西安交通大学第二附属中学人教版七年级下学期期末数学试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西安交通大学第二附属中学人教版七年级下学期期末数学试题
一、选择题
1.计算(﹣2a 2)•3a 的结果是( )
A .﹣6a 2
B .﹣6a 3
C .12a 3
D .6a 3
2.冠状病毒是引起病毒性肺炎的病原体的一种,可以在人群中扩散传播,某冠状病毒的直径大约是0.000000081米,用科学计数法可表示为( )
A .-98.110⨯
B .-88.110⨯
C .-98110⨯
D .-78.110⨯ 3.若(x+2)(2x-n)=2x 2+mx-2,则( ) A .m=3,n=1;
B .m=5,n=1;
C .m=3,n=-1;
D .m=5,n=-1; 4.一直尺与一缺了一角的等腰直角三角板如图摆放,若∠1=115°,则∠2的度数为
( )
A .65°
B .70°
C .75°
D .80° 5.下列运算正确的是( ) A .()3253a b a b = B .a 6÷a 2=a 3
C .5y 3•3y 2=15y 5
D .a +a 2=a 3 6.分别表示出下图阴影部分的面积,可以验证公式( )
A .(a +b )2=a 2+2ab +b 2
B .(a -b )2=a 2-2ab +b 2
C .a 2-b 2=(a +b )(a -b )
D .(a +2b )(a -b )=a 2+ab -2b 2
7.x 2•x 3=( ) A .x 5
B .x 6
C .x 8
D .x 9 8.如图,已知直线AB ∥CD ,115C ∠=︒,25A ∠=︒,则
E ∠=( )
A .25︒
B .65︒
C .90︒
D .115︒
9.一元一次不等式312x -->的解集在数轴上表示为( )
A .
B .
C .
D .
10.下面图案中可以看作由图案自身的一部分经过平移后而得到的是( )
A .
B .
C .
D .
二、填空题
11.用简便方法计算:10.12﹣2×10.1×0.1+0.01=_____.
12.a m =2,b m =3,则(ab )m =______.
13.已知:实数m,n 满足:m+n=3,mn=2.则(1+m)(1+n)的值等于____________.
14.若二次三项式x 2+kx+81是一个完全平方式,则k 的值是 ________.
15.若x a y b =⎧⎨=⎩
是二元一次方程2x ﹣3y ﹣5=0的一组解,则4a ﹣6b =_____. 16.已知2x +3y -5=0,则9x •27y 的值为______.
17.把一根 9m 长的钢管截成 1m 长和 2m 长两种规格均有的短钢管,且没有余料,设某种截法中 1m 长的钢管有 a 根,则 a 的值可能有_____种.
18.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=54º时,∠1=______.
19.已知代数式2x-3y 的值为5,则-4x+6y=______.
20.已知满足不等式()()325416x x -+<-+的最小整数解是方程23x ax -=的解,则a 的值为________.
三、解答题
21.(1)如图,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x 、y 的等式表示) ;
(2)若2(32)5x y -=,2(32)9x y +=,求xy 的值;
(3)若25,2x y xy +==,求2x y -的值.
22.先化简,再求值:(2a ﹣b )2﹣(a +1﹣b )(a +1+b )+(a +1)2,其中a =12,b =﹣2. 23.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)
(1)观察图2请你写出(a+b )2、(a ﹣b )2、ab 之间的等量关系是 ;
(2)根据(1)中的结论,若x+y =5,x•y =94
,则x ﹣y = ; (3)拓展应用:若(2019﹣m )2+(m ﹣2020)2=15,求(2019﹣m )(m ﹣2020)的值.
24.已知关于x,y 的方程组260250x y x y mx +-=⎧⎨-++=⎩
(1)请直接写出方程260x y +-=的所有正整数解
(2)若方程组的解满足x+y=0,求m 的值
(3)无论实数m 取何值,方程x -2y+mx+5=0总有一个固定的解,请直接写出这个解?
25.如图,已知:点A C 、、B 不在同一条直线,AD
BE . (1)求证:180B C A ∠+∠-∠=︒.
(2)如图②,AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线,试探究C ∠与AQB ∠的数量关系;
(3)如图③,在(2)的前提下,且有AC QB ,直线AQ BC 、交于点P ,QP PB ⊥,请直接写出::DAC ACB CBE ∠∠∠=______________.
26.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.
(1)画出△ABC 向右平移4个单位后得到的△A 1B 1C 1;
(2)图中AC 与A 1C 1的关系是:_____.
(3)画出△ABC 的AB 边上的高CD ;垂足是D ;
(4)图中△ABC 的面积是_____.
27.计算:
(1)022019()32020
-- (2)4655x x x x ⋅+⋅
28.已知下列等式:
①32-12=8,
②52-32=16,
③72-52=24,
…
(1)请仔细观察,写出第5个式子;
(2)根据以上式子的规律,写出第n 个式子,并用所学知识说明第n 个等式成立.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【分析】
用单项式乘单项式的法则进行计算.
【详解】
解:(-2a 2)·
3a=(-2×3)×(a 2·a)=-6a 3 故选:B .
【点睛】
本题考查单项式乘单项式,掌握运算法则正确计算是解题关键.
2.B
解析:B
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
0.000000081=-88.110 ;
故选B .
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.
3.A
解析:A
【解析】
先根据多项式乘多项式的法则展开,再根据对应项的系数相等求解即可.∵(x+2)(2x-n )=2x 2
+4x-nx-2n ,
又∵(x+2)(2x-n)=2x 2+mx-2, ∴2x 2+(4-n)x-2n=2x 2
+mx-2,
∴m=3,n=1.
“点睛”本题考查多项式乘以多项式的法则,利用多项式的乘法法则展开多项式,根据对应项系数相等列式是求解的关键,明白乘法运算和分解因式是互逆运算. 4.B
解析:B
【分析】
先将一缺了一角的等腰直角三角板补全,再由直尺为矩形,则两组对边分别平行,即可根据∠1求∠4的度数,即可求出∠4的对顶角的度数,再利用等角直角三角形的性质及三角形内角和求出∠2的对顶角,即可求∠2.
【详解】
解:如图,延BA ,CD 交于点E .
∵直尺为矩形,两组对边分别平行
∴∠1+∠4=180°,∠1=115°
∴∠4=180°-∠1=180°-115°=65°
∵∠EDA 与∠4互为对顶角
∴∠EDA=∠4=65°
∵△EBC 为等腰直角三角形
∴∠E=45°
∴在△EAD 中,∠EAD=180°-∠E-∠EDA=180°-45°-65°=70°
∵∠2与∠EAD 互为对顶角
∴∠2=∠EAD =70°
故选:B .
【点睛】
此题主要考查平行线的性质,等腰直角三角形的性质,挖掘三角板条件中的隐含条件是解题关键.
5.C
解析:C
【分析】
根据积的乘方、同底数幂的除法、单项式乘以单项式、合并同类项法则进行计算即可.
【详解】
解:A 、(a 2b )3=a 6b 3,故A 错误;
B 、a 6÷a 2=a 4,故B 错误;
C 、5y 3•3y 2=15y 5,故C 正确;
D 、a 和a 2不是同类项,不能合并,故D 错误;
故选:C .
【点睛】
此题主要考查了单项式乘以单项式、同底数幂的除法、积的乘方、合并同类项,关键是掌握各计算法则.
6.C
解析:C
【分析】
直接利用图形面积求法得出等式,进而得出答案.
【详解】 梯形面积等于:()()()()122
a b a b a b a b ⨯⨯+⨯-=+-, 正方形中阴影部分面积为:a 2-b 2,
故a 2-b 2=(a +b )(a -b ).
故选:C .
【点睛】
此题主要考查了平方差公式的几何背景,正确表示出图形面积是解题关键.
7.A
解析:A
【分析】
根据同底数幂乘法,底数不变指数相加,即可.
【详解】
x 2•x 3=x 2+3=x 5,
故选A.
【点睛】
该题考查了同底数幂乘法,熟记同底数幂乘法法则:底数不变,指数相加.
8.C
解析:C
【分析】
先根据平行线的性质求出∠EFB 的度数,再利用三角形的外角性质解答即可.
【详解】
解:∵AB ∥CD ,115C ∠=︒,
∴115EFB C ∠=∠=︒,
∵EFB A E ∠=∠+∠,25A ∠=︒
∴1152590E ∠=︒-︒=︒.
故选:C .
【点睛】
本题考查了平行线的性质和三角形的外角性质,属于基础题型,熟练掌握上述基本知识是解题关键.
9.B
解析:B
【解析】
【分析】
先求出不等式的解集,再在数轴上表示出不等式的解集即可.
【详解】
-3x-1>2,
-3x >2+1,
-3x >3,
x <-1, 在数轴上表示为:
,
故选B .
【点睛】
本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键. 10.C
解析:C
【解析】
【分析】
根据平移不改变图形的形状和大小,结合图案,对选项一一分析,排除错误答案.
【详解】
解:A 、图案自身的一部分围绕中心经旋转而得到,故错误;
B 、图案自身的一部分沿对称轴折叠而得到,故错误;
C、图案自身的一部分沿着直线运动而得到,是平移,故正确;
D、图案自身的一部分经旋转而得到,故错误.
故选C.
【点睛】
本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.
二、填空题
11.100
【分析】
利用完全平方公式解答.
【详解】
解:原式=(10.1﹣0.1)2=102=100.
故答案是:100.
【点睛】
本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得(
解析:100
【分析】
利用完全平方公式解答.
【详解】
解:原式=(10.1﹣0.1)2=102=100.
故答案是:100.
【点睛】
本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得(10.1-0.1)的值.12.6
【分析】
根据积的乘方运算法则,底数的积的乘方等于乘方的积,即可转化计算.
【详解】
解:因为am=2,bm=3,
所以(ab)m=am•bm=2×3=6,
故答案为:6.
【点睛】
此题考查积
解析:6
【分析】
根据积的乘方运算法则,底数的积的乘方等于乘方的积,即可转化计算.
【详解】
解:因为a m=2,b m=3,
所以(ab)m=a m•b m=2×3=6,
故答案为:6.
【点睛】
此题考查积的乘方,关键是根据积的乘方运算法则将未知转化为已知.
13.6
【分析】
根据多项式乘以多项式的法则展开,再代入计算即可.
【详解】
∵m+n=3,mn=2,
∴(1+m)(1+n)=1+n+m+mn=1+3+2=6.
故答案为:6.
【点睛】
本题考查了多
解析:6
【分析】
根据多项式乘以多项式的法则展开,再代入计算即可.
【详解】
∵m+n=3,mn=2,
∴(1+m)(1+n)=1+n+m+mn=1+3+2=6.
故答案为:6.
【点睛】
本题考查了多项式乘以多项式,掌握多项式乘以多项式的法则是解答本题的关键.注意不要漏项,漏字母,有同类项的合并同类项.
14.【分析】
由是完全平方式,得到从而可得答案.
【详解】
解:方法一、
方法二、
由是完全平方式,
则有两个相等的实数根,
,
故答案为:
【点睛】
本题考查的是完全平方式
解析:18±
【分析】
由281x kx ++是完全平方式,得到()2
2819,x kx x ++=±从而可得答案.
【详解】
解:方法一、 ()2
222281991881,x kx x kx x x x ++=++=±=±+
18,kx x ∴=± 18.k ∴=±
方法二、
由281x kx ++是完全平方式,
则2810x kx ++=有两个相等的实数根,
240,b ac ∴=-=
1,,81,a b k c ===
241810,k ∴-⨯⨯=
2481k ∴=⨯,
18.k ∴=±
故答案为:18.±
【点睛】
本题考查的是完全平方式的特点,掌握完全平方式的特点,特别是积的二倍项的特点是解题的关键.
15.10
【分析】
已知是二元一次方程2x ﹣3y ﹣5=0的一组解,将代入二元一次方程2x ﹣3y ﹣5=0中,即可求解.
【详解】
∵是二元一次方程2x ﹣3y ﹣5=0的一组解
∴2a -3b=5
解析:10【分析】
已知
x a
y b
=
⎧
⎨
=
⎩
是二元一次方程2x﹣3y﹣5=0的一组解,将
x a
y b
=
⎧
⎨
=
⎩
代入二元一次方程2x﹣3y
﹣5=0中,即可求解.【详解】
∵
x a
y b
=
⎧
⎨
=
⎩
是二元一次方程2x﹣3y﹣5=0的一组解
∴2a-3b=5
∴4a-6b=10
故答案为:10
【点睛】
本题考查了二元一次方程组解的定义,能使二元一次方程左右两边的值相等的两个未知数的值,叫做二元一次方程的解.由于使二元一次方程的左右两边的值相等的未知数的值不止一组,故每个二元一次方程都有无数组解.
16.243
【解析】
【分析】
先将9x•27y变形为32x+3y,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.
【详解】
∵2x+3y−5=0,
∴2x+3y=5,
∴9x27y=32x
解析:243
【解析】
【分析】
先将9x•27y变形为32x+3y,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】
∵2x+3y−5=0,
∴2x+3y=5,
∴9x⋅27y=32x⋅33y=32x+3y=35=243.
故答案为:243.
【点睛】
本题考查了同底数幂的乘法,解题的关键是熟练的掌握同底数幂乘法的概念和运算法则. 17.4
根据题意列二元一次方程即可解决问题.【详解】
设2m的钢管b根,根据题意得:
a+2b=9,
∵a、b均为正整数,
∴,,,.
a 的值可能有4种,
故答案为:4.
【点睛】
本题运
解析:4
【分析】
根据题意列二元一次方程即可解决问题.
【详解】
设2m的钢管b根,根据题意得:
a+2b=9,
∵a、b均为正整数,
∴
1
4
a
b
=
⎧
⎨
=
⎩
,
3
3
a
b
=
⎧
⎨
=
⎩
,
5
2
a
b
=
⎧
⎨
=
⎩
,
7
1
a
b
=
⎧
⎨
=
⎩
.
a 的值可能有4种,
故答案为:4.
【点睛】
本题运用了二元一次方程的整数解的知识点,运算准确是解此题的关键.18.36°
【分析】
如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】
解:如图,∵三角尺的两边a∥b,
∴∠3=∠2=54º,
∴∠1=180°-90°-∠3=36°.
故
解析:36°
【分析】
如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.
【详解】
解:如图,∵三角尺的两边a∥b,
∴∠3=∠2=54º,
∴∠1=180°-90°-∠3=36°.
故答案为:36°.
【点睛】
本题以三角板为载体,主要考查了平行线的性质和和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键.
19.-10
【分析】
原式前两项提取-2变形后,将已知代数式的值代入计算即可求出值.
【详解】
解:∵2x-3y=5,
∴原式=-2(2x-3y)=-2×5=-10.
故答案为:-10.
【点睛】
本题
解析:-10
【分析】
原式前两项提取-2变形后,将已知代数式的值代入计算即可求出值.
【详解】
解:∵2x-3y=5,
∴原式=-2(2x-3y)=-2×5=-10.
故答案为:-10.
【点睛】
本题考查了代数式求值,熟练掌握运算法则是解题的关键.
20.【分析】
首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a的值即可;
【详解】
解不等式,
去括号,得,
移项,得,
合并同类项,得,
系数化为1,得,
则最小的整数解为- 解析:72
【分析】
首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a 的值即可;
【详解】
解不等式()()325416x x -+<-+,
去括号,得365446-+<-+x x ,
移项,得344665-<-++-x x ,
合并同类项,得3x -<,
系数化为1,得3x >-,
则最小的整数解为-2.
把2x =-代入23x ax -=中,
得423a -+=, 解得:72a =
. 故答案为72
. 【点睛】
本题主要考查了一元一次方程的解与一元一次不等式的整数解,准确计算是解题的关键.
三、解答题
21.(1)224()()xy x y x y =+--;(2)16
xy =
;(3)23x y -=±. 【分析】
(1)阴影部分的面积可以由边长为x+y 的大正方形的面积减去边长为x-y 的小正方形面积求出,也可以由4个长为x ,宽为y 的矩形面积之和求出,表示出即可;
(2)先利用完全平方公式展开,然后两个式子相减,即可求出答案;
(3)利用完全平方变形求值,即可得到答案.
【详解】
解:(1)图中阴影部分的面积为: 224()()xy x y x y =+--;
故答案为:22
4()()xy x y x y =+--;
(2)∵2(32)5x y -=,
∴2291245x xy y -+=①,
∵2
(32)9x y +=,
∴2291249x xy y ++=②,
∴由②-①,得 24954xy =-=, ∴16
xy =
; (3)∵25,2x y xy +==, ∴222(2)4425x y x xy y +=++=,
∴22
4254217x y +=-⨯=,
∴222(2)4417429x y x y xy -=+-=-⨯=;
∴23x y -=±;
【点睛】
本题考查了完全平方公式的几何背景,准确识图,以及完全平方公式变形求值,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等列式是解题的关键.
22.22442a ab b -+;13
【分析】
原式利用平方差公式及完全平方公式展开,去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.
【详解】
解:原式=4a 2﹣4ab+b 2﹣(a 2+2a+1﹣b 2)+a 2+2a+1
=4a 2﹣4ab+b 2﹣a 2﹣2a ﹣1+b 2+a 2+2a+1
=4a 2﹣4ab+2b 2, 当a =
12
,b =﹣2时,原式=1+4+8=13. 【点睛】 此题考查了整式的混合运算−化简求值,熟练掌握运算法则是解本题的关键.
23.(1)(a+b)2-(a-b)2=4ab ;(2)±4;(3)-7
【分析】
(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2,图1的面积和图2中白色部分的面积相等即可求解.
(2)由(1)知,(x+y)2-(x-y)2=4xy ,将x+y =5,x•y =
94
代入(x+y)2-(x-y)2=4xy ,即可求得x-y 的值
(3)因为(2019﹣m)+(m ﹣2020)=-1,等号两边同时平方,已知(2019﹣m)2+(m ﹣2020)2=15,即可求解.
【详解】
(1)由图可知,图1的面积为4ab,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2∵图1的面积和图2中白色部分的面积相等
∴(a+b)2-(a-b)2=4ab
故答案为:(a+b)2-(a-b)2=4ab
(2)由(1)知,(x+y)2-(x-y)2=4xy
∵x+y=5,x•y=9 4
∴52-(x-y)2=4×9 4
∴(x-y)2=16
∴x-y=±4
故答案为:±4
(3)∵(2019﹣m)+(m﹣2020)=-1
∴[(2019﹣m)+(m﹣2020)]2=1
∴(2019﹣m)2+2(2019﹣m)(m﹣2020)+ (m﹣2020)2=1
∵(2019﹣m)2+(m﹣2020)2=15
∴2(2019﹣m)(m﹣2020)=1-15=-14
∴(2019﹣m)(m﹣2020)=-7
故答案为:-7
【点睛】
本题考查了完全平方公式的几何背景,运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.
24.(1)
24
,
21
x x
y y
==
⎧⎧
⎨⎨
==
⎩⎩
(2)-
13
6
(3)
2.5
x
y
=
⎧
⎨
=
⎩
【解析】
分析:(1)先对方程变形为x=6-2y,然后可带入数值求解;
(2)把已知的x+y=0和方程x+2y-6=0组合成方程组,求解方程组的解,然后代入方程x-2y+mx+5=0即可求m的值;
(3)方程整理后,根据无论m如何变化,二元一次方程组总有一个固定的解,列出方程组,解方程组即可;
详解:(1)∵x+2y-6=0
∴x=6-2y
当y=1时,x=4,
当y=2时,x=2
∴
24
,
21 x x
y y
==⎧⎧
⎨⎨
==⎩⎩
(2)根据题意,把x+y=6和x+2y-6=0构成方程组为:
6
260 x y
x y
+=
⎧
⎨
+-=⎩
和
解得66x y =-⎧⎨=⎩
把66x y =-⎧⎨=⎩
代入x-2y+mx+5=0, 解得m=136- (3)∵无论实数m 取何值,方程x -2y+mx+5=0总有一个固定的解,
∴x=0时,m 的值与题目无关
∴y=2.5
∴02.5x y =⎧⎨=⎩
点睛:此题主要考查了二元一次方程组的应用,对方程组中的方程灵活变形,构成可解方程是解题关键,有一定的难度,合理选择加减消元法和代入消元法解题是关键.
25.(1)见详解;(2)2180C AQB ∠+∠=︒;(3)1:2:2
【分析】
(1)过点C 作CF
AD ,则//BE CF ,再利用平行线的性质求解即可; (2)过点Q 作QM AD ,则//BE QM ,再利用平行线的性质以及角平分线的性质得出
1()2
AQE CBE CAD ∠=∠-∠,再结合(1)的结论即可得出答案; (3)由(2)的结论可得出12
CAD CBE ∠=∠,又因为QP PB ⊥,因此180CBE CAD ∠+∠=︒,联立即可求出两角的度数,再结合(1)的结论可得出ACB ∠的度数,再求答案即可.
【详解】
解:(1)过点C 作CF AD ,则//BE CF ,
∵//CF AD BE
∴,180,ACF A BCF B ACF BCF C ∠=∠∠=︒-∠∠+∠=∠
∴180180180B C A BCF C ACF C C ∠+∠-∠=︒-∠+∠-∠=-∠+∠=︒ (2)过点Q 作QM AD ,则//BE QM ,
∵QM AD ,//BE QM
∴,AQM NAD BQM EBQ ∠=∠∠=∠
∵AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线 ∴11,22
NAD CAD EBQ CBE ∠=∠∠=∠ ∴1()2
ABQ BQM AQM CBE CAD ∠=∠-∠=
∠-∠ ∵180()1802C CBE AD AQB ∠=︒-∠-∠=︒-∠ ∴2180C AQB ∠+∠=︒
(3)∵//AC QB ∴11,22
AQB CAP CAD ACP PBQ CBE ∠=∠=∠∠=∠=∠ ∴11801802ACB ACP CBE ∠=︒-∠=︒-
∠ ∵2180C AQB ∠+∠=︒ ∴12
CAD CBE ∠=∠ ∵QP PB ⊥
∴180CBE CAD ∠+∠=︒
∴60,120CAD CBE ∠=︒∠=︒ ∴11801202
ACB CBE ∠=︒-∠=︒ ∴::60:120:1201:2:2DAC ACB CBE ∠∠∠=︒︒︒=.
故答案为:1:2:2.
【点睛】
本题考查的知识点有平行线的性质、角平分线的性质.解此题的关键是作出合适的辅助线,找准角与角之间的关系.
26.(1)画图见解析;(2)平行且相等;(3)画图见解析;(4)8
【分析】
(1)根据网格结构找出点A 、B 、C 向右平移4个单位后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;
(2)根据平移的性质解答;
(3)延长AB ,作出AB 的高CD 即可;
(4)利用△ABC 所在的矩形的面积减去四周三个三角形的面积,列式计算即可得解.
【详解】
解:(1)如图所示,
(2)根据平移的性质得出,AC 与A 1C 1的关系是:平行且相等;
(3)如图所示,
(4)△ABC 的面积=5×7-
12×7×5-12×7×2-12×5×1=8. 27.(1)89
;(2)102x ; 【分析】
(1)根据零指数幂和负整数指数幂的运算法则即可计算;
(2)根据同底数幂的乘法法则和合并同类项即可计算.
【详解】
(1)原式=1-19=89
; (2)原式=x 10+x 10=2x 10.
【点睛】
本题考查整式的混合运算,负整数指数幂,零指数幂,解答本题的关键是明确各法则的计算方法.
28.(1) 112-92=40; (2) (2n+1)2-(2n -1)2=8n ,证明详见解析
【分析】
(1)根据所给式子可知:
()()22
223121121181-⨯+⨯-⨯-==, ()()22
225322122182-⨯+⨯-⨯-==,
()()22227523123183-⨯+⨯-⨯-==,由此可知第5个式子;
(2)根据题(1)的推理可得第n 个式子,利用完全平方公式可证得结果;
【详解】
(1)∵第1个式子为:
()()22
223121121181-⨯+⨯-⨯-== 第2个式子为: ()()22
225322122182-⨯+⨯-⨯-== 第3个式子为: ()()22
227523123183-⨯+⨯-⨯-== ∴第5个式子为: ()()222225125111940⨯+-⨯-=-= 即第5个式子为:2211940-=
(2)根据题(1)的推理可得:
第n 个式子: ()()2221218n n n +--=
∵左边=224414418n n n n n +-++-==右边 ∴等式成立.
【点睛】
本题考查数式规律的探索,解题的关键仔细观察所给的式子,正确找出式子的规律.。