河池市中考数学5月模拟考试试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河池市中考数学5月模拟考试试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共8题;共16分)
1. (2分) (2020九下·扬州期中) -3的绝对值是()
A .
B . -3
C .
D . 3
2. (2分)(2018·开封模拟) 2018年春节期间共有7.68亿人选择使用微信红包传递新年祝福,收发红包总人数同比去年增加约10%,7.68亿用科学记数法可以表示为()
A . 7.68×109
B . 7.68×108
C . 0.768×109
D . 0.768×1010
3. (2分)如图所示几何体的主视图是()
A .
B .
C .
D .
4. (2分)(2019·吉林模拟) 不等式3x﹣1>5的解集在数轴上表示正确是()
A .
B .
C .
D .
5. (2分) (2019八上·北碚期末) 如图,▱ABCD的对角线交于点,且AC:
:3,那么AC的长为()
A .
B .
C . 3
D . 4
6. (2分)关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()
A . 0
B . ﹣1
C . ﹣2
D . ﹣3
7. (2分)(2019·吉林模拟) 如图,四边形ABCD内接于圆O,AD∥BC,∠DAB=48°,则∠AOC的度数是()
A . 48°
B . 96°
C . 114°
D . 132°
8. (2分)(2019·吉林模拟) 如图,已知点A是反比例函数y=(x>0)的图象上的一个动点,连接OA,OB⊥OA,且OB=2OA,那么经过点B的反比例函数图象的表达式为()
A . y=﹣
B . y=
C . y=﹣
D . y=
二、填空题 (共6题;共8分)
9. (1分)如图,已知是腰长为1的等腰三角形,以的斜边为直角边,画第二个等腰三角形,再以的斜边为直角边,画第三个等腰三角形,…,以此类推,则第2019个等腰三角形的斜边长是________。
10. (1分) (2019七下·贵池期中) 因式分解: ________.
11. (2分)(2019·东湖模拟) 如图,在菱形ABCD中,∠BAD=120°,CE⊥AD,且CE=BC,连接BE交对角线AC于点F,则∠EFC=________°
12. (1分)(2019·吉林模拟) 如图,在△ABC中,AD是中线,G是重心,过点G作EF∥BC,分别交AB、AC 于点E、F,若AC=18,则AF=________.
13. (2分)(2019·汕头模拟) 汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,中间的小正方形ABCD的边长为1,分别以A,C为圆心,1为半径作圆弧,则图中阴影部分的面积为________.
14. (1分)(2019·吉林模拟) 将抛物线y=2(x﹣1)2+3绕它的顶点旋转180°后得到的抛物线的函数表达式为________.
三、解答题 (共10题;共47分)
15. (5分) (2019八下·包河期中) 计算:
16. (2分)(2019·宝鸡模拟) 小方与小辉在玩军棋游戏,他们定义了一种新的规则,用军棋中的“工兵”、“连长”、“地雷”比较大小,共有6个棋子,分别为1个“工兵”,2个“连长”,3个“地雷”游戏规则如下:①游戏时,将棋反面朝上,两人随机各摸一个棋子进行比赛,先摸者摸出的棋不放回;②“工兵”胜“地雷”,“地雷”胜“连长”,“连长”胜“工兵”;③相同棋子不分胜负.
(1)若小方先摸,则小方摸到“排长”的事件是________;若小方先摸到了“连长”,小辉在剩余的5个棋子中随机摸一个,则这一轮中小方胜小辉的概率为________.
(2)如果先拿走一个“连长”,在剩余的5个棋子中小方先摸一个棋子,然后小辉在剩余的4个棋子中随机摸一个,求这一轮中小方获胜的概率________.
17. (2分)(2019·梧州模拟) 随着无人机的应用范围日益广泛,无人机已走进寻常百姓家,如图,小明在我市体训基地试飞无人机.为测量无人机飞行的高度AB,小明在C点处测得∠ACB=45°,向前走5米,到达D点处测得∠ADB=40°.求无人机飞行的高度AB.(参考数据:≈1.4,sin40°≈0.6,cos40°≈0.6,tan40°≈0.8.)
18. (5分) (2019九上·海陵期末) 某商店购进一批旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个.商店为了适当增加销量,第二周决定降价销售.根据市场调研,单价每降低1元,一周可比原来多售出50个,这样两周共获利1400元,第二周每个纪念品的销售价格为多少元?
19. (10分)(2019·吉林模拟) 如图,△ABC中,AB=AC,∠A=36°.
(1)用尺规作图作∠ABC的角平分线,交AC于点D;(保留作图痕迹,不写作法).
(2)求证:△BCD是等腰三角形.
20. (2分)(2019·丹东模拟) 《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.
请你根据以上信息解答下列问题:
(1)在扇形统计图中,“玩游戏”对应的百分比为________,圆心角度数是________度;
(2)补全条形统计图;
(3)该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数.
21. (2分)(2019·柯桥模拟) 小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示.
(1)求小张骑自行车的速度;
(2)求小张停留后再出发时y与x之间的函数表达式;
(3)求小张与小李相遇时x的值.
22. (2分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.
(1)填空:∠AHC________∠ACG;(填“>”或“<”或“=”)
(2)线段AC,AG,AH什么关系?请说明理由;
(3)设AE=m,
①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.
②请直接写出使△CGH是等腰三角形的m值.
23. (15分)(2019·吉林模拟) 等腰Rt△ACB,∠ACB=90°,AC=BC,点A、C分别在x轴、y轴的正半轴上.
(1)如图1,求证:∠BCO=∠CAO
(2)如图2,若OA=5,OC=2,求B点的坐标
(3)如图3,点C(0,3),Q、A两点均在x轴上,且S△CQA=18.分别以AC、CQ为腰在第一、第二象限作等腰Rt△CAN、等腰Rt△QCM,连接MN交y轴于P点,OP的长度是否发生改变?若不变,求出OP的值;若变化,求OP的取值范围.
24. (2分) (2019九上·洛阳期中) 如图,已知直线与抛物线相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上。
(1)求抛物线的解析式;
(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△PO B与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标。
参考答案一、单选题 (共8题;共16分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
二、填空题 (共6题;共8分)
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
三、解答题 (共10题;共47分)
15-1、
16-1、
16-2、
17-1、18-1、19-1、
19-2、20-1、
20-2、20-3、21-1、
21-2、
21-3、22-1、
22-2、
23-1、23-2、
24-1、24-2、
24-3、。