钻井工程第三章 钻井液

合集下载

钻井液基础知识

钻井液基础知识

第三章钻井液基础知识一、钻井液概念钻井液是指油气开发钻井过程中以其多种功能满足钻井工作需要的各种循环流体的总称。

钻井液的循环是通过泥浆泵实现的。

循环池中的钻井液由泥浆泵泵入地面高压管汇,经过立管、水龙带、水龙头、方钻杆、钻杆、钻铤到达钻头,然后从钻头喷嘴喷出,沿着钻柱与井壁(或套管)形成的环形空间返出,到达地面后经各种固控设备处理后返回循环池。

因此,钻井液又被人们普遍称为石油钻井工程的“血液”。

钻井液又称做钻井泥浆或简称泥浆。

钻井液工艺技术是油气钻井工程的重要组成部分,在确保安全、优质、快速钻井中起着越来越重要的作用。

现场钻井液循环系统如图所示。

泥浆池泥浆泵地面高压管汇立管水龙带水龙头方钻杆固控设备沉砂池震动筛泥浆槽井眼环空钻头钻铤钻杆二、钻井液的组成1、分散介质---水(盐水)或油2、分散相---膨润土、加重材料、各种处理剂、钻屑膨润土是常用的配浆材料,主要起提粘和造壁作用,加重材料用于提高钻井液密度,处理剂用于调整钻井液性能,钻屑是无用固相应通过各种固控措施除去。

三、钻井液的基本功用1、携带和悬浮岩屑通过钻井液循环将钻头破碎的岩屑从井底携带到地面,让钻头始终接触、破碎新地层,保证快速钻进。

钻井液停止循环时使钻屑在钻井液中悬浮不下沉,防止沉沙卡2、稳定井壁和平衡地层压力钻井液借助液相滤失作用,在井壁上形成一层薄而致密的泥饼,阻止液相进一步滤失,从而减弱泥页岩水化膨胀和分散程度,达到稳定井壁的作用。

平衡地层压力是通过钻井液提供的液注压力来实现,从而防止井塌、井喷、卡钻等复杂情况。

3、冷却和润滑钻头钻具钻进过程中钻头破碎岩屑,钻具与井壁摩擦会产生大量热,这些热量通过钻井液循环被带出地面从而达到冷却钻头钻具的作用。

钻具在井下旋转过程中钻井液在钻具与地层之间又会起到很好的润滑作用。

4、传递水动力钻井液将地面泥浆泵赋予的动力除了用于克服沿程阻力外,当它从钻头喷嘴高速喷出时,对井底产生强大冲击力从而显著提高钻速。

钻井液工艺学-第三章

钻井液工艺学-第三章

第二节
数学表达式:
钻井液的基本流型及特点
y
第二节
钻井液的基本流型及特点
流型判断(作图法)
(1)多点测试(τ,γ ) (2)分别以τ和γ为坐标轴绘图 (3)结合标准流变曲线进行判断
第三节
流变参数测量与计算
一.测量仪器及原理
1、漏斗粘度计
漏斗粘度 Funnel Viscosity 定 单 类 义:定体积泄流时间。 位:秒;s 型:
第四节 钻井液流变性与钻井作业的关系
三.钻井液流变性与井壁稳定的关系
流态对井壁稳定的影响:层流比紊流有利于井壁稳定。
第四节 钻井液流变性与钻井作业的关系
四.钻井液流变性与钻速的关系
第四节 钻井液流变性与钻井作业的关系
五.钻井液流变性与井内压力激动的关系
下钻: 当钻头在井内向下运动时,钻井液被推动着向上流动。这时钻头 处的压力等于钻头以上钻井液的流动阻力与该段钻井液的静液柱压力 。超出静液柱压力的部分被称为“激动压力”。这是造成井漏的原因之 一。 起钻:相反,当钻头在井内向上运动时,钻井液向下流动。这时钻头处 的压力等于钻头以上钻井液的静液柱压力减去该段钻井液的流动阻力 。低于静液柱压力的部分被称为“抽吸压力”。这是诱发井喷、井塌的 原因之一。 主要控制措施: 控制起下钻速度; 降低钻井液粘切。
μ a=τ/γ ,mPa· s
第三节
流变参数测量与计算
某一剪切速率下的表观粘度可用下式表示:
μ a=(300ѲN)/N
N—表示转速,单位为r/min; ѲN—表示转速为N时的刻度盘读数。 在评价钻井液的性能时,为便于比较,如果没有特别注明某一剪切速率, 一般是指测定600r/min时的表观粘度,即:
μp

油田钻井技术手册

油田钻井技术手册

油田钻井技术手册(文中所有数字均为示意,非规范数值)油田钻井技术手册第一章概述1.1 目的和范围本手册介绍了在油气田钻井中所需的技术知识和操作规程,旨在帮助钻井工程师及时准确地掌握钻井工艺和作业程序,有效提高钻井生产效率和工作安全。

1.2 适用条件本手册适用于在陆地和海洋油气田中进行的各种类型的钻井作业,包括常规井、增强井、水平井、多段式水平井、超深井和大角度井等。

1.3 组成和内容本手册共分为七章,分别介绍了钻井工程的各个环节:第二章钻机设备2.1 钻机选型2.2 钻机构造2.3 钻机参数2.4 钻机组件2.5 钻杆组合与下洞2.6 钻头的分类、选用和维护第三章钻井液3.1 钻井液的种类3.2 钻井液的组成与性能3.3 钻井液循环系统3.4 钻井液操作流程及处理第四章钻井工艺4.1 钻井方案设计4.2 钻井进度控制4.3 钻井过程中的事故处理4.4 钻井终止操作第五章地层工程学5.1 岩石力学基础5.2 水文地质基础5.3 地质结构变形规律5.4 岩石破裂与井眼稳定性第六章测井工艺学6.1 测井技术基础6.2 测井参数和仪器6.3 测井资料解释6.4 测井资料在钻井工作中的应用第七章钻井作业安全7.1 钻井作业安全规章制度7.2 钻井作业各环节操作注意事项7.3 紧急事故应急处置方法与措施7.4 钻井施工自动化控制及技术发展趋势第二章钻机设备2.1 钻机选型钻机是钻井作业中必不可少的设备之一,鉴于不同钻井工艺和钻井地质条件的要求,可根据如下因素选择不同型号和型式的钻机:(1)井深和井径(2)杆组合的长度和钻头的选用(3)地质构造和井壁稳定性(4)井口及井眼的样式(5)钻井工艺和作业要求2.2 钻机构造钻机通常由下列主要部件组成:(1)钻井台,用于承接钻杆负荷,并支持钻杆旋转和往下推进。

(2)井口装置,用于装卸钻杆和钻头。

(3)钻机动力系统,用于提供旋转和远程控制操作。

(4)冷却系统,用于降低机械和液压设备的运转温度。

钻井液

钻井液
26
• 粘度过高的危害:
• 流动阻力大,泵压高,排量相应降低, 井底清洗效果变差,对钻速影响较大。 • 钻头易泥包,起下钻容易引起抽吸和 压力激动。 • 沉砂困难,净化不良,对设备磨损大。 • 除气困难 • 固井时水泥浆易窜槽,影响固井质量
27
影响泥浆粘度的因素 泥浆粘度反映体系内部的摩擦 ▲液相分子间的内摩擦,液相粘度随有机物含量增加而升高 ▲分散相颗粒间的相互作用力,它是表征特性不同的分散相 颗粒相互产生的作用力和形成网架结构而增加的流动阻力 ▲分散相颗粒之间的内摩擦
33
失水量过高的危害: 地层被长时间浸泡后造成井眼缩径及泥、页岩的剥落、坍塌
水分渗入生产层,使目的层粘土膨胀,油气层渗透率降低,生产能 力下降
泥饼质量不好的危害: 泥饼厚而松散,摩擦系数高,使钻具与井壁接触面积增大,泥饼粘 附卡钻风险大 易泥包钻头或堵死钻头水眼 起钻时上提力增加 妨碍套管下入,影响固井水泥浆与井壁间的胶结 电测易遇阻遇卡,影响井壁取样
• 静比重、当量循环比重和环空比重


当量循环比重:考虑了由于泥浆流动而增加的附加压耗
环空比重:在当量循环比重基础上考虑了由于井筒内岩 屑产生的附加压耗
11
钻井液性能概述
• • • • 钻井液比重的控制: 比重过高:增大正向压差,对目的层污染加重;液柱压力增大,增大 井底岩石可钻强度并引起井底岩石的重复切削 比重过低:井壁不稳定,目的层压力无法控制 确定泥浆比重的原则:
29
泥浆的失水及造壁性 泥浆的失水和造壁性
失水:泥浆中的自由水,在压差作用下向孔壁岩石的裂隙或孔隙中渗透; 造壁性:泥浆失水时,随着泥浆中的自由水进入岩层,泥浆中的固体颗 粒便附着在孔壁上形成泥皮,这便是泥浆的造壁性。

钻井液基础知识解析

钻井液基础知识解析
(2)对钻井的影响 a 影响井下安全(井喷、井漏、井塌和卡钻等) b 与油气层损害有关 c 影响钻井速度
第二部分、钻井液性能及调整
(3)钻井液密度的测试 钻井液比重称(钻井液密度计)
现场最常用密度计
1-称杆;2-主刀口;3-泥浆杯;4-杯盖;5-校 正筒;6-游码; 7-底座;8-主刀垫;9-档壁
钻井液基本性能:

度:比重计
抑 制 性: PH﹑矿化度、防侵污、防塌等
滤失造壁性: 滤失量、泥饼性能等
流 变 性: 粘度、切力等
固 相 含量:
含 砂 量:
钻井液特殊性能:
高温高压性能、乳化稳定性、润滑性等。
第二部分、钻井液性能及调整
1、钻井液密度
(1)定义:单位体积钻井液的质量。 g/cm3 (进出口泥浆密度差≤0.02 g/cm3 ) t/m3
酸溶性 酸溶
铁矿粉 钛铁矿粉 方铅矿
Fe2O3 TiO2.Fe2O3
PbS
4.9-5.3 4.5-5.1 7.4-7.7
酸溶 酸溶 酸溶
第二部分、钻井液性能及调整
钻井常用可溶性盐类加重材料
水溶性盐
KCl NaCl CaCl2 CaBr2 ZnBr2
饱和盐水密度 g/cm3
1.16(20℃) 1.20 (20℃) 1.40 (60℃) 1.80 (10℃) 2.3 0(40℃)
第二部分、钻井液性能及调整
(5)滤失量的调节 滤失量的调节通常采用在钻井液中加入降滤失剂的方式进行。
(6)常用滤失量调节剂 ①羧甲基纤维素钠盐(Na-CMC,CMC); ②水解聚丙烯腈盐类(Na-HPAN、Ca-HPAN、NH4-HPAN); ③腐植酸类(NaHm、Na-NHm、CrHm、SH23、SH24);

钻井液工艺技术考点

钻井液工艺技术考点

钻井液工艺技术考点绪论:钻井液定义、组成、分类;基本公用。

第一章:粘土矿物水化膨胀性的好坏,粘土的稳定性、连接方式。

第二章:定义;塑性粘度,动切力,表观粘度,静切力,剪切稀释性。

简述;钻井液流变性与钻井作业的关系第三章:钻井液的虑失和润滑性;定义:滤失,滤失量,滤失范围及合理的滤失量;测量API滤失量指标第四章:水基钻井液:1、细分散钻井液优缺点及使用2、盐水钻井液优缺点及使用3、MMH正电胶钻井液特点4、高温对粘土、处理剂、黏土及处理剂的影响5、聚合物的特点第五章:油基钻井液:组成,滤失量低的原因,活度平衡第六章:振动筛、旋流器工作特点第七章:井壁不稳的机理、井壁失稳的对策、堵漏剂、漏失的原因、堵漏方法。

绪论1、定义:钻井液:指油气钻井过程中,以其多种功能满足钻井工作需要的各种循环流体的总称。

钻井液俗称钻井泥浆或泥浆。

2、钻井液的组成:钻井液是由分散介质,分散相和化学处理剂组成的分散体。

3、钻井液的分类:1)、按密度分非加重钻井液和加重钻井液。

2)、按其与粘土水化作用强度分非抑制性钻井液和抑制性钻井液。

3)、按其固相含量的多少分低固相含量和无固相含量。

4)、根据分散介质不同:水基钻井液、油基钻井液、气体性钻井液和合成基井液。

4、钻井液的基本功用1)、携带和悬浮岩屑2)、稳定井壁3)、平衡地层压力和岩石侧压力4)、冷却和润滑作用5)、传递水功率6)、获取地下信息第一章、粘土胶体化学基础一、粘土矿物水化膨胀的强弱1、高岭石:为非膨胀性粘土矿物,其水化性能差,造浆性能不好,最不容易发生水化膨胀。

2、蒙皂石:是膨胀型粘土矿物,其晶层表面包括内外表面都可以进行水化及阳离子交换,蒙皂石具有很大的比表面。

最容易发生水化膨胀。

3、伊利石:不易水化膨胀4、绿泥石:非膨胀性粘土矿物,不易发生水化膨胀。

5、海泡石族:膨胀型粘土矿物,具有较好的热稳定性,适用于配制深井钻井液,具有良好的抗盐稳定性。

6、混合晶层粘土矿物:最常见的为伊利石和蒙皂石混合层,简称依蒙混层,是膨胀型粘土矿物。

钻井与完井工程教材第三章钻井液

钻井与完井工程教材第三章钻井液

第三章钻井液一口油气井钻井成功在很大程度上取决于钻井液的性质和性能。

钻井液始终是为钻井工程服务的,它的发展与钻井工程的发展紧密相关。

由于初期的钻井液是由最简单的泥土和水组成,“泥浆”就成为钻井液沿用至今的代名词。

实际上,这种称呼既不正确更不准确。

钻井液的定义是指具有各种各样功能以满足钻井工程需要的循环流体。

第一节钻井液的功能、组成和类型一、钻井液的功能油气钻井的基本功能是打开找油、找气和采油、采气的通道,是实现油气勘探开发的重要工程手段。

为油气钻井、完井服务是钻井液的目的,钻井、完井的需要是钻井液发展的动力。

因此,钻井液的功能就体现在油气井钻井、完井的两个方面,即在整个钻进过程中,要保持安全优质快速低成本钻井;在进入油气层时,要具有保护储层的作用。

所以,钻井液的功用也就是钻井、完井对钻井液的基本要求。

在钻井方面,钻井液的主要功能有①清洗井底,携带岩屑。

②冷却、润滑钻头和钻柱。

③形成泥饼,保护井壁。

④控制和平衡地层压力。

⑤悬浮岩屑和加重材料。

⑥提供所钻地层的地质资料。

⑦传递水功率。

⑧防止钻具腐蚀。

在保护油气储集层方面,钻井液(此时称完井液)的主要功用是保护油气层的渗透性,尽量降低对原始油气层物化性质的损害。

主要表现在以下两方面:①控制固相粒子含量及级配,防止固相粒子对油气层的损害。

②保持液相与地层的相容性。

二、钻井液的组成和类型钻井液属于复杂的多相多级胶体-悬浮体分散体系。

它既可以是固体分散在液体中,或者是液体分散在另一种液体中,也可以是气体分散在液体中,或者是液体分散在气体中所形成的分散体系。

钻井液的基本成分由分散相+分散介质+化学处理剂组成。

各相具体成分可以是:处理剂(各种维护分散体系稳定和调整分散体系性能的化学添加剂)。

在以水为连续相的水基钻井液中,通常用重量体积百分含量表示钻井液配方中各组分,不考虑处理剂本身的体积。

例如,某种水基钻井液组分为:1000ml水+ 50g膨润土+ 20g 处理剂。

钻井液工艺原理3-钻井液流变性

钻井液工艺原理3-钻井液流变性

1
16
卡森流体
流变模型:τ1/2 = τc1/2 + η1/2 γ1/2
r1/2
流变曲线:
• γ1/2-τ1/2 作图,为一条直线。
• γ -τ作图,为直线与曲线之和。
模式讨论 τ1/2 = τc1/2 + η1/2 γ1/2
0
τ
1/2 c
τ 1/2
γ 0, τ τc 能够反映多数钻井液具有 r
国际:Pa.s、mPa.s 模式讨论 τ- τ0 = ηp γ 或者 η= ηp + τ0/ γ
γ 0, τ τ0 能够反映多数钻井液具有内部结构情况。 γ ,η 能够反映多数钻井液的剪切稀释性。 γ, η ηp 能够反映出钻井液的极限粘度。
低剪切速率下: τ实> τ宾 表明模型拟合实际曲线有较大偏差.
• 作用:衡量钻井液的宏观流动性。
• 测量方法:用旋转粘度仪。
• 现场习惯用600转数据的1/2值表示, AV=φ600/2。
1
33
宾汉体的塑性粘度ηp
定义:层流流动时,流体内部网状结构的破坏与 恢复处于动态平衡时,以下三部分内摩擦力 的微观统计结果: 固 -固颗粒间内摩擦阻力; 固 -液相分子间内摩擦阻力; 液 -液分子间内摩擦阻力;
体系受剪切稀释明显。 显然:只要能形成结构的钻井液,均有剪切稀释性。
1
19
作用:
(1)判断携屑能力:强者—好,有利低速带砂。
(2)估计钻头水眼处的粘度大小:强者—小,有利 水力喷射钻井。
即 环形空间:γ低,ηa大,有利于携带钻屑 钻头水眼:γ大,ηa小,有利于水力破岩
一般要求钻井液的剪切稀释能力强。
1Pa = 10dyn/cm2

钻井液(讲义)

钻井液(讲义)
②舍去非正常钻进井段如纠斜吊打、磨合牙轮、牙 轮使用后期、井底不干净的井段数据; ③舍取刮刀钻头、PDC钻头、取芯钻头钻进的井段 及磨鞋磨洗的井段数据;
④舍取钻遇断层、裂缝、溶洞等特殊井段数据;
⑤舍取水利因素变化大的井段数据。
26
⑸预测结果校核
使用上述随钻地层压力检测方法,要及时收集 邻井已知地层压力数据、随钻压力测试、静压测试和 RFT数据或其它方法能准确求取的地层真实孔隙压力数 据,进行校核,以便修正随钻检测的地层压力,使之更
29
⑻在裸眼井段遇到下列情况之一,需考虑分段循环钻井液: ①裸眼井段发生过井漏; ②起钻时有遇阻遇卡的井段; ③钻井液静止24小时以上; ④钻井液性能欠佳,特别是静切力较大; ⑤井下要进行特殊作业。 ⑼复查井段、含地层流体井段和到井底前最后3个立柱,采 用低速下钻。 ⑽下钻时要有专人观察并记录钻井液返出情况。 ⑾如井口不返钻井液,应立即停止下钻,观察井口液面, 发现液面下降,向环形空间罐满钻井液;同时起钻到正常井 段,小排量顶通后,逐渐增加排量,按井漏程序观察处理。 ⑿如钻柱内返钻井液,应进一步减速下钻;如继续返喷, 应静止钻柱1min~2min进行观察,判断是井涌还是环空不畅。 若是井涌,按井控程序处理;如果是环空不畅,应及时接方 钻杆或顶驱系统,循环钻井液。
脆性页岩表面看来是相当坚硬和稳定的, 但是,当放在水中时,则逐渐变成碎块,不过碎 块在水中并不软化或膨胀。脆性页岩的不稳定性 可能是由如下任何一种机理引起的:①页岩可能 是由于结构内的微裂缝表面、层面和解离面水化 而软化,然后,较大的页岩碎块掉入井内;②当 少量粘土被完全不膨胀的石英或长石基岩包围时,
30
⒀下钻要平稳,遇阻时以提为主,严禁强压,遇阻超过 100kN(152.4mm以下井眼为50 kN)时,严禁强行下钻,应及 时接方钻杆(或顶驱系统),循环钻井液,正常后才能继续 下钻。 ⒁根据起出的上只钻头和稳定器的磨损情况,结合地层特 点,分析判断井眼欠尺寸的可能性;如果起出的所有稳定器 外径都磨损变小,下钻时应对上只钻头钻过的全部新井段划 眼;如果起出的稳定器中最下面一个稳定器的磨损变小,则 从未磨损的的稳定器所钻达的井深处开始划眼至井底。 ⒂在用牙轮钻头所钻的井段,下入PCD钻头或金刚石钻头, 要减速下钻。若牙轮钻头磨损,易造成刚性强的PCD钻头或金 刚石钻头卡钻。 ⒃钻头下入离井底一个单根或立柱时,应及时接方钻杆 (或顶驱系统),开泵顶通,井口有钻井液返出后,再根据 情况逐渐增加排量,循环正常后,转动钻柱,慢慢下放,下 放至井底。

钻井工程理论与技术(第二版)课后题简答题答案

钻井工程理论与技术(第二版)课后题简答题答案

第一章钻井的工程地质条件1.简述地下各种压力的基本概念及上覆岩层压力、地层孔隙压力和基岩应力三者之间的关系。

答:静液压力:是由液柱自身的重力所引起的压力,它的大小与液体的密度、液柱的垂直高度或深度有关。

地应力:钻井工程施工之前存在于地下某点的应力状态为原地应力状态。

地层孔隙压力:岩石孔隙中流体所具有的压力。

也称地层压力。

上覆岩层压力:是指由上覆岩层重力产生的铅垂方向的地应力分量。

该处以上地层岩石基质和岩石孔隙中流体的总重力所产生的压力。

基岩应力:是指由岩石颗粒间相互接触支撑的那一部分上覆岩层压力。

也称有效上覆岩层压力或骨架应力。

地层破裂压力:地层某深度处的井壁产生拉伸破坏时的应力地层坍塌压力:地层某深度处的井壁产生剪切破坏时的应力上覆岩层的重力是由岩石基质(基岩)和岩石孔隙中的流体共同承担的,即上覆岩层压力是地层压力与基岩应力的和2、简述地层沉积欠压实产生异常高压的机理。

答:在稳定沉积过程中,若保持平衡的任意条件受到影响,正常的沉积平衡就被破坏。

如果沉积速度很快,岩石颗粒就没有足够的时间去排列,孔隙内流体的排出受到限制,基岩无法增加它的颗粒与颗粒之间的压力。

由于上覆岩层继续沉积,负荷增加,而下面基岩的支撑能力没有增加,孔隙中的流体必然开始部分地支撑本来应由岩石颗粒所支撑的那部分上覆岩层压力,从而导致了异常高压。

3、简述在正常压实的地层中岩石的密度、强度、孔隙度、声波时差和dc指数随井深变化的规律。

答:所以随井深的增加,地层中岩石密度逐渐变大,而岩石的孔隙度变小。

随着井深的增加,岩石的强度增大。

在正常地层压力井段,随着井深增加,岩石的孔隙度减小,声波速度增大,声波时差减小。

在正常地层压力情况下,机械钻速随井深增加而减小,d指数随井深增加而增大。

所以dc指数也随井深的增加而增大。

4、解释地层破裂压力的概念,怎样根据液压实验曲线确定地层破裂压力。

答:在井下一定深度的裸露地层,承受流体压力的能力是有限的,当液体压力达到一定数值时会使地层破裂,这个液体压力称为地层破裂压力。

陈庭根、管志川主编,钻井工程理论与技术,石油大学出版社,2000

陈庭根、管志川主编,钻井工程理论与技术,石油大学出版社,2000

工程硕士入学考试?石油工程综合测试?大纲〔油气井局部〕主要内容:第一章钻井的工程地质条件地下各种压力的概念、地层压力与地层破裂压力、岩石的工程力学性质第二章钻进工具常用钻头钻头类型、构造、工作原理、使用方法钻柱的组成、功用、钻柱的受力分析、设计方法第三章钻井液钻井液的作用、组成与分类;钻井液的主要性能、主要固控制方法与设备第四章钻进参数优选钻井过程中各参数间的关系、钻速方程、机械破岩钻进参数优选方法、水力参数优化设计方法第五章井眼轨道设计与轨迹控制井眼轨迹的根本概念、轨迹测量及计算、直井防斜技术、定向井眼轨道设计、定向井造斜工具及轨迹控制第六章油气井压力控制与井控井眼与地层压力系统、平衡与欠平衡钻井、地层流体侵入控制第七章固井与完井井身构造的概念与设计方法、套管柱载荷分析与设计方法、注水泥技术、常用完井方法第八章井下复杂情况与事故处理常见的井下复杂情况类型、相应事故处理方法参考书:主要考察学生对油气田开发过程中的各研究对象及工艺流程、设备等内容的理解和掌握程度,主要内容包括油气藏及流体的物理性质、采油〔气〕工程和油气田开发过程中各工艺环节的根本概念、根本技术原理、设备及其功用、主要工艺流程等,进步油气开采技术的根本方法和原理等。

主要考试内容绪论油气田开发的根本概念、任务、目的、根本方法和系统组成。

第1章油层物理根底油藏流体的物理性质;储层岩石的物理性质;含多相流体的储层岩石的渗流机理。

第2章油藏工程根底油气田开发概论;油气田开发动态分析;油气田开发调整。

第3章完井与试油油气井完井方式;试油;油气层保护。

第4章油气井的流入动态、井筒多相流及气体井筒流动油气井的流入动态及其应用;井筒多相流的流动构造;滑脱损失;气体井筒流动。

第5章自喷与气举采油自喷井的流动过程;自喷的条件和产量;自喷井的管理;气举原理、分类。

第6章有杆泵与无杆泵采油有杆泵的根本装置和原理;泵的分类及根本原理、泵效的计算、影响因素及进步泵效的措施;无杆泵采油的分类、根本装置和原理。

钻井液完井液化学3、4章详解

钻井液完井液化学3、4章详解

漏斗粘度 Funnel Viscosity
定 义:定体积泄流时间。
单 位:秒;s
类 型: 马氏漏斗粘度 Marsh Funnel Viscosity 定义:1500ml 流出946ml 的时间。 标准:清水测量值:26±0.5s 中国漏斗粘度 定义:700ml流出500ml的时间。
标准:清水测量值:15±0.5s
1. 有效粘度(视粘度)
定义: η= τ/ γ 意义:钻井液作层流流动时,有效粘度等于以下四部分内摩擦力的微 观统计结果: 固 ~ 固颗粒间内摩擦阻力; 固 ~ 液相分子间内摩擦阻力; 液 ~ 液分子间内摩擦阻力;
固相结构 ~ 液相分子间内摩擦阻力;
几种流体(模式)表示的有效粘度: 宾 汉 体:η= ηs+ τ0/ γ
28
影响因素(类似于静切力): 单个链环的强度—— 颗粒间引力—— 电位、水化膜 厚度。 结构链环数目/单位体积(结构密度)—— 颗粒浓度、 分散度。 调整方法: 升τo—— 提高 c、分散度,降低 及水化膜厚度,加增 粘剂。 降τo—— 冲稀、加降粘剂拆结构。
29
二、钻井液的粘度
16
真实泥浆与不同流型的比较
r
钻井液 假塑性流体 宾汉流体 0 s 0
17
假塑性流体 Pseudoplastic Fluids 流变模式: τ = Kγn 流变曲线:过原点凸向切应力轴的曲线。
r
流变参数: 稠度系数 K 意义:反映流体的粘滞性。K越大,流体越难流动。 单位:dyn.sn/cm2 流型指数 n 0 意义:偏离牛顿流体的程度。 模式讨论 τ = Kγn 或者 η= Kγn-1 γ 0, τ 0 不符合大多数钻井液具有屈服应力的特点。 γ ,η 能够反映钻井液的剪切稀释性。 γ, η 0 无极限粘度,不符合钻井液情况。

钻井液技术

钻井液技术
粘土胶体化学:在一般胶体化学规律指导下,专 门研究粘土胶体的生成、破坏和物理化学性质的 科学。
狭义胶体:胶体大小(三维中任一维尺寸在1100nm之间)的微粒分散在另一种连续介质中所 形成的分散体系。
广义胶体:包括粗分散体系(悬浮体、乳状液、 泡沫);溶胶;高分子真溶液;缔合胶体。
学习本章的意义:
Keep the newly drilled wellbore open untill steel casing can be cemented in the hole.
Cool and lubricate the rotating drillstring and bit.
概论——钻井液不应具有
气体:用高速气体或天然气清除钻屑
概论——钻井液的组成
概论——钻井液技术发展概况
发展
水基钻井液
清水 分散钻井液 抑制性钻井液 不分散聚合物钻 井液
油基钻井液
原油 柴油为连续相钻井液 油包水乳化钻井液
预测
钻井液强化井壁技术 复杂地质条件下深井、超深井、大位移井钻井液技术 新型钻井液体系及其处理剂的研制与应用 废弃钻井液的处理技术 保护油气层的钻井液技术
晶层间靠微弱的分子间力连接,连接不紧密,水分 子容易进入两个晶层之间发生膨胀(全脱水时晶格 间距为9.6A,吸水后可达21.4A),水化分散性能 较好(造浆能力强),是配制泥浆的优质材料。
粘土矿物的晶格构造和特点
伊利石
伊利石的晶体构造和 蒙脱石相类似,不同 之点在于伊利石中硅 氧四面体中有较多的 硅被铝取代,因取代 所缺的正电荷由处在 相邻两个硅氧层之间 的K+补偿,因K+存在 于晶层之间并进入相 邻氧原子网格形成的 孔穴中,使各晶胞间 拉得较紧,水分不易 进入层间,因此它是 不易膨胀的粘土矿物 。

01 钻井液概述 功能 组成和类型

01 钻井液概述 功能 组成和类型

钻井液的性能要求 (Properties )
1)悬浮和携岩 2)保护井壁,防止垮塌 保护井壁, 平衡地层压力, 3 ) 平衡地层压力 , 防止 井喷 4)传递水功率,清洗底 传递水功率, 5)冷却和清洗钻头 6)传递井下信息
─ 要求有足够的粘滞性和密度; 要求有足够的粘滞性和密度; 要求有足够的密度、良好的造壁性、 ─ 要求有足够的密度、良好的造壁性、 以及适当的化学性能; 以及适当的化学性能; 要求有适当的密度; ─ 要求有适当的密度; ─ 要求有较低的流动阻力(流变性); 要求有较低的流动阻力(流变性) 要求有较好的散热性能; ─ 要求有较好的散热性能; ─ 要求与地层岩石或流体有较好的相容 性。
最早的钻井工艺 — 顿钻 软化地层、 泥浆的作用 — 软化地层、携带岩屑
初期的钻井液是由简单的泥土和水组成,俗称“泥浆” 初期的钻井液是由简单的泥土和水组成,俗称“泥浆”, 泥浆”就成为钻井液沿用至今的代名词。 “泥浆”就成为钻井液沿用至今的代名词。
钻井液(DRILLING 钻井液(DRILLING FLUIDS) 钻井过程中在钻具管内和钻具与井壁 的环形空间中流动的一种工作液。 的环形空间中流动的一种工作液。 有钻井的血液之称。 有钻井的血液之称。 最初常用粘土和水配制而成, 最初常用粘土和水配制而成,故又称 泥浆” Mud) “泥浆”(Mud)。
水(淡水、盐水、饱和盐水等) 分散介质油(轻质油等) 气体(空气、氮气、天然气等)
膨润土(钠、钙膨润土 ,有机土,抗盐土等) 分散相 加重材料(重晶石,铁 矿粉等) 水,气,油
二、钻井液的组成和类型
1、钻井液的组成 处理剂: 各种维护分散体系稳定和调整体系 处理剂 : 性能的化学处理剂。 性能的化学处理剂。

钻井液概述—钻井液循环与功用

钻井液概述—钻井液循环与功用
在接单根、起下钻或因故障停止循环时,钻井液 能将留在井内的碎屑悬浮在环空中,使碎屑不会很 快下沉,防止沉沙、卡钻等情况。
➢稳定井壁
稳定井壁、井眼规则是实现安全、优质、快速钻 井的基本条件。
性能良好的钻井液应能借助液相的滤失作用,在 井壁上形成一层薄而韧的泥饼,用来稳定已钻开的 地层,并阻止液相侵入地层,减弱泥页岩的水化膨 胀和分散程度。
一、钻井液的循环过程:
钻井液的循环是通过钻井泵(俗称泥 浆泵)来维持的。
循环过程:
钻井液 泥浆泵 地面高压管汇 立管 水龙带 水龙头 方钻杆 钻杆 钻铤 钻头 环形空间 地面 排出管线 振 动筛 泥浆池 上水池再次循环
项目一:钻井液概述
任务 01 钻井液循环和功用
知识点 2 钻井液的功用
三、钻井液的功用:
➢传递水动力
钻井液在喷头喷嘴处以极高的流速喷出,所形成 的高速射流对井底产生强大的冲击力,大大提高钻 井速度和破岩效率。
在使用涡轮钻头钻进时,钻井液由钻杆内以高速 流经涡轮叶片,使涡轮旋转并带动钻头破碎岩石。
➢获取地下信息
钻井过程中,通过岩屑和钻井液性能的变化可以 获得井下各种信息,为钻井施工提供制定技术措施 的依据。
项目一:钻井液概述
任务一:
钻井液循环与功用
课程名称:泥浆材料检测与应用
知识点 01 知识点 02 知识点 03
钻井液的循环 钻井液的功用 钻井工程对钻井液性能的要求
项目一:钻井液概述
任务 01 钻井液循环与功用
知识点 1 钻井液的功用
钻井液,又称泥浆或钻井泥浆,是石 油钻井的“血液”。
在油气钻井过程中,以其多种功能 满足钻井工作需要的各种循环流体的总 称。
➢平衡地层压力和岩石侧压力

《钻井与完井工程》学习指南

《钻井与完井工程》学习指南

《钻井与完井工程》学习指南一、课堂教学第一章绪论1、学习要求通过了解钻井与完井工程的定义及其在石油工业中的地位,明确学习本门功课的重要性;过了解钻井与完井工程的主要内容及其衔接关系,建立钻井与完井工程的整体与系统的概念;解钻井与完井工程技术的发展过程。

2、重点(1)一口井的建井过程;(2)钻完井过程中需要使用的常用设备和工具(3)主要钻井与完井新技术3、学习建议(1)首先通过网络查询与钻井与完井工程有关的设备、井下工具的照片、视频,为其后各章的学习创造良好的条件,相关的设备、工具包括钻机、钻杆、钻铤、稳定器、接头、钻头、井口防喷器组合等。

(2)了解各章节之间的关系,对整体掌握课程体系是非常重要的。

第二章井身结构设计1、学习要求:要求掌握地层压力预测的基本原理、方法和井身结构设计的主要内容(设计步骤及相关计算方法)。

了解异常压力形成的环境条件,了解生产套管尺寸设计内容及影响因素。

2、重点:1)地层压力、地层破裂压力、地层坍塌压力的预测方法2)井身结构的设计方法和步骤3、难点:1)岩石力学理论模型2)井身结构设计计算4、学习建议(1)记住典型井身结构图,特别是钻头尺寸和套管尺寸的配合;(2)首先理解在不考虑各种系数下的井身结构设计,再引申到考虑各种设计系数的井身结构设计方法。

第三章钻井液1、学习要求掌握钻井液的基本组成、特点、作用原理及不同钻井液体系所适用的条件;掌握粘土胶体化学基本知识;重点掌握钻井液两个工艺性能对钻井工程的影响,了解胶体化学特点及其对钻井液性能的影响。

了解相关的化学添加剂类型及其作用原理;了解钻井液性能的测量、维护控制和调整的基本原理和方法,了解常用钻井液体系的类型、原理和使用条件。

2、重点:1)粘土晶体结构、扩散双电层、电动电势ζ、粘土的水化。

2)流变参数及其胶体化学性质;流变性能调节原理;影响静失水的因素分析。

3)水基钻井液(分散型、抑制型、聚合物钻井液)体系的组成及其适用的地层条件。

_钻井液技术手册(中文版)

_钻井液技术手册(中文版)

_钻井液技术手册(中文版)钻井液技术手册(中文版)本文档旨在介绍钻井液技术相关的知识和操作指南,为钻井工程师和相关人员提供参考。

本手册将详细介绍钻井液的组成、性质、分类、选型以及常见的技术问题和解决方案。

同时,本手册还包括涉及到的法律名词及其注释,以及相关附件列表。

--------------------以下为文档正文--------------------第一章:钻井液概述1.1 钻井液简介1.2 钻井液分类1.3 钻井液的作用第二章:钻井液组成及性质2.1 钻井液的组成2.2 钻井液基础性质2.3 钻井液附加性质第三章:钻井液选型原则3.1 钻井液性能要求3.2 钻井液选型指南3.3 钻井液处理与回收第四章:钻井液问题与解决方案4.1 钻井液稳定性问题4.2 钻井液污染问题4.3 钻井液泥浆损失问题4.4 钻井液气体问题第五章:其他钻井液技术5.1 钻井液预处理技术5.2 钻井液添加剂5.3 钻井液监测与控制技术第六章:常见钻井液配方6.1 基础钻井液配方6.2 高温高压钻井液配方6.3 气体钻井液配方6.4 高灰分钻井液配方第七章:附件列表附件1:国内钻井液技术标准附件2:钻井液处理设备参数表附件3:钻井液配方示例------------------ 此处为文档结尾 ------------------附件:1:附件1:国内钻井液技术标准2:附件2:钻井液处理设备参数表3:附件3:钻井液配方示例法律名词及注释:1:法律名词1:注释12:法律名词2:注释23:法律名词3:注释3。

钻井工程理论与技术第三章

钻井工程理论与技术第三章
调整方法:无机盐(改变粘土颗粒间静电力)、降粘剂或增粘剂。
2. 动切应力(屈服值) o
流变线直线段的延长线与 切应力轴交点的应力大小。
反映在层流状态下粘土颗粒之间 及高聚物分子之间的相互作用力(形 成空间网状结构 之力)的大小。
调整方法同静切力。
3. 塑性粘度 μpv 塑性粘度是塑性流体流变曲线直线段斜率的倒数,即:
•防止微粒运移的方法:
(1)控制流体在地层内流速低于临界流速;
(2)加入粘土微粒防运移剂,阳离子型聚合物和非离子型 聚合物,通过静电引力或者化学键合力,将微粒桥接到地层 表面,增强对粘土微粒的束缚力。
的六角环中,把带负电荷的粘土晶片紧紧联结在一起,阻止水 化膨胀。
(2)K+的水化较弱,抑制粘土水化膨胀。
K+离子的未水化直径(0.266nm)比Na+离子未水化直 径(0.19nm)大,而K+离子水化半径比Na+离子水化半径 小,因而K+离子水化能(322 J/mol)比Na+离子的水化能 (406 J/mol)低,水化膜薄。当它进入粘土的层间,既减少 粘土的水化,又增加粘土层间的吸引力。
第六节 油气层保护及完井液
一、储层损害的主要原因及防止措施
1.外来流体中的固体颗粒对储层的损害
在压差的作用下,外来流体中粒径极小的固体颗粒(粘土、 岩屑、加重材料等)在滤饼形成前会侵入储层,造成储层油气流 通道堵塞,储层渗透性降低。
防止措施:
(1)实施屏蔽暂堵技术 选择与储层孔喉直径相匹配的架桥粒子(如酸溶性超细碳
影响滤失量的因素: 滤失时间、压差、温度、固相含量及类型、滤饼渗透率。
(三)滤失量的控制
控制滤失量的最好方法——用降滤失剂降低滤饼的渗透性。

中国石油天然气集团公司钻井液技术规范

中国石油天然气集团公司钻井液技术规范

中国石油天然气集团公司钻井液技术规范第一章总则第一条钻井液技术是钻井技术的重要组成部分,直接关系到钻探工程的成败和效益。

为提高钻井液技术和管理水平,保障钻井工程的安全和质量,满足勘探开发需要,特制定本规范。

第二条本规范主要内容包括:钻井液设计,现场作业,油气储层保护,钻井液循环、固控和除气设备,泡沫钻井流体,井下复杂的预防和处理,钻井液废弃物处理与环境保护,钻井液原材料和处理剂的质量控制与管理,钻井液资料管理等。

第三条本规范适用于中国石油天然气集团公司所属相关单位的钻井液技术管理。

第二章钻井液设计第一节设计的主要依据和内容第四条钻井液设计是钻井工程设计的重要组成部分,主要依据包括但不限于以下几方面:1. 以钻井地质设计、钻井工程设计及其它相关资料为基础,依据有关技术规范、规定和标准进行钻井液设计。

2. 钻井液设计应在分析影响钻探作业安全、质量和效益等因素的基础上,制定相应的钻井液技术措施。

主要有:地层岩性、地层应力、地层岩石理化性能、地层流体、地层压力剖面(孔隙压力、坍塌压力与破裂压力)、地温梯度等信息;储层保护要求;本区块或相邻区块已完成井的井下复杂情况和钻井液应用情况;地质目的和钻井工程对钻井液作业的要求;适用的钻井液新技术、新工艺;国家和施工地区有关环保方面的规定和要求。

第五条钻井液设计内容主要包括:邻井复杂情况分析与本井复杂情况预测;分段钻井液类型及主要性能参数;分段钻井液基本配方、钻井液消耗量预测、配制与维护处理;储层保护对钻井液的要求;固控设备配置与使用要求;钻井液仪器、设备配置要求;分段钻井液材料计划及成本预测;井场应急材料和压井液储备要求;井下复杂情况的预防和处理;钻井液HSE管理要求。

第二节钻井液体系选择第六条钻井液体系选择应遵循以下原则:满足地质目的和钻井工程需要;具有较好的储层保护效果;具有较好的经济性;低毒低腐蚀性。

第七条不同地层钻井液类型选择1. 在表层钻进时,宜选用较高粘度和切力的钻井液。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(二)塑性流型的流变参数及调整
1. 静切力(静切应力)
s
使钻井液开始流动所需的最低切应力,它是钻井液静止时单位面积上所
形成的连续空间网架结构强度的量度。它反映了钻井液触变性的好坏。 调整方法:无机盐(改变粘土颗粒间静电力)、降粘剂或增粘剂。
2. 动切应力(屈服值)
交点的应力大小。
o
流变曲线直线段的延长线与切应力轴
反映在层流状态下粘土颗粒之间及高聚物
分子之间的相互作用力(形成空间网状结构 之力)的大小。
调整方法同静切力。
3. 塑性粘度 μpv
塑性粘度是塑性流体流变曲线直线段斜率的倒数, 即: 。 o pv dv / dx 它是钻井液流动时固相颗粒之间、固相颗粒与周围液相间以 及液相分子间的内摩擦作用的总反映。它反映了液体粘滞力的 大小。 调整方法:降低固相含量、加稀释剂降粘; 加高聚物增粘剂等提粘。
5. 聚合物絮凝剂
功用:清除更细小的颗粒
类型 : 全絮凝剂—聚丙烯酰胺(PAM) 选择性絮凝剂—只絮凝钻屑和劣质土, 不絮凝膨润 土,如水解 聚丙烯酰胺(PHP)。 作用机理:吸附→架桥→形成团块。 加量: 固相饱和吸附量的二分之一。
第五节
一、井塌的原因
(1)地质因素
井塌及防塌措施
异常高压的释放,钻遇破碎带、断层、微裂缝发育地层、煤层、高 构造应力地层、膏盐层等。 (2)工程因素 大排量钻井液冲刷井壁,起下钻引起的压力激,钻井液液柱压力低 于井壁坍塌压力,钻井液侵泡时间长等。 (3)泥页岩的水化膨胀
膨润土(油基 钻井液用)和地层进入的造浆粘土。
(3)惰性固相:惰性固相是钻屑和加重材料。 (4)各种钻井液添加剂: 增粘、稀释、浆失水、PH值、防塌等。
二、钻井液的分类
API和IADC分类: (1)不分散体系—— 膨润土+清水;
天然钻井液(自然造浆而成),浅层钻进。
(2)分散体系—— 水+膨润土+分散剂(铁络木质素黄酸盐等), 深井或复杂井。 (3)钙处理体系—— 水基钻井液+钙盐(石灰、石膏、氯化钙), 抑制粘土膨胀。
常用的高聚物:聚丙烯酰胺(PAM)、部分水解聚丙烯酰胺(PHP)、阳离 子聚丙烯酰胺、各种阳离子聚合物、两性离子聚合物FA367等。
(2)高聚物分子的护胶和堵孔作用
3.利用沥青类物质在井壁上起封堵作用
沥青类物质亲水性弱,亲油性强,可有效地涂敷在井壁上上形成一 层油膜。 (1)减轻钻具与井壁的摩擦和钻具对井壁的冲击; (2)防止滤液向地层渗透。
5、动塑比 0 / PV
动切力与塑性粘度之比,反映了钻井液结构强度与塑性粘度的比例关
系。动塑比大,流动过水断面较平缓,剪切稀释能力强,但流动阻力大, 泵压高。 理想值: = 0.36~0.48。
(三)假塑性流型和膨胀流型的流变参数
1. 流性指数n
表示流体在一定流速范围内的非牛顿性程度。 n<1,假塑性流体,随剪切速率增加而变稀(剪切稀释特性);
(3)使粘土颗粒的扩散双电层变薄, 利于有机处理剂分子 在粘土上的吸附。

K+等电解质的加入,使粘土颗粒的ξ电
位降低,扩散双电层变薄,有利于各种有 机 处理剂分子的吸附(非极性容易吸附非
极性),提高处理剂的使用效果。
2.加入高聚物 (1)高聚物在井壁上形成多点吸附,巩固井壁 高聚物三种吸附方式:单点吸附、环—轨—尾吸附、多点吸附;
(4)聚合物体系——水基钻井液+高聚物(聚丙烯酰胺PAM、PHP),
絮凝劣质土,抑制粘土分散。
(5)低固相体系——总固相含量6% ~10%的水基钻井液.其中,膨润土含量
小于3%,钻屑与膨润土的比值小于2∶1。
特点:提高钻速,减少对产层的伤害。
(6)饱和盐水体系——氯离子含量达189g/L的水基钻井液。
第三章 钻井液
第一节 第二节 第三节 第四节 第五节 第六节 钻井液的定义和功用 钻井液的组成和分类 钻井液的性能 钻井液的固相控制 井塌及防塌钻井液 油气层保护及完井液
第一节 钻井液的定义和功用
一、钻井液的定义
钻井时用来清洗井底并把岩屑携带到地面、维持钻井操作正常 进行的流体称为钻井液或洗井液。
2. 动滤失
在已形成的井眼内,随着钻井液的渗滤,在井壁上形成一层滤 饼,并不断增厚、密实。同时,形成的滤饼又受到钻井液的冲刷和
钻柱的碰撞、刮挤而遭到破坏。最终,滤饼形成速度等于破坏速度
而达到平衡,此时滤饼厚度不变,滤失速率也保持不变。 这种钻井液在井内循环流动时的滤失过程称为动滤失。
3.静滤失
钻井液在停止循环时的滤失过程称为静滤失。随着滤失过程的 进行,滤饼逐渐增厚,滤失阻力逐渐增大,滤失速率逐渐减小。
表观粘度:
塑性粘度:
μ AV =
1 φ600 2
(mP
( mPa.s)
流性指数: n = 3.32 lg φ600
0.511φ600 1022 n
φ300
(无 因 次 )
稠度系数: k =
( m Pa.S n)
三、钻井液的造壁性能及滤失量
(一)滤失和造壁过程
防止措施:
(1)实施屏蔽暂堵技术
选择与储层孔喉直径相匹配的架桥粒子(如酸溶性超细碳酸钙、油 溶树脂等,直径为储层平均孔径的1/2~2/3,加入量一般大于3%。), 再配用充填粒子(如磺化沥青、氧化沥青、石蜡、树脂等)封堵孔喉。
泥页岩中的粘土矿物容易吸水膨胀和分散,造成井壁岩石强度降 低,引起井壁不稳定。井壁不稳定主要是泥页岩的水化问题。
二、防塌措施
1.钻井液中加入K+、NH+4等无机阳离子
(1) K+的固定作用
K+进入晶层之间并嵌入到相邻两层硅氧四面体氧原子组成的六角环中, 把带负电荷的粘土晶片紧紧联结在一起,阻止水化膨胀。
4. 表观粘度(视粘度或有效粘度) Av
它是在某一流速梯度下剪切应力与相应流速梯度的比值,即:
AV

dv dv dv / 0) 0 / pv 结构 ( / dx dx dx
表观粘度 等于塑性粘度与结构粘度之和,它反映两者的总的粘滞作
用,是“总粘度”的意思。
常用的封堵类防塌剂:
磺化沥青、氧化沥青、植物渣油、磺化妥尔油沥青。
第六节
油气层保护及完井液
一、储层损害的主要原因及防止措施 1.外来流体中的固体颗粒对储层的损害
在压差的作用下,外来流体中粒径极小的固体颗粒(粘土、岩屑、加 重材料等)在滤饼形成前会侵入储层,造成储层油气流通道堵塞,储层 渗透性降低。
二、钻井液的功用
1.携岩 2.冷却和润滑钻头及钻柱 3.造壁,维持井壁稳定 4.控制地层压力 5. 悬浮钻屑和加重材料,防止下沉 6. 获得地层和油气资料
7. 传递水功率
第二节
一、钻井液的组成
(1)液相:
钻井液的组成和分类
液相是钻井液的连续相,水或油。
(2)活性固相: 包括人为加入的商业膨润土(般土)、有机
n>1,膨胀型流体,随剪切速率增加而变稠。
n值影响钻井液的携岩效果和剪切稀释特性。理想值:n=0.4~0.7。 2. 稠度系数k 为流体在 1s-1流速梯度下的粘度。k值越大,粘度越大。
(三)流变参数的测定
仪器:六速旋转粘度计
1.静切力
初切力(10s切力): 将钻井液在600r/min下搅拌10s,静置10s后测得3r/min
单位距离内流速的增量称为流速梯度。
剪切应力—液流中各层速度不同,层间必有相对运动,发生内摩擦,阻 碍液层作相对运动。单位面积上的内摩擦力称为剪切应力。 根据液体流动时剪应力与流速梯度的关系,将液体流动分为四种流型: 牛顿流型:
dv dx
dx
n
塑性流型: dv 0 PV
NH4(Na、C a)HPAN(水解聚丙烯睛胺、钠、钙盐)

降滤失剂作用机理:
1.护胶作用
一方面能吸附在粘土颗粒表面形成吸附层,以阻止粘土颗粒絮凝变粗; 另一方面能把在钻井液循环搅拌作用下所拆散的细颗粒吸附在分子链上, 不再粘结成大颗粒,而形成薄而韧的泥饼,称之为降滤失剂的护胶作用。
2.增加钻井液中粘土颗粒的水化膜厚度,降低滤失量 降滤失剂吸附于钻井液中的粘土颗粒上,使粘土颗粒周围的水化膜 增厚,形成的滤饼在压差作用下容易变形,滤饼的渗透率降低。
影响滤失量的因素:
滤失时间、压差、温度、固相含量及类型、滤饼渗透率。
(三)滤失量的测量和要求 1. 静滤失量(API滤失量)
用API滤失量仪在常温、0.7MPa压差下测量30min所得的滤液体积(mL)。 要求:上部地层和坚固地层,滤失量可放宽; 水敏性易坍塌地层,滤失量要低; 油气层,滤失量不能高于5mL。
2. 高温高压滤失量
在150℃温度、3.5MPa压差下测量30min所得的滤失量乘以2, 即得高温高压滤失量。 在钻油气层时,高温高压滤失量不大于15mL。 (四)滤失量的控制 控制滤失量的最好方法——用降滤失剂降低滤饼的渗透性。
• 常用降滤失剂:
Na-CMC(羧甲基纤维素钠盐)
SMP(磺化酚醛树脂)
钻井液中的液体(刚开始也有钻井液)在压差的作用下向地层内渗
滤的过程称为钻井液的滤失。 钻井液中的固相颗粒附着在井壁上形成滤饼的过程称为造壁过程。
(二)几种不同的滤失情况 1. 瞬时滤失
在钻头破碎岩石形成新的井眼而滤饼尚未形成的一段时间内,钻 井液迅速向地层渗滤,此时的滤失称为瞬时滤失。瞬时滤失量有利 于提高钻速,但严重损害油气层。
(2) K+的水化较弱,抑制粘土水化膨胀。
K+离子的未水化直径(0.266nm)比Na+离子未水化直径 (0.19nm)大,而K+离子水化半径比Na+离子水化半径小,因
相关文档
最新文档