五年级列方程解应用题奥数知识(列方程解应用题)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级列方程解应用题奥数知识(列方程解应用题)
同学们在解答数学问题时;经常遇到一些数量关系较复杂的;或较隐蔽的逆向问题。

用算术方法解答比较困难;如果用方程解就简便得多。

它可以进一步培养我们分析问题和解决问题的能力;抽象思维能力;列方程解应用题一般分为五步:
(一)审题;(弄清已知数和未知数以及它们之间的关系)
(二)用字母表示未知数;(通常用“x”表示)
(三)根据等量关系列出方程;
(四)解方程求出未知数的值;
(五)验算并答题。

例1. 金台小学学生参加申奥植树活动;六年级共植树252棵;比五年级植树总数的1
1
4倍少8棵;五年级植树
多少棵?
思路分析:六年级比五年级植树总数的1
1
4倍少8棵;就是六年级的
1
1
4倍的数少8;等于六年级植树的
总数。

等量关系是:五年级的1
1
4倍-8=六年级的植树总数。

解:设五年级植树x棵;根据题意列方程;得
11
4
8252
x-=
1
1
4
2528
x=+
1
1
4
260
x=
x
x

=
2601
1
4
208
验算:把x=208代入原方程
左边=⨯-=
1
1
4
2088252
右边=252
左边=右边
x=208是原方程的解。

答:五年级植树208棵。

例2. 一瓶农药700克;其中水比硫磺粉的6倍还多25克;含硫磺粉的重量是石灰的2倍;这瓶农药里;水、硫磺粉和石灰粉各多少克?
思路分析:这是道比较复杂的“和倍应用题”;硫磺粉和水有直接关系;硫磺粉和石灰也有直接关系;因此应设未知数硫磺粉为x克。

水的重量是硫磺的6倍还多25克;也就是(6x+25)克;石灰的重量就是硫磺
粉的重量除以2;也就是1
2
x
克。

等量关系式表示为:
水+硫磺粉+石灰=农药重量
解:设硫磺粉的重量是x 克;那么;水的重量是(625x +)克;石灰重量是12x 克。

根据题意列方程;解。

6251
2700x x x +++
= 71
270025
x =-
75
675.x = x =90 验算:把x =90代入原方程
左边
=⨯+++
⨯=69025901
290700
右边=700
左边=右边
x =90是原方程的解。

例3. 两袋米同样重;第一袋吃去18千克;第二袋吃去25千克;余下的第一袋刚好是第二袋的2倍;两袋原来各有多少千克?
思路分析:题中告诉我们原来两袋大米同样重;解答时可以设两袋大米原来各重x 千克;第一袋剩下的则是()x -18千克;第二袋剩下的则是()x -25千克。

根据题意;第一袋剩下的大米是第二袋剩下的2倍;也就是说;如果把第二袋剩下的扩大2倍就和第一袋剩下的相等。

解:设两袋大米原来的重量各为x 千克;根据题意;列方程得 ()x x -⨯=-25218 25018x x -=- 25018x x -=- x =32
验算:左边=-⨯=()3225214
右边=32-18=14 左边=右边
x =32是原方程的解
答:两袋大米原来各重32千克。

二. 尝试体验;合作交流。

阅读下面各题;根据题中的分析;找出题中的等量关系;并解答出来。

1. 李红看一本小说;上午看了60页;相当于下午看的页数的7
8又4页;李红这天共看了多少页小说?
思路分析:这道题和求的问题是这一天共看了多少页小说。

题目中已知上午看了60页;所以;只要求出
下午看的页数;就可以了。

题目中明确告诉了我们等量关系即“上午看了60页;相当于下午看的页数的7
8又
4页”。

2. 已知一个长方形的长是20米;如果把它的宽减少4米;新得到一个长方形;它的面积想法于原来长方形
的面积的5
7;原来长方形的周长是多少?
思路分析:这道题的所求问题是求原来长方形的周长;而题目中明确告诉了我们等量关系即“新得到的
长方形的面积相当于原来长方形面积的57。

”如果没有原来长方形的宽为x 米;原来长方形的面积就是20x
平方米;新的长方形的宽就是(x —4)米;新的长方形面积就是204⨯-()x 平方米。

3. 两根绳共长90米;已知第一根绳长的25等于第二根绳长的1
2;求两根绳各长多少米?
思路分析:解答时;首先抓住题目中的等量关系“第一根绳长的25等于第二根绳长的1
2”再根据第一
根绳长为(90-x )米;就可以列出方程。

三. 灵活运用;创造发展。

1. 甲乙两个粮仓共有粮食55万千克;如果甲仓运出3
5;乙仓运出6万千克;则甲乙两仓存粮相等;甲、乙两
仓原来各存粮多少万千克?
2. 用5千克含盐20%的盐水;如果把它稀释为含盐15%的盐水;需要加水多少千克?
3. 有甲、乙两筐苹果;如果从甲筐取10千克放入乙筐;则两筐相等;如果从两筐中各取出10千克;这时甲
筐余下的310比乙筐余下的1
3多5千克。

求两筐苹果原来各多少千克?
4. 同学们到郊区野炊。

一个同学到老师那里去领碗;老师问他领多少;他说领55个。

又问“多少人吃饭”;他说:“一人一个饭碗;两人一个菜碗;三人一个汤碗。

”算一算;有多少人吃饭。

【练习答案】
二. 尝试体验;合作交流。

阅读下面各题;根据题中的分析;找出题中的等量关系;并解答出来。

1. 李红看一本小说;上午看了60页;相当于下午看的页数的7
8又4页;李红这天共看了多少页小说?
思路分析:这道题和求的问题是这一天共看了多少页小说。

题目中已知上午看了60页;所以;只要求出
下午看的页数;就可以了。

题目中明确告诉了我们等量关系即“上午看了60页;相当于下午看的页数的7
8又
4页”。

等量关系:下午看的页数×7
8+4=上午看的页数
解:法(一):设下午看了x 页。

7
8460x +=
7
8604x =- 7
856x =
x x =÷
=567
8
64
60+64=124页
答:这天共看了124页。

解:解法(二):这一天共看了x 页。

()x -⨯
+=607
8460
78607
8460
x -⨯+= 7
8605254x =+-. 7
81085x =.
x x =÷
=10857
8
124.
答:这一天共看了124页。

2. 已知一个长方形的长是20米;如果把它的宽减少4米;新得到一个长方形;它的面积想法于原来长方形
的面积的5
7;原来长方形的周长是多少?
思路分析:这道题的所求问题是求原来长方形的周长;而题目中明确告诉了我们等量关系即“新得到的
长方形的面积相当于原来长方形面积的57。

”如果没有原来长方形的宽为x 米;原来长方形的面积就是20x
平方米;新的长方形的宽就是(x —4)米;新的长方形面积就是204⨯-()x 平方米。

等量关系:原长方形面积×5
7=新长方形面积
解:设原长方形的宽是x 米 根据题意列方程;得
2042057⨯-=⨯()x x
2080100
7x x -=
20100
780x x -
= 40
780
x =
x x =÷
=8040
7
14
()1420268+⨯=
答:原来长方形的周长是68米。

3. 两根绳共长90米;已知第一根绳长的25等于第二根绳长的1
2;求两根绳各长多少米?
思路分析:解答时;首先抓住题目中的等量关系“第一根绳长的25等于第二根绳长的1
2”再根据第一
根绳长为(90-x )米;就可以列出方程。

等量关系:第一根绳长×25=第二根绳长×1
2
解:设第一根绳长x 米;第二根绳长(90-x )米;根据题意列方程;得
251
290x x =⨯-()
25
4512x x
=- 9
1045x =
x x =÷
=459
10
50
90-50=40
答:第一根绳长50米;第二根绳长40米。

三. 灵活运用;创造发展。

1. 甲乙两个粮仓共有粮食55万千克;如果甲仓运出3
5;乙仓运出6万千克;则甲乙两仓存粮相等;甲、乙两
仓原来各存粮多少万千克?
解:设甲仓原有粮食有x 万千克;则乙仓原有粮食(55-x )万千克。

根据题意列方程;得
()13
5556
-=--x x 2
549x x
=-
x x +=2
549
7
549
x =
x x =÷
=497
5
35 55-35=20
答:甲仓原有35万千克;乙仓原有20万千克。

2. 用5千克含盐20%的盐水;如果把它稀释为含盐15%的盐水;需要加水多少千克? 解:设需要加水x 千克。

()515%520%+⨯=⨯x
015025..x =
x =12
3
答:需要加水1
2
3千克。

3. 有甲、乙两筐苹果;如果从甲筐取10千克放入乙筐;则两筐相等;如果从两筐中各取出10千克;这时甲
筐余下的310比乙筐余下的1
3多5千克。

求两筐苹果原来各多少千克?
解:设乙筐原有苹果x 千克。

()()x x -⨯
+=+-⨯101352010310 131********x x -+=+⨯
() 131233103x x +=+
130
1
13x = x =40
40+20=60
答:甲筐原有苹果60千克;乙筐原有40千克。

4. 同学们到郊区野炊。

一个同学到老师那里去领碗;老师问他领多少;他说领55个。

又问“多少人吃饭”;他说:“一人一个饭碗;两人一个菜碗;三人一个汤碗。

”算一算;有多少人吃饭。

解:设参加野炊活动的人数为x 人。

x x x +
+=121
355
15
655
x =
x x =÷=551
5
6
30
答:参加野炊活动的有30人。

相关文档
最新文档