基于模糊聚类方法的S700K转辙机故障诊断

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于模糊聚类方法的S700K转辙机故障诊断
刘新发; 魏文军
【期刊名称】《《中南大学学报(自然科学版)》》
【年(卷),期】2019(050)009
【总页数】8页(P2148-2155)
【关键词】S700K转辙机; 动作功率曲线; 模糊聚类; 等价矩阵
【作者】刘新发; 魏文军
【作者单位】兰州交通大学自动化与电气工程学院甘肃兰州 730070; 兰州交通大学光电技术与智能控制教育部重点实验室甘肃兰州 730070
【正文语种】中文
【中图分类】TP391; U298
转辙机是信号设备室外三大件之一,其缺陷与损害直接影响列车的安全可靠运行。

目前,在高速重载铁路中大多采用S700K交流电动转辙机,为了提高其工作的安
全性与可靠性,应用智能数据分析处理技术,实现对转辙机工作状态的智能感知和安全预警十分必要。

现场对该设备的故障诊断主要依靠工人的工作经验对比功率曲线的变化规律来判断故障,或者设天窗点对现场设备进行定期检修[1-2]。

这种故
障分析与诊断技术不仅效率低、工作量大,而且容易发生错判、漏判现象而危及行车安全。

目前,应用于转辙机智能故障诊断的方法大多针对ZD6直流电动转辙机,对已大量投入使用的交流电动转辙机的故障诊断方案较少,已有的智能故障诊断方
案没有充分利用从微机监测系统获取的转辙机动作功率曲线,并且各方法都有其局限性。

安春兰等[3]研究了基于小波分解的方法,需要预先设定基函数和分解尺度
等参数,小波参数的选择可能影响故障诊断的精度。

ATAMURADOV等[4-5]提出了基于专家系统的道岔故障智能诊断方法,知识库完备性的获取和验证困难,当出现新的故障类型时,不能及时添加到故障类型库中。

王瑞峰等[6-7]将神经网络及
改进后的算法用于转辙机的故障分类,当网络模型扩大时可能出现指数爆炸的现象。

肖蒙等[8-9]采用贝叶斯网络进行故障诊断需要提供可靠合理的先验概率,并且当
样本数量较小时,故障诊断效果不理想。

钟志旺等[10-11]基于支持向量机的故障
诊断,原则上只能进行两两分类。

EKER等[12-13]分别基于高斯核和最小二乘支
持向量机建立了道岔常见失效模式及其控制电路的故障分类器。

S700K转辙机动
作功率曲线具有非线性、非平稳的特点,故障类型不同,其动作功率曲线不同。

模糊聚类分析算法已成功应用于变压器与滚动轴承的故障诊断与分类中[14-16],它
是一种无监督的学习方法,不需要先验知识,完全依靠自身就能够完成多个类簇的划分,转辙机故障样本多、参数难以精确计算,利用模糊聚类分析算法可以克服这些不足。

本文作者利用微机监测系统获取的S700K转辙机动作功率曲线,提取在
时域表征曲线的标准差、方差、波形因子、脉冲因子以及裕度因子等相关特征指标作为故障特征参数,构建原始特征模式矩阵。

采用模糊聚类分析方法,把无类别标记的集合按照某种准则划分成若干子集,将特征模式矩阵中性状最接近的故障模式分为一类,提出一种S700K转辙机智能故障诊断新方法。

该方法克服了上述文献
中先验概率难以确定以及参数选择影响诊断结果等现象,经过现场实际数据验证,该方法有效提高了故障诊断的精度与效率。

1 转辙机动作功率曲线分析
目前,我国微机监测系统通过采集电流与功率来反映它的工作状态,工作人员利用周期性监测的功率曲线判断转辙机的故障类型。

S700K转辙机采用380 V交流异
步电机,转辙机的输出功率P与道岔尖轨推拉力F关系[17]如下:
式中:Re为转辙机传动系统等效力臂;n为电动机转速;η为电动机效率。

道岔尖轨推拉力F反映转辙机的运行状态,因此,根据式(1)可以用转辙机的动作功率曲线来反映转辙机的运行状态。

1.1 正常动作功率曲线分析
S700K交流电动转辙机动作过程可分为启动、解锁、转换、锁闭和勾通表示5个过程,其正常动作功率曲线如图1所示。

图1 S700K正常动作功率曲线Fig.1 Normal operation power of S700K
由图1可见:在0.15 s左右时,由于转辙机启动,需要较大的功率,因此,功率曲线骤然上升并且很快达到峰值。

随后,由于设备启动完毕,锁舌弹出,转辙机完成内部解锁,进入正常转换阶段曲线急剧下降并趋于稳定。

在5.1 s左右时,道岔转换完毕,尖轨密切,功率曲线出现一定幅度的下降,但不会降为0。

最后,道岔位置确定,道岔表示电路被切断,功率降为0 kW[18-19]。

1.2 故障功率曲线分析
经过现场调研发现,S700K转辙机在上道使用的过程中经常出现的故障类型如表1所示,每种故障类型所对应的动作功率曲线如图2所示。

2 转辙机故障诊断方法
2.1 故障特征参数的提取
针对S700K交流电动转辙机动作功率曲线非线性、非平稳的特点,提取在时域表征相关特征的指标为标准差、方差、波形因子、脉冲因子以及裕度因子等作为特征参数,构建故障诊断系统的原始特征模式矩阵,提取的特征指标及其计算公式[20]如下:
平均值μ1为
均方根μ2为
标准差μ3为
方差μ4为
表1 S700K转辙机常见故障现象及原因Table1 Common failures and causes of S700K switch machine故障代码f1 f2 f3 f4 f5 f6故障现象在表示阶段,曲线有明显上升后保持稳定,形成空转在锁闭阶段,曲线出现大幅度上升在转换阶段,曲线出现波动,但能转换动作在道岔锁闭阶段,曲线上升后保持稳定,形成空转曲线在表示阶段末期,曲线不能下降到0在道岔表示阶段,曲线出现异常波动故障原因转辙机卡缺口,锁舌未弹出转换过程中动作杆被卡死道岔杆件等装置安装不标准或松动道岔因异常阻力不能锁闭到位表示阶段断相保护器损坏电缆盒中二极管器件损坏
图2 常见故障所对应的功率曲线Fig.2 Power curve corresponding to common fault(a)f1;(b)f2;(c)f3;(d)f4;(e)f5;(f)f6
最大值μ5为
峭度μ6为
峰值因子μ7为
波形因子μ8为
脉冲因子μ9为
裕度因子μ10为
式中:xi为原始信号采样值;N为采样长度。

对微机监测系统数据库获取的转辙机正常运行曲线与典型故障曲线提取以上参数作为表征故障类型的特征值,结果如表2所示。

2.2 模糊聚类分析算法
在模糊聚类算法中,为了进行定量分类,引入描述样本之间相似度的指标rij=R(xi,xj),其中隶属度R(x,y)表示(x,y)的相关程度。

在模糊数学中,若对于任意
i=1,2,…,m,j=1,2,…,n,都有rij∈[0,1],则称R=(rij)m×n为模糊矩阵[21]。

对特征模式矩阵X通过平移标准差变换与平移极差变换进行标准化后,利用距离
法得到矩阵R中的每一个元素rij∈[0,1],即矩阵R是矩阵X上的一个模糊等价关系。

由于矩阵R只是1个模糊相似矩阵,不一定具有传递性,为了进行分类,需
求出具有传递性的模糊等价矩阵R*,在R*中,当λ由1变到0时,分类由粗
变细形成动态聚类图。

模糊聚类分析算法过程如下:
1)选取S700K电动转辙机不同运行状态下的动作功率数据,包括正常模式和表1
中所示的故障模式以及待检曲线,共n种模式,则设论域U={x1,x2,…,xn},每种
模式有m个指标表示其性状,即xi=(xi1,xi2,…,xim),i=1,2,…,n,于是,得到特征模式矩阵[22]:
为了消除不同量纲的影响,使数据分布在[0,1]之间,需要对原始特征模式矩阵X
进行标准化。

首先,对原始特征模式矩阵X进行平移-标准差变换:
式中:i=1,2,… , n; k=1,2,… , m;
经过平移-标准差变换后,每个变量的均值变为0,标准差变为1,且消除了不同量纲对特征模式矩阵造成的影响。

但是,经过变换后得到的变量x′ik不一定在区间[0,1]上,因此,需要对变量x′ik进行平移-极差变换使数据分布在[0,1]之间:表2 S700K电动转辙机常见故障特征值Table2 Characteristic values of common faults of S700K electric switch machine特征值f0 f1 f2 f3 f4 f5 f6最大值3.400 3.400 3.387 2.134 2.100 2.134 3.103平均值0.562 0.803 1.753 0.565 0.789 0.646 0.772方差0.156 0.089 1.672 0.119 0.037 0.050 0.093标准差0.396 0.298 1.293 0.345 0.193 0.225 0.304峭度19.009 39.656 1.216
5.072 20.379 1
6.568 21.652均方根0.687 0.856 2.178 0.662 0.813 0.684 0.830波形因子1.222 1.066 1.242 1.172 1.029 1.059 1.075峰值因子4.946 3.971 1.556 3.225 2.584 3.120 3.739脉冲因子6.046 4.235 1.932 3.779 2.660 3.303 4.019裕度因子
7.539 4.397 2.263 4.675 2.735 3.441 4.189
2)对标准化后的矩阵X利用描述样本之间相似程度的指标rij=R(xi,xj)建立此矩阵的模糊相似矩阵R。

聚类统量rij的确定方法主要有相似系数法与距离法,本文中采用距离法确定rij。

在采用距离法时,令
式中:c为使0≤rij≤1的参数;d(xi,xj)为模式xi与xj之间的距离。

常用的距离法有3种,分别为海明距离法、欧式距离法和切比雪夫距离法。

海明距离法:
欧式距离法:
切比雪夫距离法:
3)模糊相似矩阵R不一定具有传递性,即矩阵R与矩阵X不一定存在等价关系,
为了进行分类并形成动态聚类图,需要利用平方法求矩阵R的传递闭包t(R),将
矩阵R改造成模糊等价矩阵R*。

从模糊等价矩阵出发,依次求平方:
R→R2→R4→…→R2i→…,当第1次出现Rk∘ Rk=Rk时(表明Rk具有传递性),Rk就是所求的传递闭包t(R)。

记Mm×n表示全体m×n模糊矩阵,则
R∈Mm×n表示R其中一个m×n阶模糊矩阵。

若R∈Mm×n,则存在一个最小
的自然数k(k≤n),使得传递闭包t(R)=Rk,对于一切大于k的自然数l,恒有
Rl=Rk,此时t(R)为模糊等价矩阵R*。

4)R*为具有传递性的模糊等价矩阵,且R*=(rij)∈ Mm×n,对于任意的λ∈[0,1],称Rλ=(rij(λ))为模糊等价矩阵R*=(rij)的λ-截矩阵[23],其中,
则rij(λ)∈{0,1},即R*的λ-截矩阵为布尔矩阵。

在模糊等价矩阵R*中,当λ在[0,1]之间由大到小发生改变时,形成对应的布尔矩阵,从而形成动态聚类图。

3 实例验证及结果分析
选取广铁集团长沙电务段某信号工区某S700K转辙机在运行过程中2个不同时刻的2条故障曲线作为待检样本,验证该算法的可行性。

图3所示为某S700K转辙机发生2种不同故障时所对应的动作功率曲线d1和d2。

采用式(2)~(11)对图3
的功率曲线分别求其特征值,结果如表3所示。

经过现场的工人检修后确定该转
辙机发生的故障类型与表1中f2和f4所对应的故障类型一致。

根据表3建立特征模式矩阵X,则X=[f0;f1;f2;f3;f4;f5;f6;d1;d2],根据模糊聚类
的思想,需要对矩阵X进行标准化处理,从而消除不同量纲对数据造成的影响,
使数据分布在[0,1]之间。

利用平移-标准差变换与平移-极差变换对特征模式矩阵X 进行标准化处理,得到的矩阵为X*:
图3 现场某S700K转辙机发生故障时的动作功率曲线Fig.3 Action power curve of S700K switch in event of a fault(a)d1;(b)d2
表3 待检曲线故障特征值Table3 Fault eigenvalues of pending curve曲线
d1d2最大值3.113 2.100平均值1.575 0.851方差1.199 0.057标准差1.095
0.239峭度1.378 8.532均方根1.918 0.884波形因子1.218 1.039峰值因子
1.623
2.376脉冲因子1.977 2.469裕度因子2.267 2.552
为了定量进行分类,采用海明距离法作为聚类统计量rij=R(xi,xj),来描述故障样本之间的相似程度并建立原始特征模式矩阵的模糊相似矩阵R,将R改造成模糊等价矩阵R*。

由前文内容可知矩阵R的模糊等价矩阵R*=t(R),则有:
在矩阵R*中,当λ在[0,1]之间由大到小取值,可得到转辙机故障诊断系统的动态聚类图,如图4所示。

由图4可知:当λ=0.861时,当前转辙机运行曲线d1与表1所示故障曲线中的f2性状最相似,当λ=0.992时,当前转辙机运行曲线d2与表1中的f4性状最相似,即2条故障曲线分别对应的故障类型为故障特征集中的f2和f4,这与现场人工检测结果相一致[24]。

为了验证该方法对S700K转辙机故障状态的识别性能,从微机监测系统中获取36组S700K转辙机动作功率曲线数据进行测试,数据量属于小样本情况。

在小样本情况下,模糊聚类方法作为故障分类器,比支持向量机(SVM)算法和贝叶斯网络(BN)算法的诊断误报率更低[10]。

3种分类器性能比较如表4所示。

从表4可见:模糊聚类方法正确率为94.5%;在小样本情况下,模糊聚类方法仍具有较强的预测推广能力。

图4 故障诊断系统动态聚类图Fig.4 Dynamic clustering diagram of fault diagnosis system
表4 3种分类器诊断性能比较Table4 Comparison of diagnostic performance of three classifiers分类器SVM BN模糊聚类故障库样本数/个7 7 7测试样本数/个36 36 36测试精度/%90.11 89.14 94.50
4 结论
1)本文针对S700K转辙机典型故障下的动作功率曲线呈非线性、非平稳的变换规律,由表征时域特征量的参数形成特征值,构建原始特征模式矩阵,在此基础上,利用模糊聚类思想对原始特征模式矩阵进行标准化、标定(建立模糊相似矩阵)、聚类,当λ在某一水平取值时,相似度最高的故障被分为同一类,从而达到故障诊断的目的。

2)基于模糊聚类分析算法的故障诊断是一种基于数字信号处理的方法,该方法无需训练,不需要提供大量的先验参数且支持多种故障同时检测,经验证有效提高了故障分类的准确率与效率。

【相关文献】
[1]许庆阳,刘中田,赵会兵.基于隐马尔科夫模型的道岔故障诊断方法[J].铁道学报,2018,40(8):98-106. XU Qingyang,LIU Zhongtian,ZHAO Huibing.Method of turnout fault diagnosis based on hidden Markov model[J].Journal of the China Railway Society,2018,40(8):98-106.
[2]黄世泽,陈威,张帆,等.基于弗雷歇距离的道岔故障诊断方法[J].同济大学学报(自然科学
版),2018,46(12):1690-1695.
HUANG Shize,CHEN Wei,ZHANG Fan,et al.Method of turnout fault diagnosis based on
Fréchet distance[J].Journal of Tongji University(Natural Science),2018,46(12):1690-1695. [3]安春兰,甘方成,罗微,等.提速道岔小波包能量熵故障诊断方法[J].铁道科学与工程学
报,2015,12(2):269-274.
AN Chunlan,GAN Fangcheng,LUO Wei,et al.Method of speed-up turnout fault diagnosis
using wavelet packet energy entropy[J].Journal of Railway Science and
Engineering,2015,12(2):269-274.
[4]ATAMURADOV V,CAMCI F,BASKAN S,et al.Failure diagnostics for railway point machines using expert systems[C]//2009 IEEE International Symposium on Diagnostics for Electric Machines,Power Electronics and Drives.New York,USA:IEEE,2009:1-5.
[5]薛艳青.道岔设备故障诊断专家系统实现方法研究[D].北京:北京交通大学交通运输学院,2012:35-59.
XUE Yanqing.Research on realization method of turnout equipment fault diagnosis expert system[D].Beijing:School of Traffic and Transportation.Beijing Jiaotong University,2012:35-59.
[6]王瑞峰,陈旺斌.基于灰色神经网络的S700K转辙机故障诊断方法研究[J].铁道学
报,2016,38(6):68-72.
WANG Ruifeng,CHEN Wangbin.Researchonfault diagnosis method for S700K switch machine based on grey neural network[J].Journal of the China Railway
Society,2016,38(6):68-72.
[7]田健.基于模糊神经网络的高速铁路道岔故障诊断方法研究[D].北京:北京交通大学电子信息工程学院,2015:35-56.
TIAN Jian.Fault diagnosis method for railway switch point based on fuzzy neural network[D].Beijing:School of Electronic and Information Engineering.Beijing Jiaotong University,2015:35-56.
[8]肖蒙,翟琛,潘翠亮.基于快速贝叶斯网络的S700K转辙机故障诊断研究[J].铁道科学与工程学报,2015,12(2):414-418.
XIAO Meng,ZHAI Chen,PAN Cuiliang.Research on S700K switch machine fault diagnosis based on fast Bayesian network[J].Journal of Railway Science and
Engineering,2015,12(2):414-418.
[9]WANG Guang,XU Tianhua,TANG Tao,et al.A Bayesian network model for prediction of weather-related failures in railway turnout systems[J].Expert Systems with Applications,2017,69:247-256.
[10]钟志旺,唐涛,王峰.基于PLSA和SVM的道岔故障特征提取与诊断方法研究[J].铁道学
报,2018,40(7):80-87.
ZHONG Zhiwang,TANG Tao,WANG Feng.Research on fault feature extraction and diagnosis of railway switches based on PLSA and SVM[J].Journal of the China Railway Society,2018,40(7):80-87.
[11]HE Youmin,ZHAO Huibing,TIAN Jian,et al.Railway turnout fault diagnosis based on support vector machine[J].Applied Mechanics and
Materials,2014,556/557/558/559/560/561/562:2663-2667.
[12]EKER O F,CAMCIF,KUMARU.SVM based diagnostics on railway
turnouts[J].International Journal of Perform ability Engineering,2012,8(3):289-298.
[13]王思明,雷烨.一种基于LS-SVM的道岔控制电路故障诊断[J].兰州交通大学学报,2010,29(4):1-5. WANG Siming,LEI Ye.Fault diagnosis for railway switch control circuit based on ARPSO least squares support vector machine[J].Journal of Lanzhou Jiaotong
University,2010,29(4):1-5.
[14]李恩文,王力农,宋斌,等.基于改进模糊聚类算法的变压器油色谱分析[J].电工技术学
报,2018,33(19):4594-4602.
LI Enwen,WANG Linong,SONG Bin,et al.Analysis of transformer oil chromatography based on improved fuzzy clustering algorithm[J].Transactions of China Electrotechnical Society,2018,33(19):4594-4602.
[15]程静,王维庆,樊小朝,等.基于二值双谱和模糊聚类的风电轴承故障诊断[J].振动、测试与诊
断,2018,38(4):765-771,874.
CHENG Jing,WANG Weiqing,FAN Xiaochao,et al.Bearing fault pattern recognition of wind turbine based on two-value bispectrum feature-fuzzy clustering method[J].Journal of Vibration,Measurement&Diagnosis,2018,38(4):765-771,874.
[16]陈东宁,张运东,姚成玉,等.基于FVMD多尺度排列熵和GK模糊聚类的故障诊断[J].机械工程学报,2018,54(14):16-27.
CHEN Dongning,ZHANG Yundong,YAO Chengyu,et al.Fault diagnosis based on FVMD multi-scale permutation entropy and GK fuzzy clustering[J].Journal of Mechanical Engineering,2018,54(14):16-27.
[17]王耀杰.信号设备非电量参数测试[M].北京:中国铁道出版社,2004:136-138.
WANG Yaojie.Measurement of non-electrical parameters of signal
equipment[M].Beijing:China Railway Publishing House,2004:136-138.
[18]张钉,李国宁.基于改进WNN分析功率曲线的S700K转辙机故障诊断[J].铁道科学与工程学报,2018,15(8):2123-2130.
ZHANG Ding,LI Guoning.Fault diagnosis of S700K switch machine based on improved WNN analyses power curve[J].Journal of Railway Science and
Engineering,2018,15(8):2123-2130.
[19]钟志旺,陈建译,唐涛,等.基于SVDD的道岔故障检测和健康评估方法[J].西南交通大学学
报,2018,53(4):842-849.
ZHONG Zhiwang,CHEN Jianyi,TANG Tao,et al.SVDDBased research on railway-turnout fault detection and health assessment[J].Journal of Southwest Jiaotong
University,2018,53(4):842-849.
[20]赵林海,陆桥.基于灰关联的道岔故障诊断方法[J].铁道学报,2014,36(2):69-74.
ZHAO Linhai,LU Qiao.Method of turnout fault diagnosis based on grey correlation analysis[J].Journal of the China Railway Society,2014,36(2):69-74.
[21]何梦媛.基于模糊聚类的断路器故障诊断方法研究[D].北京:华北电力大学电气与电子工程学
院,2018:15-19.
HE Mengyuan.Research on circuit breaker fault diagnosis method based on fuzzy clustering[D].Beijing:School of Electrical and Electronic Engineering.North China Electric Power University,2018:15-19.
[22]王有远,张振华,钱伟伟,等.基于模糊聚类的航空发动机故障预测研究[J].南昌航空大学学
报,2018,32(1):28-33.
WANG Youyuan,ZHANG Zhenhua,QIAN Weiwei,et al.Research on aero engine fault prediction based on fuzzy clustering[J].Journal of Nanchang Hangkong
University,2018,32(1):28-33.
[23]彭祖赠,孙韫玉.模糊(Fuzzy)数学及其应用[M].武汉:武汉大学出版社,2007:45-50.
PENG Zuzeng,SUN Yunyu.Fuzzy mathematics and its application[M].Wuhan:Wuhan University Press,2007:45-50.
[24]温惠英,卢德佑,吴亚平,等.改进模糊聚类方法的物流园交通小区划分[J].哈尔滨工业大学学报,2018,50(3):103-108.
WEN Huiying,LU Deyou,WU Yaping,et al.Division of logistics park traffic zones based on the improved fuzzy clustering method[J].Journal of Harbin Institute of Technology,2018,50(3):103-108.。

相关文档
最新文档