西城0910学年度第一学期期末初三数学试卷及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市西城区2009——2020学年第一学期期末测试
初三数学试卷
一、选择题(此题共32分,每题4分)
下面各题均有四个选项,其中只有一个..
是符合题意的. 1.假设两圆的半径别离是4cm 和5cm ,圆心距为9cm ,那么这两圆的位置关系是( ). A .内切 B .相交 C .外切 D .外离
2.若关于x 的一元二次方程()22110a x x a -++-=有一个根为0,那么a 的值等于( ). A .1-B .0 C .1
D .1或1-
3.抛物线()()13y x x =+-的对称轴是直线( ). A .1x =-B .1x =C .3x =-D .3x =
4.如图,在平面直角坐标系中,以点()46P ,为位似中心,把ABC △
缩小取得DEF △,假设变换后,点A 、B 的对应点别离为点D 、E ,
那么点C 的对应点F 的坐标应为( ). A .()42,B .()44, C .()45,
D .()54, 5.某汽车销售公司2007年盈利1500万元, 2020年盈利2160万元,且从2007年到2020年,每一年盈利的年增加率相同.设每一年盈利的年增加率为x ,依照题意,下面所列方程正确的选项是( ).
A .()2
150012160x +=B .2150015002160x x +=
C .215002160x =
D .()()2
15001150012160x x +++=
6.如图,在Rt ABC △中,90ACB ∠=︒,M 为AB 边的中点,将Rt ABC △绕点
M
E D
C
B
A
M 旋转,使点A 与点C 重合取得CED △,连结MD .假设25B ∠=︒,则BM D ∠
等于( ).
A .50︒
B .80︒
C .90︒
D .100︒
7.如图,AB 是O ⊙的直径,以AB 为一边作等边ABC △,AC BC 、边别离
交O ⊙于点E 、F ,连结AF ,若2AB =,那么图中阴影部份的面积为( ).
A
.4π3B
.2π3 C

π3 D
.π3 8.若a b c >>,且a b c ++=0,那么二次函数2y ax bx c =++的图象可能是以下图象中的( ). A .
B .
C .
D .
二、填空题(此题共16分,每题4分)
9.如图,在ABC △中,DE BC ∥别离交AB 、AC 于点D 、E .若1DE =,
3BC =,那么ADE △与ABC △面积的比为.
10.如图,AB 为O ⊙的直径,弦CD AB ⊥,E 为AD 上一点,假设70BOC ∠=︒,
则BED ∠的度数为°.
11.如图,在平面直角坐标系中,O ⊙的圆心在座标原点,半径为2,点A
的坐标为(2,.直线AB 为O ⊙的切线,B 为切点,那么B 点的坐标 为.
12.如图,在平面直角坐标系中,二次函数()220m
y ax a a
=+
≠的图象经 过正方形ABOC 的三个极点A 、B 、C ,那么m 的值为. 三、解答题(此题共30分,每题5分) 13.计算:22sin45sin60cos30tan 60︒+︒-︒+︒. 14.已知关于x 的方程23304
m
x x ++
=. ⑴若是此方程有两个不相等的实数根,求m 的取值范围; ⑵在⑴中,若m 为符合条件的最大整数,求现在方程的根.
B
A
15.已知二次函数243y x x =++.
⑴用配方式将2
43y x x =++化成()2
y a x h k =-+的形式;
⑵在平面直角坐标系中,画出那个二次函数的图象; ⑶写出当x 为何值时,0y >.
16.已知:如图,在Rt ABC △中,90C ∠=°,D 、E 别离为AB
且3
5
AD AE =
,连结DE ,若3AC =,5AB =,猜想DE 与关系?并证明你的结论.
17.已知:如图,AB 是O ⊙的弦,45OAB ∠=︒,C 是优弧AB 上一点,
BD OA ∥,交CA 延长线于点D ,连结BC .
⑴求证:BD 是O ⊙的切线;
⑵若AC =75CAB ∠=︒,求O ⊙的半径. 18.列方程解应用题
为了鼓舞居民节约用电,某地区规定:若是每户居民一个月的用电量不超过a 度时,每度电按元交费;若是每户居民一个月的用电量超出a 度时,那么该户居民的电费将利用二级电费计费方式,即其中有a 度仍按每度电元交费,超出a 度部份那么按每度电
150
a
元交费.下表是该地域一户居民10月份、11月份的用电情形.依照表中的数据,求在该地域规定的电费计费方式中,a 度用电量为多少?
四、解答题(此题共20分,第19题6分,第20题4分,第21题4分,第22题6分) 19.已知:抛物线1C :2y ax bx c =++通过点()10A -,、()30B ,、()03C -,.
⑴求抛物线1C 的解析式;
⑵将抛物线1C 向左平移几个单位长度,可使所得的抛物线2C 通过坐标原点,并写出2C 的解析式; ⑶把抛物线1C 绕点()10A -,旋转180︒,写出所得抛物线3C 极点D 的坐标.
20.如图,一座商场大楼的顶部竖直立有一个矩形广告牌,小红同窗在地
面上选择了在一条直线上的三点A (A 为楼底)、D 、E ,她在D 处 测得广告牌顶端C 的仰角为60°,在E 两处测得商场大楼楼顶B 的仰 角为45°,5DE =米.已知,广告牌的高度 2.35BC =米,求这座商场 大楼的高度AB (3取 1.73,2取,小红的身高不计,结果保留 整数). 21.阅读以下材料:
对于李教师所提出的问题,请给出你以为正确的解答(写出BD 的取值范围,并在
备用图中画出对应的图形,不写作法,保留作图痕迹).
22.已知:如图,ABC △是等边三角形,D 是AB 边上的点,将线段DB 绕点D 顺时针旋转60︒取得线 段DE ,延长ED 交AC 于点F ,连结DC 、AE . ⑴求证:ADE DFC △≌△;
⑵过点E 作EH DC ∥交DB 于点G ,交BC 于点H ,连结AH . 求AHE ∠的度数; ⑶若2
3
BG =
,2CH =,求BC 的长. 五、解答题(此题共22分,第23题7分,第24题8分,第25题7分) 23.已知关于x 的一元二次方程()2200ax bx c a ++=>①.
李老师提出一个问题:“已知:如图1,()0AB m m =>,BAC α∠=(α为锐角),在射线AC 上取一点D ,使构成的ABD △唯一确定,试确定线段BD 的取值范围.”
小明同学说出了自己的解题思路:以点B 为圆心,以m 为半径画圆(如图2所示),D 为B ⊙与射线AC 的交点(不与点A 重合),连结BD .所以,当BD m =时,构成的ABD △是唯一确定的.
李老师说:“小明同学画出的三角形是正确的,但是他的解答不够全面.”
F
E
D
C
B A
⑴假设方程①有一个正实根c ,且20ac b +<,求b 的取值范围;
⑵当1a =时,方程①与关于x 的方程2
440x bx c ++=②有一个相同的非零实根,求2288b c
b c
-+的值.
24.已知:如图,AB 是O ⊙的直径,C 是O ⊙上一点,过C 点的切线与AB 的延长线交于点D ,CE AB ∥ 交O ⊙于点E ,连结AC 、BC 、AE . ⑴求证:①DCB CAB ∠=∠;
②CD CE CB CA ⋅=⋅;
⑵作CG AB ⊥于点G ,若1
tan CAB k
∠=()1k >, 求
EC
GB
的值(用含k 的式子表示). 25.已知:抛物线()21y x m x m =-++与x 轴交于点()10A x ,、()20B x ,(A 在B 的左侧),与y 轴交
于点C .
⑴若1m >,ABC △的面积为6,求抛物线的解析式;
⑵点D 在x 轴下方,是(1)中的抛物线上的一个动点,且在该抛物线对称轴的左侧,作DE x ∥轴与抛物线交于另一点E ,作DF x ⊥轴于F ,作EG x ⊥轴于点G ,求矩形DEGF 周长的最大值;
⑶若0m <,以AB 为一边在x 轴上方做菱形ABMN (NAB ∠为锐角),P 是AB 边的中点,Q 是对角线AM 大时,求
上一点,若4
cos 5
NAB ∠=,6QB PQ +=,当菱形ABMN 的面积最点A 的坐标.
北京市西城区2009——2010学年度第一学期期末
初三数学试卷答案及评分参考
一、选择题(此题共32分,每题4分)
二、填空题(此题共16分,每题4分)
三、解答题(此题共30分,每题5分)
13.解:22sin 45sin60cos30tan 60+-+°°°°.
=222⨯
+. ··················································· 4分
3. ····································································· 5分
14.(1)解:3
134
a b c m ===,,.
2234341934
m
b a
c m ∆=-=-⨯⨯
=-. ···································· 1分 ∵该方程有两个不相等的实数根,
∴930m ->. ···························································· 2分 解得3m <.
∴m 的取值范围是3m <. ················································ 3分
(2)解:∵3m <,
∴符合条件的最大整数是 2m =. ········································· 4分 现在方程为 23
302
x x ++
=, 解得
x
=.
∴方程的根为
1x =
2x . ······························· 5分 15.解:(1)243y x x =++
2(2)1x =+-. ·························································2分
(2)列表:
图象见图1. ·································· 4分 (3)3x <-或1x >-. ························ 5分 16.DE 与AB 的位置关系是相互垂直. ············ 1分
图1
证明:∵3AC =,5AB =,3
5
AD AE =
, ∴
AC AB
AD AE
=
. ·························· 2分 ∵A A ∠=∠, ··························· 3分 ∴ADE ACB △∽△.···················· 4分 ∵90C ∠=°, ∴90ADE C ∠=∠=°.
∴DE AB ⊥. ····························································· 5分
17.(1)证明:连结OB ,如图3.
∵OA OB =,45OAB ∠=°,
∴145OAB ∠=∠=°. ················ 1分 ∵AO DB ∥, ∴245OAB ∠=∠=°. ∴1290∠+∠=°.
∴BD OB ⊥于B . ····················································· 2分 ∴又点B 在O 上.
∴CD 是O 的切线. ················································· 3分
(2)解:作OE AC ⊥于点E .
∵OE AC ⊥
,AC =
∴1
2
AE AC =
=····················································4分 ∵75BAC ∠=°,45OAB ∠=°, ∴330BAC OAB ∠=∠-∠=°. ∴在Rt OAE △
中,4cos30AE OA =
==°. ·····························5分
解法二:如图4,
图2
A B
C
D
E
图4
F
A
B
C
D
O
延长AO 与O 交于点F ,连结FC . ∴90ACF ∠=°. 在Rt ACF △
中,8cos30AC AF =
==°. ··········· 4分
∴1
42
AO AF =
=. ················································· 5分 18.解:因为 800.432⨯=,1000.44042⨯=<,
因此 80100a <≤. ························································ 1分 由题意得 0.4(100)
42150
a
a a +-=.
····································· 3分 去分母,得 60(100)42150a a a +-=⨯. 整理,得 216063000a a -+=.
解得 190a =,270a =. ·················································· 4分 因为 80a ≥,
因此 270a =不合题意,舍去. 因此 90a =.
答:在该地域规定的电费计费方式中,a 度用电量为90度. ··························· 5分 四、解答题(此题共20分,第19题6分,第20题4分,第21题4分,第22题6分) 19.解:(1)∵2y ax bx c =++通过点()10A -,、()30B ,、()03C -, .
∴0,
930,3.a b c a b c c -+=⎧⎪
++=⎨⎪=-⎩
···················· 2分 解得 1,2,3.a b c =⎧⎪
=-⎨⎪=-⎩
∴ 所求抛物线1C 的解析式为:223y x x =--. ································· 3分
(2)抛物线1C 向左平移3个单位长度,可使取得的抛物线2C 通过坐标原点 ··········· 4分
所求抛物线2C 的解析式为:2(4)4y x x x x =+=+. ·····················5分 (3)D 点的坐标为()34-,. ················································6分
20.解:设AB 为x 米.
依题意,在Rt ABE △中,45BEA ∠=°, ∴AE AB x ==.
∴5AD AE DE x =-=-, 2.35AC BC AB x =+=+. ···· 2分 在Rt ADC △中,60CDA ∠=°, ∴tan 3AC AD CDA AD =⋅∠=.
∴()2.3535x x +=-. ······················································· 3分 ∴
(
)
31 2.3553x -=+.
解得 53 2.35
31
x +=-.
∴ 15x ≈.
答:商场大楼的高度AB 约为15米. ······· 4分 21.解:sin BD m α=或BD m ≥.(各1分)
见图7、图8;(各1分)
22.(1)证明:如图9,
∵ 线段DB 顺时针旋转60°得线段DE , ∴60EDB ∠=°,DE DB =. ∵ABC △是等边三角形, ∴60B ACB ∠=∠=°. ∴EDB B ∠=∠ .
∴EF BC ∥. ····························· 1分 ∴DB FC =,60ADF AFD ∠=∠=°.
图94
321G H
A
B
C
D
E
F
∴DE DB FC ==,120ADE DFC ∠=∠=°,ADF △是等边三角形. ∴AD DF =.
∴ADE DFC △≌△. ···················································· 2分
(2)由ADE DFC △≌△,
得AE DC =,12∠=∠. ∵ED BC ∥,EH DC ∥, ∴ 四边形EHCD 是平行四边形. ∴EH DC =,34∠=∠.
∴AE EH =. ································································ 3分 ∴132460AEH ACB ∠=∠+∠=∠+∠=∠=°. ∴AEH △是等边三角形.
∴60AHE ∠=°. ······························································ 4分 (3)设BH x =,那么2AC BC BH HC x ==+=+,
由(2)四边形EHCD 是平行四边形, ∴ED HC =.
∴2DE DB HC FC ====. ∵EH DC ∥,
∴BGH BDC △∽△. ························································· 5分 ∴BG BH
BD BC
=
.即 2
322x x =+. 解得 1x =.
∴3BC =. ·································································· 6分
五、解答题(此题共22分,第23题7分,第24题8分,第25题7分) 23.解:(1)∵ c 为方程的一个正实根(0c >),
∴ 220ac bc c ++=. ····················································· 1分 ∵0c >,
∴ 210ac b ++=,即21ac b =--. ······································· 2分 ∵ 20ac b +<, ∴ 2(21)0b b --+<. 解得 2
3
b >-
. ························································· 3分 又0ac >(由0a >,0c >). ∴ 210b -->.
解得 12
b <-.
∴ 21
32b -<<-. ······················································· 4分
(2)当1a =时,现在方程①为 220x bx c ++=.
设方程①与方程②的相同实根为m , ∴ 220m bm c ++=③ ∴ 2440m bm c ++=④ ④-③得 2320m bm +=. 整理,得 (32)0m m b +=. ∵0m ≠, ∴320m b +=. 解得 23
b
m =-
. ·························································· 5分 把23
b
m =-代入方程③得
2
222033b b b c ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭
. ∴2809
b c -+=,即289b c =.
当2
89b c =时,2284
85
b c b c -=+. ·············································· 7分
24.(1)证明:①如图10,
图101
F
A
B
C
D
E O
解法一:作直径CF ,连结BF .
∴90CBF ∠=°, ························ 1分 则901CAB F ∠=∠=-∠° ∵CD 切O 于C ,
∴OC CD ⊥, ···························· 2分 则901BCD ∠=-∠°.
∴BCD CAB ∠=∠. ··················································· 3分 解法二:如图11, 连结OC . ∵AB 是直径,
∴90ACB ∠=°. ·························· 1分 则290OCB ∠=-∠°. ∵CD 切O 于C ,
∴OC CD ⊥. ························································· 2分 则90BCD OCB ∠=-∠°. ∴2BCD ∠=∠. ∵OA OC =, ∴2CAB ∠=∠.
∴BCD CAB ∠=∠. ··················································· 3分 ② ∵EC AB ∥,3BCD ∠=∠,
∴43BCD ∠=∠=∠. ··················································· 4分 ∵180CBD ABC ∠+∠=°, ∵180AEC ABC ∠+∠=°,
∴CBD AEC ∠=∠. ···················································· 5分
图11
3
G
4
2H A
B
C D
E O
∴ACE DCB △∽△. ∴
CA CD
CE CB
=
. ∴CD CE CB CA ⋅=⋅. ················································· 6分
(2)连结EB ,交CG 于点H ,
∵CG AB ⊥于点G ,90ACB ∠=°. ∴3BCG ∠=∠. ∵34∠=∠. ∴AE BC = ∴3EBG ∠=∠ . ∴BCG EBG ∠=∠ . ∵()1
tan 1CAB k k
∠=
>, ∴在Rt HGB △中,1
tan GH HBG GB k
∠==. 在Rt BCG △中,1
tan BG BCG CG k
∠=
=. 设HG a =,那么BG ka =,2CG k a =.()
21CH CG HG k a =-=-. ∵EC AB ∥, ∴ECH BGH △∽△.
∴22(1)1EC CH k a k GB HG a
-===-. ·············································· 8分 解法二: 如图10-2,作直径FC ,连结FB 、EF ,那么90CEF ∠=°.
∵CG AB ⊥于点G ,
在Rt ACG △中,1
tan CG CAB AG k
∠== 设CG a =,那么AG ka =,1BG a k =,1CF AB AG BF k a k ⎛
⎫==+=+ ⎪⎝⎭.
∵EC AB ∥,90CEF ∠=°, ∴直径AB EF ⊥.
∴2EF CG a ==.
G
O
E
D
C
B
A
F
图10-2
1
EC k a
k
⎛⎫
=-

⎝⎭
.

2
1
1
11
k
EC k
BG k
k
⎛⎫
-

⎝⎭
==
-
.
解法三:如图11-2,作EP AB
⊥于点P,
在Rt ACG
△中,1
tan
CG
CAB
AG k
∠==
设CG a=,那么AG ka
=,1
BG a
k
=,
可证AEP BCG
△≌△,那么有1
AP BG a
k
==.
1
EC AG AP k a
k
⎛⎫
=-=-

⎝⎭
.

2
1
1
11
k
EC k
BG k
k
⎛⎫
-

⎝⎭
==
-
.
25.解:∵ 抛物线与x轴交于点()
1
A x,、()
2
B x,,

1
x、
2
x是关于x的方程2(1)0
x m x m
-++=的解.
解方程,得1
x=或x m
=. ························································ 1分(1)∵A在B的左侧,1
m>,

1
1
x=,
2
x m
=. ····························································· 2分∴1
AB m
=-.
抛物线与y轴交于()
C m
,点.
∴OC m
=.
ABC
△的面积
1
2
S AB OC
=⋅=
1
(1)6
2
m m
-=.
解得
1
4
m=,
2
3
m=-(不合题意,舍去).
∴抛物线解析式为254
y x x
=-+. ················ 3分
(2)∵ 点D在(1)中的抛物线上,
∴ 设()
254
D t t t
-+

5
1
2
t
⎛⎫
<<

⎝⎭
.
5
4
3
2
1
图12
2
∴()0F t ,,254DF t t =-+-.
又抛物线对称轴是直线5
2
x =
,DE 与抛物线对称轴交点记为R (如图12), ∴5
2
DR t =
-,52DE t =-. 设矩形DEGF 的周长为L ,那么()2L DF DE =+. ∴()
225452L t t t =-+-+-
2
313
222t ⎛⎫=--+ ⎪⎝⎭
. ······················································ 4分
∵ 5
12
t <<
, ∴ 当且仅当3
2
t =时,L 有最大值. 当32t =
时,L =最大132
. ∴矩形周长的最大值为
13
2
. ··················································· 5分 (3)∵A 在B 的左侧,0m <,
∴1x m =,21x =. ∴1AB m =-.
如图13,作NH AB ⊥于H ,连结QN . 在Rt AHN △中,cos AH NAB AN ∠=
4
5
=. 设()40AH k k =>,那么5AN k =,3NH k =. ∴115222AP AB AN k =
==,53
422
PH AH AP k k k =-=-=,PN
=
=
. ∵菱形ABMN 是轴对称图形, ∴QN QB =.
∴6PQ QN PQ QB +=+=.
∵PQ QN PN +≥(当且仅当P 、Q 、N 三点共线时,等号成立). ∴6

, 解得
k ······························································ 6分
图13
M
∵ 21548ABMN S AB NH k =⋅=菱形≤.
∴ 当菱形面积取得最大值48时,k =. 现在51AB k m ==-=
解得1m =-
∴A 点的坐标为()
10-.
··················································· 7分。

相关文档
最新文档