN所成角的正弦值;
攀枝花市民族中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】C
【解析】解:A中,∵y=2x﹣x2﹣1,当x趋向于﹣∞时,函数y=2x的值趋向于0,y=x2+1的值趋向+∞,
∴函数y=2x﹣x2﹣1的值小于0,∴A中的函数不满足条件;
B中,∵y=sinx是周期函数,∴函数y=的图象是以x轴为中心的波浪线,
∴B中的函数不满足条件;
C中,∵函数y=x2﹣2x=(x﹣1)2﹣1,当x<0或x>2时,y>0,当0<x<2时,y<0;
且y=e x>0恒成立,
∴y=(x2﹣2x)e x的图象在x趋向于﹣∞时,y>0,0<x<2时,y<0,在x趋向于+∞时,y趋向于+∞;
∴C中的函数满足条件;
D中,y=的定义域是(0,1)∪(1,+∞),且在x∈(0,1)时,lnx<0,
∴y=<0,∴D中函数不满足条件.
故选:C.
【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目.
2.【答案】D
【解析】解:从3个红球,2个白球,1个黑球中任取2个球的取法有:
2个红球,2个白球,1红1黑,1红1白,1黑1白共5类情况,
所以至少有一个白球,至多有一个白球不互斥;
至少有一个白球,至少有一个红球不互斥;
至少有一个白球,没有白球互斥且对立;
至少有一个白球,红球黑球各一个包括1红1白,1黑1白两类情况,为互斥而不对立事件,
故选:D
【点评】本题考查了互斥事件和对立事件,是基础的概念题.
3.【答案】D
【解析】解:∵命题“∃x∈R,使x2+1<0”是特称命题
∴否定命题为:∀x∈R,都有x2+1≥0.
故选D.
4.【答案】C
【解析】解:由积分运算法则,得
=lnx=lne﹣ln1=1
因此,不等式即即a>1,对应的集合是(1,+∞)
将此范围与各个选项加以比较,只有C项对应集合(e,+∞)是(1,+∞)的子集
∴原不等式成立的一个充分而不必要条件是a>e
故选:C
【点评】本题给出关于定积分的一个不等式,求使之成立的一个充分而不必要条件,着重考查了定积分计算公式和充要条件的判断等知识,属于基础题.
5.【答案】B
【解析】解:∵b⊥m,∴当α⊥β,则由面面垂直的性质可得a⊥b成立,
若a⊥b,则α⊥β不一定成立,
故“α⊥β”是“a⊥b”的充分不必要条件,
故选:B.
【点评】本题主要考查充分条件和必要条件的判断,利用线面垂直的性质是解决本题的关键.
6.【答案】D
【解析】解:∵U={1,2,3,4,5,6},Q={3,4,5},
∴∁U Q={1,2,6},又P={1,2,3,4},
∴P∩(C U Q)={1,2}
故选D.
7.【答案】C
【解析】解:随机变量x1~N(2,1),图象关于x=2对称,x2~N(4,1),图象关于x=4对称,
因为P(x1<3)=P(x2≥a),
所以3﹣2=4﹣a,
所以a=3,
故选:C.
【点评】本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解.
8.【答案】C
【解析】画出可行域如图所示,)3,1(A ,要使目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则需直线l 过点A 时截距最大,即z 最大,此时1>l k 即可.
9. 【答案】D
【解析】解:由A 中不等式变形得:﹣2≤2x ≤4,即﹣1≤x ≤2, ∴A=[﹣1,2],
由B 中y=lg (x ﹣1),得到x ﹣1>0,即x >1, ∴B=(1,+∞), 则A ∩B=(1,2], 故选:D .
10.【答案】A
【解析】解:∵,b=20.1>20
=1,0<
<0.90
=1.
∴a <c <b . 故选:A .
11.【答案】C
【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长, 设正方体的棱长为:2a ,所以内切球的半径为:a ;外接球的直径为2a ,半径为:
a ,
所以,正方体的内切球与外接球的半径之比为:
故选C
12.【答案】B
【解析】从所给的三视图可以得到该几何体为三棱锥,
所求表面积为三棱锥四个面的面积之和。

利用垂直关系和三角形面积公式,可得:
====
S S S S
10,10,10,
后右左

S=+B.
因此该几何体表面积30
二、填空题
13.【答案】4.
【解析】解:作出不等式组对应的平面区域,
则的几何意义为区域内的点到原点的斜率,
由图象可知,OC的斜率最小,
由,解得,
即C(4,1),
此时=4,
故的最小值为4,
故答案为:4
【点评】本题主要考查线性规划的应用,利用直线斜率的定义以及数形结合是解决本题的关键.
14.【答案】.
【解析】解:∵△ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60°,b=2,
∴由正弦定理可得:,解得:a=3,
∴利用余弦定理:a2=b2+c2﹣2bccosA,可得:9=4+c2﹣2c,即c2﹣2c﹣5=0,
∴解得:c=1+,或1﹣(舍去).
故答案为:.
【点评】本题主要考查了正弦定理,余弦定理,在解三角形中的综合应用,考查了转化思想和计算能力,属于基础题.
15.【答案】64 9
【解析】111]
考点:球的体积和表面积.
【方法点晴】本题主要考查了球的表面积和体积的问题,其中解答中涉及到截面圆圆心与球心的连线垂直于截面,球的性质、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记球的截面圆圆心的性质,求出球的半径是解答的关键.
16.【答案】.
【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,
其中4个点构成平行四边形的选法有3个,
∴4个点构成平行四边形的概率P==.
故答案为:.
【点评】本题考查古典概型及其概率计算公式的应用,是基础题.确定基本事件的个数是关键.
17.【答案】2x﹣y+1=0.
【解析】解:由题意得,y′=(x+e x)′=1+e x,
∴点A(0,1)处的切线斜率k=1+e0=2,
则点A(0,1)处的切线方程是y﹣1=2x,即2x﹣y+1=0,
故答案为:2x﹣y+1=0.
【点评】本题考查导数的几何意义,以及利用点斜式方程求切线方程,注意最后要用一般式方程来表示,属于基础题.
18.【答案】2e 【解析】 试题分析:
()(),'x x x f x xe f x e xe =∴=+,则()'12f e =,故答案为2e .
考点:利用导数求曲线上某点切线斜率.
三、解答题
19.【答案】
【解析】【解析】(Ⅰ)()2x a f x -=≤得,22a x a -≤≤+ 由题意得20
42
a a -≤⎧⎨≤+⎩,故22a ≤≤,所以2a = …… 5分
(Ⅱ)
03a ≤≤,∴112a -≤-≤,∴12a -≤,
()()2f ax af x ax a a x a ax a ax a -=---=---()()
2212ax a ax a a a a a a ≤---=-=-≤ ()()()2222f x a f x a x a x x a x a a -++=-+≥--==,
∴()()()()f x a f x a f ax af x -++≥-.…… 10分
20.【答案】
【解析】解:(1)依题意,可设椭圆C 的方程为(a >0,b >0),且可知左焦点为
F (﹣2,0),从而有
,解得c=2,a=4,
又a 2=b 2+c 2,所以b 2
=12,故椭圆C 的方程为

(2)假设存在符合题意的直线l ,其方程为y=x+t ,
由得3x 2+3tx+t 2
﹣12=0,
因为直线l 与椭圆有公共点,所以有△=(3t )2
﹣4×3(t 2
﹣12)≥0,解得﹣4
≤t ≤4,
另一方面,由直线OA 与l 的距离4=,从而t=±2,
由于±2
∉[﹣4
,4
],所以符合题意的直线l 不存在.
【点评】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想.
21.【答案】
【解析】解:(1)∵54sin B =sin A +sin C ,由正弦定理得5
4
b =a +
c ,
又a =4c ,∴5
4b =5c ,即b =4c ,
由余弦定理得cos B =a 2+c 2-b 22ac =(4c )2+c 2-(4c )22×4c ·c =1
8.
(2)∵S △ABC =3,B =60°.
∴1
2
ac sin B = 3.即ac =4. 又a =4c ,∴a =4,c =1.
由余弦定理得b 2=a 2+c 2-2ac cos B =42+12-2×4×1×1
2=13.
∴b =13,
∵k sin B =sin A +sin C ,
由正弦定理得k =a +c b =513
=513
13,
即k 的值为513
13.
22.【答案】
【解析】解:(1)依题意,知f (x )的定义域为(0,+∞).… 当a=2,b=1时,f (x )=lnx ﹣x 2
﹣x ,
f ′(x )=﹣2x ﹣1=﹣.
令f ′(x )=0,解得x=.…
当0<x <时,f ′(x )>0,此时f (x )单调递增;
当x >时,f ′(x )<0,此时f (x )单调递减.
所以函数f (x )的单调增区间(0,),函数f (x )的单调减区间(,+∞).…
(2)F (x )=lnx+,x ∈[2,3],
所以k=F ′(x 0)=
≤,在x 0∈[2,3]上恒成立,…
所以a ≥(﹣x 02
+x 0)max ,x 0∈[2,3]…
当x 0=2时,﹣x 02
+x 0取得最大值0.所以a ≥0.…
(3)当a=0,b=﹣1时,f (x )=lnx+x ,
因为方程f (x )=mx 在区间[1,e 2
]内有唯一实数解,
所以lnx+x=mx 有唯一实数解.
∴m=1+
,…
设g (x )=1+
,则g ′(x )=
.…
令g ′(x )>0,得0<x <e ; g ′(x )<0,得x >e ,
∴g (x )在区间[1,e]上是增函数,在区间[e ,e 2
]上是减函数,…1 0分
∴g (1)=1,g (e 2)=1+
=1+,g (e )=1+,…
所以m=1+,或1≤m <1+.…
23.【答案】112
. 【解析】

题解析:由tan tan tan 3A B A B +=-
可得
tan tan 1tan tan A B
A B
+=-tan()A B +=
∴tan()C π-=tan C -=tan C =∵(0,)C π∈,∴3
C π
=
.
又ABC ∆的面积为ABC S ∆=
1sin 2ab C =,即12ab =6ab =.
又由余弦定理可得222
2cos c a b ab C =+-,∴2227()2cos 23
a b ab π=+-,
∴22227()()32
a b ab a b ab =+-=+-,∴2
121()4a b +=,∵0a b +>,∴11
2
a b +=.1 考点:解三角形问题.
【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到两角和与两角差的正切函数公式、三角形的面积、正弦定理和余弦定理,以及特殊角的三角函数值等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,其中熟练掌握基本公式和灵活运用公式是解答本题的关键,属于中档试题.
24.【答案】(1)证明见解析;(2)25
. 【解析】

题解析:
(2)在三角形AMC 中,由2
2,3,cos 3
AM AC MAC ==∠=
,得 2222cos 5CM AC AM AC AN MAC =+-∠=, 222AM MC AC +=,则AM MC ⊥,
∵PA ⊥底面,ABCD PA ⊂平面PAD , ∴平面ABCD ⊥平面PAD ,且平面ABCD
平面PAD AD =,
∴CM ⊥平面PAD ,则平面PNM ⊥平面PAD ,
在平面PAD 内,过A 作AF PM ⊥,交PM 于F ,连结NF ,则ANF ∠为直线AN 与平面PMN 所成角。

在Rt PAM ∆中,由PA AM PM AF =,得AF =sin ANF ∠=
所以直线AN 与平面PMN .1
考点:立体几何证明垂直与平行.。

相关文档
最新文档