内蒙古包头市2019-2020学年中考数学第一次押题试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

内蒙古包头市2019-2020学年中考数学第一次押题试卷
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在平行四边形ABCD 中,E 是边CD 上一点,将△ADE 沿AE 折叠至△AD′E 处,AD′与CE 交于点F ,若∠B=52°,∠DAE=20°,则∠FED′的度数为( )
A .40°
B .36°
C .50°
D .45°
2.已知△ABC 中,∠BAC=90°,用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形,其作法不正确的是( )
A .
B .
C .
D .
3.一次函数()()y m 1x m 2=-+-的图象上有点()11M x ,y 和点()22N x ,y ,且12x x >,下列叙述正确的是( )
A .若该函数图象交y 轴于正半轴,则12y y <
B .该函数图象必经过点()1,1--
C .无论m 为何值,该函数图象一定过第四象限
D .该函数图象向上平移一个单位后,会与x 轴正半轴有交点
4.如图所示的几何体的俯视图是( )
A .
B .
C .
D .
5.如果23510a a +-=,那么代数式()()()5323+232a a a a +--的值是( )
A .6
B .2
C .-2
D .-6
6.如果关于x 的方程x 2﹣k x+1=0有实数根,那么k 的取值范围是( ) A .k >0 B .k≥0 C .k >4 D .k≥4
7.关于▱ABCD 的叙述,不正确的是( )
A .若A
B ⊥B
C ,则▱ABC
D 是矩形
B .若A
C ⊥B
D ,则▱ABCD 是正方形
C .若AC =B
D ,则▱ABCD 是矩形
D .若AB =AD ,则▱ABCD 是菱形
8.近似数25.010⨯精确到( )
A .十分位
B .个位
C .十位
D .百位
9.小华和小红到同一家鲜花店购买百合花与玫瑰花,他们购买的数量如下表所示,小华一共花的钱比小红少8元,下列说法正确的是( )
百合花 玫瑰花 小华
6支 5支 小红 8支 3支
A .2支百合花比2支玫瑰花多8元
B .2支百合花比2支玫瑰花少8元
C .14支百合花比8支玫瑰花多8元
D .14支百合花比8支玫瑰花少8元
10.如图是由五个相同的小立方块搭成的几何体,则它的俯视图是( )
A .
B .
C .
D .
11.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )
A.①②④B.①②⑤C.②③④D.③④⑤
12.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B 的距离分别为4、1,则关于O的位置,下列叙述何者正确?()
A.在A的左边B.介于A、B之间
C.介于B、C之间D.在C的右边
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.直线y=1
2
x与双曲线y=
k
x
在第一象限的交点为(a,1),则k=_____.
14.在直角三角形ABC中,∠C=90°,已知sinA=,则cosB=_______.
15.如图,直线a∥b,∠l=60°,∠2=40°,则∠3=_____.
16.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是_____.
17.如图,在边长为1的正方形格点图中,B、D、E为格点,则∠BAC的正切值为_____.
18.在Rt△ABC中,∠A是直角,AB=2,AC=3,则BC的长为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:本次接受随机抽样调查的学生人数为,图①中m的值为;求本次调查获取的样本数据的众数、中位数和平均数;根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.
20.(6分)桌面上放有4张卡片,正面分别标有数字1,2,3,4,这些卡片除数字外完全相同.把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍放反面朝上放回洗匀,乙从中任意抽出一张,记下卡片上的数字,然后将这两数相加.
(1)请用列表或画树状图的方法求两数和为5的概率;
(2)若甲与乙按上述方式做游戏,当两数之和为5时,甲胜;反之则乙胜;若甲胜一次得12分,那么乙胜一次得多少分,才能使这个游戏对双方公平?
21.(6分)如图,曲线BC是反比例函数y=k
x
(4≤x≤6)的一部分,其中B(4,1﹣m),C(6,﹣m),
抛物线y=﹣x2+2bx的顶点记作A.
(1)求k的值.
(2)判断点A是否可与点B重合;
(3)若抛物线与BC有交点,求b的取值范围.
22.(8分)解方程:
25
2112
x
x x
+
--
=1.
23.(8分)一辆高铁与一辆动车组列车在长为1320千米的京沪高速铁路上运行,已知高铁列车比动车组列车平均速度每小时快99千米,且高铁列车比动车组列车全程运行时间少3小时,求这辆高铁列车全程运行的时间和平均速度.
24.(10分)已知,在平面直角坐标系xOy中,抛物线L:y=x2-4x+3与x轴交于A,B两点(点A在点B的左侧),顶点为C.
(1)求点C和点A的坐标.
(2)定义“L双抛图形”:直线x=t将抛物线L分成两部分,首先去掉其不含顶点的部分,然后作出抛物线剩余部分关于直线x=t的对称图形,得到的整个图形称为抛物线L关于直线x=t的“L双抛图形”(特别
地,当直线x=t恰好是抛物线的对称轴时,得到的“L双抛图形”不变),
①当t=0时,抛物线L关于直找x=0的“L双抛图形”如图所示,直线y=3与“L双抛图形”有______个交点;
②若抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,结合图象,直接写出t的取值范围:______;
③当直线x=t经过点A时,“L双抛图形”如图所示,现将线段AC所在直线沿水平(x轴)方向左右平移,交“L双抛图形”于点P,交x轴于点Q,满足PQ=AC时,求点P的坐标.
25.(10分)某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.
根据以上信息,解答下列问题:
(1)这次调查一共抽取了名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比
是;
(2)请将条形统计图补充完整;
(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有名.
26.(12分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).
(1)求抛物线的解析式;
(2)猜想△EDB的形状并加以证明;
(3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.
27.(12分)2018年春节,西安市政府实施“点亮工程”,开展“西安年·最中国”活动,元宵节晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。

在美食一条街上,小明买了一碗元宵,共5个,其中黑芝麻馅两个,五仁馅两个,桂花馅一个,当元宵端上来的时候,看着五个大小、色泽一模一样的元宵,小明的爸爸问了小明两个问题:
(1)小明吃到第一个元宵是五仁馅的概率是多少?请你帮小明直接写出答案。

(2)小明吃的前两个元宵是同一种馅的元宵概率是多少?请你利用你列表或树状图帮小明求出概率。

参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.B
【解析】
【分析】
由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,与三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.
【详解】
∵四边形ABCD是平行四边形,
∴∠D=∠B=52°,
由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,
∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,
∴∠FED′=108°﹣72°=36°.
故选B.
【点睛】
本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四
边形的性质和折叠的性质,求出∠AEF 和∠AED′是解决问题的关键.
2.D
【解析】
分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.
详解:A 、在角∠BAC 内作作∠CAD=∠B,交BC 于点D,根据余角的定义及等量代换得出∠B +∠BAD=90°,进而得出AD ⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A 不符合题意;
B 、以点A 为圆心,略小于AB 的长为半径,画弧,交线段B
C 两点,再分别以这两点为圆心,大于12两交点间的距离为半径画弧,两弧相交于一点,过这一点与A 点作直线,该直线是BC 的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B 不符合题意;
C 、以AB 为直径作圆,该圆交BC 于点
D ,根据圆周角定理,过AD 两点作直线该直线垂直于BC ,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C 不符合题意;
D 、以点B 为圆心BA 的长为半径画弧,交BC 于点
E ,再以E 点为圆心,AB 的长为半径画弧,在BC 的另一侧交前弧于一点,过这一点及A 点作直线,该直线不一定是BE 的垂线;从而就不能保证两个小三角形相似;D 符合题意;
故选D.
点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键. 3.B
【解析】
【分析】
利用一次函数的性质逐一进行判断后即可得到正确的结论.
【详解】
解:一次函数()()y m 1x m 2=-+-的图象与y 轴的交点在y 轴的正半轴上,则m 10->,m 20->,若12x x >,则12y y >,故A 错误;
把x 1=-代入()()y m 1x m 2=-+-得,y 1=-,则该函数图象必经过点()1,1--,故B 正确; 当m 2>时,m 10->,m 20->,函数图象过一二三象限,不过第四象限,故C 错误;
函数图象向上平移一个单位后,函数变为()()y m 1x m 1=-+-,所以当y 0=时,x 1=-,故函数图象向上平移一个单位后,会与x 轴负半轴有交点,故D 错误,
【点睛】
本题考查了一次函数图象上点的坐标特征、一次函数图象与几何变换,解题的关键是熟练掌握一次函数的性质,灵活应用这些知识解决问题,属于中考常考题型.
4.D
【解析】
试题分析:根据俯视图的作法即可得出结论.
从上往下看该几何体的俯视图是D .故选D .
考点:简单几何体的三视图.
5.A
【解析】
【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.
【详解】∵3a 2+5a-1=0,
∴3a 2+5a=1,
∴5a(3a+2)-(3a+2)(3a-2)=15a 2+10a-9a 2+4=6a 2+10a+4=2(3a 2+5a )+4=6,
故选A.
【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.
6.D
【解析】
【分析】
由被开方数非负结合根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.
【详解】
∵关于x 的方程x 2
有实数根,
∴204110k ≥⎧⎪⎨∆-⨯⨯≥⎪⎩
, 解得:k≥1.
故选D .
【点睛】
本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.
7.B
【解析】
由矩形和菱形的判定方法得出A 、C 、D 正确,B 不正确;即可得出结论.
【详解】
解:A 、若AB ⊥BC ,则ABCD Y 是矩形,正确;
B 、若A
C B
D ,则ABCD Y 是正方形,不正确;
C 、若AC B
D =,则ABCD Y 是矩形,正确;
D 、若AB AD =,则ABCD Y 是菱形,正确;
故选B .
【点睛】
本题考查了正方形的判定、矩形的判定、菱形的判定;熟练掌握正方形的判定、矩形的判定、菱形的判定是解题的关键.
8.C
【解析】
【分析】
【详解】
根据近似数的精确度:近似数5.0×
102精确到十位. 故选C .
考点:近似数和有效数字
9.A
【解析】
【分析】
设每支百合花x 元,每支玫瑰花y 元,根据总价=单价×购买数量结合小华一共花的钱比小红少8元,即可得出关于x 、y 的二元一次方程,整理后即可得出结论.
【详解】
设每支百合花x 元,每支玫瑰花y 元,根据题意得:
8x+3y ﹣(6x+5y )=8,整理得:2x ﹣2y =8,
∴2支百合花比2支玫瑰花多8元.
故选:A .
【点睛】
考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.
10.A
【解析】
试题分析:从上面看易得上面一层有3个正方形,下面中间有一个正方形.
【考点】简单组合体的三视图.
11.A
【解析】
【分析】
由抛物线的开口方向判断a 与2的关系,由抛物线与y 轴的交点判断c 与2的关系,然后根据对称轴判定b 与2的关系以及2a+b=2;当x=﹣1时,y=a ﹣b+c ;然后由图象确定当x 取何值时,y >2.
【详解】
①∵对称轴在y 轴右侧,
∴a 、b 异号,
∴ab <2,故正确; ②∵对称轴1,2b x a
=-= ∴2a+b=2;故正确;
③∵2a+b=2,
∴b=﹣2a ,
∵当x=﹣1时,y=a ﹣b+c <2,
∴a ﹣(﹣2a )+c=3a+c <2,故错误;
④根据图示知,当m=1时,有最大值;
当m≠1时,有am 2+bm+c≤a+b+c ,
所以a+b≥m (am+b )(m 为实数).
故正确.
⑤如图,当﹣1<x <3时,y 不只是大于2.
故错误.
故选A .
【点睛】
本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a 决定
抛物线的开口方向,当a >2时,抛物线向上开口;当a <2时,抛物线向下开口;②一次项
系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >2),对称轴在y 轴
左; 当a 与b 异号时(即ab <2),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛
物线与y 轴交点,抛物线与y 轴交于(2,c ).
12.C
【解析】
分析:由A 、B 、C 三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原
点O与A、B的距离分别为1、1,即可得出a=±1、b=±1,结合a、b、c间的关系即可求出a、b、c的值,由此即可得出结论.
解析:∵|a﹣b|=3,|b﹣c|=5,
∴b=a+3,c=b+5,
∵原点O与A、B的距离分别为1、1,
∴a=±1,b=±1,
∵b=a+3,
∴a=﹣1,b=﹣1,
∵c=b+5,
∴c=1.
∴点O介于B、C点之间.
故选C.
点睛:本题考查了数值以及绝对值,解题的关键是确定a、b、c的值.本题属于基础题,难度不大,解决该题型题目时,根据数轴上点的位置关系分别找出各点代表的数是关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.1
【解析】
分析:首先根据正比例函数得出a的值,然后将交点坐标代入反比例函数解析式得出k的值.
详解:将(a,1)代入正比例函数可得:a=1,∴交点坐标为(1,1),
∴k=1×1=1.
点睛:本题主要考查的是利用待定系数法求函数解析式,属于基础题型.根据正比例函数得出交点坐标是解题的关键.
14..
【解析】
试题分析:解答此题要利用互余角的三角函数间的关系:sin(90°-α)=cosα,cos(90°-α)=sinα.
试题解析:∵在△ABC中,∠C=90°,
∴∠A+∠B=90°,
∴cosB=sinA=.
考点:互余两角三角函数的关系.
15.80°
【解析】
根据平行线的性质求出∠4,根据三角形内角和定理计算即可.
【详解】
解:
∵a∥b,
∴∠4=∠l=60°,
∴∠3=180°-∠4-∠2=80°,
故答案为:80°.
【点睛】
本题考查的是平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.
16.2
3 3
π
-
【解析】
【分析】
连接BD,易证△DAB是等边三角形,即可求得△ABD的高为3,再证明△ABG≌△DBH,即可得四边形GBHD的面积等于△ABD的面积,由图中阴影部分的面积为S扇形EBF﹣S△ABD即可求解.
【详解】
如图,连接BD.
∵四边形ABCD是菱形,∠A=60°,
∴∠ADC=120°,
∴∠1=∠2=60°,
∴△DAB是等边三角形,
∵AB=2,
∴△ABD3,
∵扇形BEF的半径为2,圆心角为60°,
∴∠4+∠5=60°,∠3+∠5=60°,
设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,
在△ABG 和△DBH 中,234A AB BD ∠=∠⎧⎪=⎨⎪∠=∠⎩

∴△ABG ≌△DBH (ASA ),
∴四边形GBHD 的面积等于△ABD 的面积,
∴图中阴影部分的面积是:S 扇形EBF ﹣S △ABD =2602360
π⨯﹣12×
=23π-
故答案是:
23π- 【点睛】
本题考查了扇形的面积计算以及全等三角形的判定与性质等知识,根据已知得出四边形GBHD 的面积等于△ABD 的面积是解题关键.
17.34
【解析】
【分析】
根据圆周角定理可得∠BAC=∠BDC ,然后求出tan ∠BDC 的值即可.
【详解】
由图可得,∠BAC=∠BDC ,
∵⊙O 在边长为1的网格格点上,
∴BE=3,DB=4,
则tan ∠BDC=
BE DB =34
∴tan ∠BAC=34
故答案为34 【点睛】
本题考查的知识点是圆周角定理及其推论及解直角三角形,解题的关键是熟练的掌握圆周角定理及其推论及解直角三角形.
18
【解析】
【分析】
根据勾股定理解答即可.
∵在Rt△ABC中,∠A是直角,AB=2,AC=3,
∴BC
【点睛】
此题考查勾股定理,关键是根据勾股定理解答.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(Ⅰ)50、31;(Ⅱ)4;3;3.1;(Ⅲ)410人.
【解析】
【分析】
(Ⅰ)利用家庭中拥有1台移动设备的人数除以其所占百分比即可得调查的学生人数,将拥有4台移动设备的人数除以总人数即可求得m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)将样本中拥有3台移动设备的学生人数所占比例乘以总人数1500即可求解.
【详解】
解:(Ⅰ)本次接受随机抽样调查的学生人数为:
4
8%
=50(人),
∵16
50
×100=31%,
∴图①中m的值为31.
故答案为50、31;
(Ⅱ)∵这组样本数据中,4出现了16次,出现次数最多,∴这组数据的众数为4;
∵将这组数据从小到大排列,其中处于中间的两个数均为3,有33
2
+
=3,
∴这组数据的中位数是3;
由条形统计图可得
1421031441656
50
x
⨯+⨯+⨯+⨯+⨯
==3.1,
∴这组数据的平均数是3.1.
(Ⅲ)1500×18%=410(人).
答:估计该校学生家庭中;拥有3台移动设备的学生人数约为410人.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
20.(1)详见解析;(2)4分.
【分析】
(1)根据题意用列表法求出答案;
(2)算出甲乙获胜的概率,从而求出乙胜一次的得分. 【详解】
(1)列表如下:
由列表可得:P(数字之和为5)=1
4

(2)因为P(甲胜)=1
4
,P(乙胜)=
3
4
,∴甲胜一次得12分,要使这个游戏对双方公平,乙胜一次
得分应为:12÷3=4分.
【点睛】
本题考查概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可.
21.(1)12;(2)点A不与点B重合;(3)1919 86
b
≤≤
【解析】
【分析】
(1)把B、C两点代入解析式,得到k=4(1﹣m)=6×(﹣m),求得m=﹣2,从而求得k的值;(2)由抛物线解析式得到顶点A(b,b2),如果点A与点B重合,则有b=4,且b2=3,显然不成立;
(3)当抛物线经过点B(4,3)时,解得,b=19
8
,抛物线右半支经过点B;当抛物线经过点C,解得,
b=19
6
,抛物线右半支经过点C;从而求得b的取值范围为
19
8
≤b≤
19
6

【详解】
解:(1)∵B(4,1﹣m),C(6,﹣m)在反比例函数
k
y
x
=的图象上,
∴k=4(1﹣m)=6×(﹣m),
∴解得m=﹣2,
∴k=4×[1﹣(﹣2)]=12;
(2)∵m=﹣2,∴B(4,3),
∵抛物线y=﹣x2+2bx=﹣(x﹣b)2+b2,
若点A与点B重合,则有b=4,且b2=3,显然不成立,∴点A不与点B重合;
(3)当抛物线经过点B(4,3)时,有3=﹣42+2b×4,
解得,b=19
8

显然抛物线右半支经过点B;
当抛物线经过点C(6,2)时,有2=﹣62+2b×6,
解得,b=19
6

这时仍然是抛物线右半支经过点C,
∴b的取值范围为19
8
≤b≤
19
6

【点睛】
本题考查了二次函数的性质,二次函数图象上点的坐标特征,解题的关键是学会用讨论的思想思考问题.
22.
1
2 x=-
【解析】
【分析】
先把分式方程化为整式方程,解整式方程求得x的值,检验即可得分式方程的解. 【详解】
原方程变形为
25
3 2121
x
x x
-=
--

方程两边同乘以(2x﹣1),得2x﹣5=1(2x﹣1),
解得
1
2
x=-.
检验:把
1
2
x=-代入(2x﹣1),(2x﹣1)≠0,

1
2
x=-是原方程的解,
∴原方程的
1
2
x=-.
【点睛】
本题考查了分式方程的解法,把分式方程化为整式方程是解决问题的关键,解分式方程时,要注意验根. 23.这辆高铁列车全程运行的时间为1小时,平均速度为264千米/小时.
【解析】
【分析】
设动车组列车的平均速度为x千米/小时,则高铁列车的平均速度为(x+99)千米/小时,根据时间=路程÷
得出结论.
【详解】
设动车组列车的平均速度为x千米/小时,则高铁列车的平均速度为(x+99)千米/小时,
根据题意得:﹣=3,
解得:x1=161,x2=﹣264(不合题意,舍去),
经检验,x=161是原方程的解,
∴x+99=264,1320÷(x+99)=1.
答:这辆高铁列车全程运行的时间为1小时,平均速度为264千米/小时.
【点睛】
本题考查了列分式方程解实际问题的运用及分式方程的解法的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤.
24.(1)C(2,-1),A(1,0);(2)①3,②0<t<12+2,1)或(2+2,1)或(-1,0)【解析】
【分析】
(1)令y=0得:x2-1x+3=0,然后求得方程的解,从而可得到A、B的坐标,然后再求得抛物线的对称轴为x=2,最后将x=2代入可求得点C的纵坐标;
(2)①抛物线与y轴交点坐标为(0,3),然后做出直线y=3,然后找出交点个数即可;②将y=3代入抛物线的解析式求得对应的x的值,从而可得到直线y=3与“L双抛图形”恰好有3个交点时t的取值,然后结合函数图象可得到“L双抛图形”与直线y=3恰好有两个交点时t的取值范围;③首先证明四边形ACQP 为平行四边形,由可得到点P的纵坐标为1,然后由函数解析式可求得点P的横坐标.
【详解】
(1)令y=0得:x2-1x+3=0,解得:x=1或x=3,
∴A(1,0),B(3,0),
∴抛物线的对称轴为x=2,
将x=2代入抛物线的解析式得:y=-1,
∴C(2,-1);
(2)①将x=0代入抛物线的解析式得:y=3,
∴抛物线与y轴交点坐标为(0,3),
如图所示:作直线y=3,
由图象可知:直线y=3与“L双抛图形”有3个交点,
故答案为3;
②将y=3代入得:x2-1x+3=3,解得:x=0或x=1,
由函数图象可知:当0<t<1时,抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,故答案为0<t<1.
③如图2所示:
∵PQ∥AC且PQ=AC,
∴四边形ACQP为平行四边形,
又∵点C的纵坐标为-1,
∴点P的纵坐标为1,
将y=1代入抛物线的解析式得:x2-1x+3=1,解得:2+2或2+2.
∴点P2+2,1)或(2+2,1),
当点P(-1,0)时,也满足条件.
2,1)或(2+2,1)或(-1,0)
【点睛】
本题主要考查的是二次函数的综合应用,解答本题需要同学们理解“L双抛图形”的定义,数形结合以及方程思想的应用是解题的关键.
25.(1)120,30%;(2)作图见解析;(3)1.
【解析】
试题分析:(1)用安全意识分“一般”的人数除以安全意识分“一般”的人数所占的百分比即可得这次调查一共抽取的学生人数;用安全意识分“很强”的人数除以这次调查一共抽取的学生人数即可得安全意识“很强”
占的百分比即可得安全意识分“较强”的人数,在条形统计图上画出即可;(3)用总人数乘以安全意识为“淡薄”、“一般”的学生一共所占的百分比即可得全校需要强化安全教育的学生的人数.
试题解析:(1) 12÷15%=120人;36÷120=30%;
(2)120×45%=54人,补全统计图如下:
(3)1800×=1人.
考点:条形统计图;扇形统计图;用样本估计总体.
26.(1)y=﹣3
4
x2+3x;(2)△EDB为等腰直角三角形;证明见解析;(3)
6+23
2
6+215

﹣2).
【解析】
【分析】
(1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;
(2)由B、D、E的坐标可分别求得DE、BD和BE的长,再利用勾股定理的逆定理可进行判断;(3)由B、E的坐标可先求得直线BE的解析式,则可求得F点的坐标,当AF为边时,则有FM∥AN 且FM=AN,则可求得M点的纵坐标,代入抛物线解析式可求得M点坐标;当AF为对角线时,由A、F 的坐标可求得平行四边形的对称中心,可设出M点坐标,则可表示出N点坐标,再由N点在x轴上可得到关于M点坐标的方程,可求得M点坐标.
【详解】
解:(1)在矩形OABC中,OA=4,OC=3,
∴A(4,0),C(0,3),
∵抛物线经过O、A两点,
∴抛物线顶点坐标为(2,3),
∴可设抛物线解析式为y=a(x﹣2)2+3,
把A点坐标代入可得0=a(4﹣2)2+3,解得a=﹣3
4

∴抛物线解析式为y=﹣3
4
(x﹣2)2+3,即y=﹣
3
4
x2+3x;
证明:
由(1)可知B(4,3),且D(3,0),E(0,1),
∴DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,∴DE2+BD2=BE2,且DE=BD,
∴△EDB为等腰直角三角形;
(3)存在.理由如下:
设直线BE解析式为y=kx+b,
把B、E坐标代入可得
34
1
k b
b
=+


=

,解得
1
k
2
b1

=


⎪=


∴直线BE解析式为y=1
2
x+1,
当x=2时,y=2,
∴F(2,2),
①当AF为平行四边形的一边时,则M到x轴的距离与F到x轴的距离相等,即M到x轴的距离为2,∴点M的纵坐标为2或﹣2,
在y=﹣3
4
x2+3x中,令y=2可得2=﹣
3
4
x2+3x,解得
x=
6
3
±

∵点M在抛物线对称轴右侧,∴x>2,

∴M
2);
在y=﹣3
4
x2+3x中,令y=﹣2可得﹣2=﹣
3
4
x2+3x,解得
x=
6
3
±

∵点M在抛物线对称轴右侧,∴x>2,

∴M
2);
②当AF为平行四边形的对角线时,
∴线段AF的中点为(3,1),即平行四边形的对称中心为(3,1),
设M(t,﹣3
4
t2+3t),N(x,0),
则﹣3
4
t2+3t=2,解得
∵点M在抛物线对称轴右侧,
∴x>2,
∵t>2,
∴t=
3

∴M2);
综上可知存在满足条件的点M2,﹣2).
【点睛】
本题为二次函数的综合应用,涉及矩形的性质、待定系数法、勾股定理及其逆定理、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中求得抛物线的顶点坐标是解题的关键,注意抛物线顶点式的应用,在(2)中求得△EDB各边的长度是解题的关键,在(3)中确定出M点的纵坐标是解题的关键,注意分类讨论.本题考查知识点较多,综合性较强,难度较大.
27.(1)2
5
; (2)
1
5
.
【解析】
【分析】
(1)根据概率=所求情况数与总情况数之比代入解得即可.
(2)将小明吃到的前两个元宵的所有情况列表出来即可求解.
【详解】
(1)5个元宵中,五仁馅的有2个,故小明吃到的第一个元宵是五仁馅的概率是2
5

(2)小明吃到的前两个元宵的所有情况列表如下(记黑芝麻馅的两个分别为1a、2a,五仁馅的两个分别为1b、2b,桂花馅的一个为c):
由图可知,共有20种等可能的情况,其中小明吃到的前两个元宵是同一种馅料的情况有4种,故小明吃
到的前两个元宵是同一种馅料的概率是41
= 205
.
【点睛】
本题考查的是用列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求:情况数与总情况数之比.。

相关文档
最新文档