闽侯县第一中学2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
闽侯县第一中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A
.
B
.
C
.
D
.
2. 直线: (为参数)与圆:(为参数)的位置关系是( )
A .相离
B .相切
C .相交且过圆心
D .相交但不过圆心 3. 已知向量(,1)a t =,(2,1)b t =+,若||||a b a b +=-,则实数t =( ) A.2- B.1- C. 1 D. 2
【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力. 4. 已知集合{2,1,0,1,2,3}A =--,{|||3,}B y y x x A ==-∈,则A B =( )
A .{2,1,0}--
B .{1,0,1,2}-
C .{2,1,0}--
D .{1,,0,1}-
【命题意图】本题考查集合的交集运算,意在考查计算能力. 5. (理)已知tan α=2
,则=( )
A
.
B
.
C
.
D
.
6. 已知四个函数f (x )=sin (sinx ),g (x )=sin (cosx ),h (x )=cos (sinx ),φ(x )=cos (cosx )在x ∈[﹣π,π]上的图象如图,则函数与序号匹配正确的是(
)
A .f (x )﹣①,g (x )﹣②,h (x )﹣③,φ(x )﹣④
B .f (x )﹣①,φ(x )﹣②,g (x )﹣③,
h (x )﹣④
C .g (x )﹣①,h (x )﹣②,f (x )﹣③,φ(x )﹣④
D .f (x )﹣①,h (x )﹣②,g (x )﹣③,φ(x )﹣④
7. 如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB=2,∠BAD=60°.
(Ⅰ)求证:BD ⊥平面PAC ;
(Ⅱ)若PA=AB ,求PB 与AC 所成角的余弦值; (Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
【考点】直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离.
8. 下列式子中成立的是( ) A .log 0.44<log 0.46 B .1.013.4>1.013.5 C .3.50.3<3.40.3 D .log 76<log 67
9. 用反证法证明命题:“已知a 、b ∈N *,如果ab 可被5整除,那么a 、b 中至少有一个能被5整除”时,假设的内容应为( )
A .a 、b 都能被5整除
B .a 、b 都不能被5整除
C .a 、b 不都能被5整除
D .a 不能被5整除
10.四面体ABCD 中,截面 PQMN 是正方形, 则在下列结论中,下列说法错误的是( )
A .AC BD ⊥
B .A
C B
D =
C.AC PQMN D .异面直线PM 与BD 所成的角为45
11.执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k 的最大值为( ) A .4
B .5
C .6
D .7
12.已知命题“p :∃x >0,lnx <x ”,则¬p 为( )
A .∃x ≤0,lnx ≥x
B .∀x >0,lnx ≥x
C .∃x ≤0,lnx <x
D .∀x >0,lnx <x
二、填空题
13.已知正整数m 的3次幂有如下分解规律:
113=;5323+=;119733++=;1917151343+++=;… 若)(3+∈N m m 的分解中最小的数为91,则m 的值为 .
【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度中等.
14.设有一组圆C k :(x ﹣k+1)2+(y ﹣3k )2=2k 4(k ∈N *).下列四个命题: ①存在一条定直线与所有的圆均相切; ②存在一条定直线与所有的圆均相交; ③存在一条定直线与所有的圆均不相交; ④所有的圆均不经过原点.
其中真命题的代号是 (写出所有真命题的代号).
15.设不等式组
表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2
的概率是 .
16.已知函数2
1()sin cos sin 2f x a x x x =-+的一条对称轴方程为6
x π
=,则函数()f x 的最大值为___________.
【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.
17.曲线C 是平面内到直线l 1:x=﹣1和直线l 2:y=1的距离之积等于常数k 2(k >0)的点的轨迹.给出下列四个结论:
①曲线C 过点(﹣1,1); ②曲线C 关于点(﹣1,1)对称;
③若点P 在曲线C 上,点A ,B 分别在直线l 1,l 2上,则|PA|+|PB|不小于2k ;
④设p 1为曲线C 上任意一点,则点P 1关于直线x=﹣1、点(﹣1,1)及直线y=1对称的点分别为P 1、P 2、P 3,
则四边形P 0P 1P 2P 3的面积为定值4k 2
.
其中,所有正确结论的序号是 .
18.设α为锐角, =(cos α,sin α),=(1,﹣1)且•=
,则sin (α+
)= .
三、解答题
19.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)
的数据资料,计算得
x i =80,
y i =20,
x i y i =184,
x i 2=720.
(1)求家庭的月储蓄对月收入的回归方程;
(2)判断月收入与月储蓄之间是正相关还是负相关;
(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
20.已知f(x)=x2﹣(a+b)x+3a.
(1)若不等式f(x)≤0的解集为[1,3],求实数a,b的值;
(2)若b=3,求不等式f(x)>0的解集.
21.(1)求z=2x+y的最大值,使式中的x、y满足约束条件
(2)求z=2x+y的最大值,使式中的x、y满足约束条件+=1.
22.设函数f(x)=lnx﹣ax2﹣bx.
(1)当a=2,b=1时,求函数f(x)的单调区间;
(2)令F(x)=f(x)+ax2+bx+(2≤x≤3)其图象上任意一点P(x0,y0)处切线的斜率k≤恒成立,求
实数a的取值范围;
(3)当a=0,b=﹣1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.
23.火车站北偏东方向的处有一电视塔,火车站正东方向的处有一小汽车,测得距离为31,该小汽车从处以60的速度前往火车站,20分钟后到达处,测得离电视塔21,问小汽车到火车站还需
多长时间?
24.已知函数f(x)=e x(ax+b)+x2+2x,曲线y=f(x)经过点P(0,1),且在点P处的切线为l:y=4x+1.(I)求a,b的值;
(Ⅱ)若存在实数k,使得x∈[﹣2,﹣1]时f(x)≥x2+2(k+1)x+k恒成立,求k的取值范围.
闽侯县第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题
1. 【答案】C
【解析】解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种, 其中只有(3,4,5)为勾股数,
故这3个数构成一组勾股数的概率为.
故选:C
2. 【答案】D
【解析】【知识点】直线与圆的位置关系参数和普通方程互化 【试题解析】将参数方程化普通方程为:直线:圆
:
圆心(2,1),半径2. 圆心到直线的距离为:
,所以直线与圆相交。
又圆心不在直线上,所以直线不过圆心。
故答案为:D 3. 【答案】B
【解析】由||||a b a b +=-知,a b ⊥,∴(2)110a b t t ⋅=++⨯=,解得1t =-,故选B. 4. 【答案】C
【解析】当{2,1,0,1,2,3}x ∈--时,||3{3,2,1,0}y x =-∈---,所以A B ={2,1,0}--,故选C .
5. 【答案】D
【解析】解:∵tan α=2,∴ =
=
=
.
故选D .
6. 【答案】 D
【解析】解:图象①是关于原点对称的,即所对应函数为奇函数,只有f (x );
图象②④恒在x 轴上方,即在[﹣π,π]上函数值恒大于0,符合的函数有h (x )和Φ(x ), 又图象②过定点(0,1),其对应函数只能是h (x ), 那图象④对应Φ(x ),图象③对应函数g (x ). 故选:D .
【点评】本题主要考查学生的识图、用图能力,从函数的性质入手结合特殊值是解这一类选择题的关键,属于基础题.
7. 【答案】
【解析】解:(I )证明:因为四边形ABCD 是菱形,所以AC ⊥BD ,
又因为PA⊥平面ABCD,所以PA⊥BD,PA∩AC=A
所以BD⊥平面PAC
(II)设AC∩BD=O,因为∠BAD=60°,PA=AB=2,
所以BO=1,AO=OC=,
以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系O﹣xyz,则
P(0,﹣,2),A(0,﹣,0),B(1,0,0),C(0,,0)
所以=(1,,﹣2),
设PB与AC所成的角为θ,则cosθ=|
(III)由(II)知,设,
则
设平面PBC的法向量=(x,y,z)
则=0,
所以令,
平面PBC的法向量所以,
同理平面PDC的法向量,因为平面PBC⊥平面PDC,
所以=0,即﹣6+=0,解得t=,
所以PA=.
【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力
8.【答案】D
【解析】解:对于A:设函数y=log0.4x,则此函数单调递减∴log0.44>log0.46∴A选项不成立
对于B:设函数y=1.01x,则此函数单调递增∴1.013.4<1.013.5 ∴B选项不成立
对于C:设函数y=x0.3,则此函数单调递增∴3.50.3>3.40.3 ∴C选项不成立
对于D:设函数f(x)=log7x,g(x)=log6x,则这两个函数都单调递增∴log76<log77=1<log67∴D选项成立故选D
9.【答案】B
【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除”的否定是“a,b都不能被5整除”.故选:B.
10.【答案】B 【解析】
试题分析:因为截面PQMN 是正方形,所以//,//PQ MN QM PN ,则//PQ 平面,//ACD QM 平面BDA ,所以//,//PQ AC QM BD ,由PQ QM ⊥可得AC BD ⊥,所以A 正确;由于//PQ AC 可得//AC 截面PQMN ,
所以C 正确;因为PN PQ ⊥,所以AC BD ⊥,由//BD PN ,所以MPN ∠是异面直线PM 与BD 所成的角,且为0
45,所以D 正确;由上面可知//,//BD PN PQ AC ,所以,PN AN MN DN BD AD AC AD
==,而,AN DN PN MN ≠=,所以BD AC ≠,所以B 是错误的,故选B. 1 考点:空间直线与平面的位置关系的判定与证明.
【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与平面平行的判定定理和性质定理、正方形的性质、异面直线所成的角等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,此类问题的解答中熟记点、线、面的位置关系的判定定理和性质定理是解答的关键.
11.【答案】A
解析:模拟执行程序框图,可得 S=0,n=0
满足条,0≤k ,S=3,n=1 满足条件1≤k ,S=7,n=2 满足条件2≤k ,S=13,n=3 满足条件3≤k ,S=23,n=4 满足条件4≤k ,S=41,n=5
满足条件5≤k ,S=75,n=6 …
若使输出的结果S 不大于50,则输入的整数k 不满足条件5≤k ,即k <5, 则输入的整数k 的最大值为4. 故选:
12.【答案】B
【解析】解:因为特称命题的否定是全称命题,所以,命题“p :∃x >0,lnx <x ”,则¬p 为∀x >0,lnx ≥x .
故选:B .
【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.
二、填空题
13.【答案】10
【解析】3
m 的分解规律恰好为数列1,3,5,7,9,…中若干连续项之和,3
2为连续两项和,3
3为接下来三项和,故3
m 的首个数为12
+-m m .
∵)(3
+∈N m m 的分解中最小的数为91,∴9112
=+-m m ,解得10=m .
14.【答案】②④
【解析】解:根据题意得:圆心(k﹣1,3k),
圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项②正确;
考虑两圆的位置关系,
圆k:圆心(k﹣1,3k),半径为k2,
圆k+1:圆心(k﹣1+1,3(k+1)),即(k,3k+3),半径为(k+1)2,
两圆的圆心距d==,
两圆的半径之差R﹣r=(k+1)2﹣k2
=2k+,
任取k=1或2时,(R﹣r>d),C k含于C k+1之中,选项①错误;
若k取无穷大,则可以认为所有直线都与圆相交,选项③错误;
将(0,0)带入圆的方程,则有(﹣k+1)2+9k2=2k4,即10k2﹣2k+1=2k4(k∈N*),
因为左边为奇数,右边为偶数,故不存在k使上式成立,即所有圆不过原点,选项④正确.
则真命题的代号是②④.
故答案为:②④
【点评】本题是一道综合题,要求学生会将直线的参数方程化为普通方程,会利用反证法进行证明,会利用数形结合解决实际问题.
15.【答案】.
【解析】解:到坐标原点的距离大于2的点,位于以原点O为圆心、半径为2的圆外
区域D:表示正方形OABC,(如图)
其中O为坐标原点,A(2,0),B(2,2),C(0,2).
因此在区域D内随机取一个点P,
则P点到坐标原点的距离大于2时,点P位于图中正方形OABC内,
且在扇形OAC的外部,如图中的阴影部分
∵S正方形OABC=22=4,S阴影=S正方形OABC﹣S扇形OAC=4﹣π•22=4﹣π
∴所求概率为P==
故答案为:
【点评】本题给出不等式组表示的平面区域,求在区域内投点使该到原点距离大于2的概率,着重考查了二元一次不等式组表示的平面区域和几何概型等知识点,属于基础题.
16.【答案】1
【解析】
17.【答案】②③④.
【解析】解:由题意设动点坐标为(x,y),则利用题意及点到直线间的距离公式的得:|x+1||y﹣1|=k2,
对于①,将(﹣1,1)代入验证,此方程不过此点,所以①错;
对于②,把方程中的x被﹣2﹣x代换,y被2﹣y 代换,方程不变,故此曲线关于(﹣1,1)对称.②正确;对于③,由题意知点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|≥|x+1|,|PB|≥|y﹣1|
∴|PA|+|PB|≥2=2k,③正确;
对于④,由题意知点P在曲线C上,根据对称性,
则四边形P0P1P2P3的面积=2|x+1|×2|y﹣1|=4|x+1||y﹣1|=4k2.所以④正确.
故答案为:②③④.
【点评】此题重点考查了利用直接法求出动点的轨迹方程,并化简,利用方程判断曲线的对称性,属于基础题.18.【答案】:.
【解析】解:∵•=cosα﹣sinα=,
∴1﹣sin2α=,得sin2α=,
∵α为锐角,cosα﹣sinα=⇒α∈(0,),从而cos2α取正值,
∴cos2α==,
∵α为锐角,sin(α+)>0,
∴sin(α+)
====.
故答案为:.
三、解答题
19.【答案】
【解析】解:(1)由题意,n=10,=x
=8,=y i=2,
i
∴b==0.3,a=2﹣0.3×8=﹣0.4,
∴y=0.3x﹣0.4;
(2)∵b=0.3>0,
∴y与x之间是正相关;
(3)x=7时,y=0.3×7﹣0.4=1.7(千元).
20.【答案】
【解析】解:(1)∵函数f(x)=x2﹣(a+b)x+3a,
当不等式f(x)≤0的解集为[1,3]时,
方程x2﹣(a+b)x+3a=0的两根为1和3,
由根与系数的关系得
,
解得a=1,b=3;
(2)当b=3时,不等式f(x)>0可化为
x2﹣(a+3)x+3a>0,
即(x﹣a)(x﹣3)>0;
∴当a>3时,原不等式的解集为:{x|x<3或x>a};
当a<3时,原不等式的解集为:{x|x<a或x>3};
当a=3时,原不等式的解集为:{x|x≠3,x∈R}.
【点评】本题考查了含有字母系数的一元二次不等式的解法和应用问题,是基础题目.
21.【答案】
【解析】解:(1)由题意作出可行域如下,
,
结合图象可知,当过点A(2,﹣1)时有最大值,
故Z max=2×2﹣1=3;
(2)由题意作图象如下,
,
根据距离公式,原点O到直线2x+y﹣z=0的距离d=,
故当d有最大值时,|z|有最大值,即z有最值;
结合图象可知,当直线2x+y﹣z=0与椭圆+=1相切时最大,
联立方程化简可得,
116x2﹣100zx+25z2﹣400=0,
故△=10000z2﹣4×116×(25z2﹣400)=0,
故z2=116,
故z=2x+y的最大值为.
【点评】本题考查了线性规划的应用及圆锥曲线与直线的位置关系的应用.
22.【答案】
【解析】解:(1)依题意,知f(x)的定义域为(0,+∞).…
当a=2,b=1时,f(x)=lnx﹣x2﹣x,
f′(x)=﹣2x﹣1=﹣.
令f′(x)=0,解得x=.…
当0<x<时,f′(x)>0,此时f(x)单调递增;
当x>时,f′(x)<0,此时f(x)单调递减.
所以函数f(x)的单调增区间(0,),函数f(x)的单调减区间(,+∞).…
(2)F(x)=lnx+,x∈[2,3],
所以k=F′(x0)=≤,在x0∈[2,3]上恒成立,…
所以a≥(﹣x02+x0)max,x0∈[2,3]…
当x0=2时,﹣x02+x0取得最大值0.所以a≥0.…
(3)当a=0,b=﹣1时,f(x)=lnx+x,
因为方程f(x)=mx在区间[1,e2]内有唯一实数解,
所以lnx+x=mx有唯一实数解.
∴m=1+,…
设g(x)=1+,则g′(x)=.…
令g′(x)>0,得0<x<e;g′(x)<0,得x>e,
∴g(x)在区间[1,e]上是增函数,在区间[e,e2]上是减函数,…1 0分
∴g(1)=1,g(e2)=1+=1+,g(e)=1+,…
所以m=1+,或1≤m<1+.…
23.【答案】
【解析】
解:由条件=,设,
在中,由余弦定理得
.
=.
在中,由正弦定理,得()
(分钟)
答到火车站还需15分钟.
24.【答案】
【解析】解:(I)f'(x)=e x(ax+a+b)+2x+2…
依题意,,即,解得.…
(II)由f(x)≥x2+2(k+1)x+k得:e x(x+1)≥k(2x+1).
∵x∈[﹣2,﹣1]时,2x+1<0,
∴f(x)≥x2+2(k+1)x+k即e x(x+1)≥k(2x+1)恒成立,
当且仅当…
设,
由g'(x)=0得…
当;
当∴上的最大值为:
…
所以常数k的取值范围为…
【点评】本题考查函数的导数的综合应用,切线方程,闭区间是函数的最值的求法,构造法的应用,难度比较大,是高考常考题型.。