黄陵镇初中2018-2019学年初中七年级上学期数学第一次月考试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄陵镇初中2018-2019学年初中七年级上学期数学第一次月考试卷
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.(2分)(2015•衢州)﹣3的相反数是()
A. 3
B. -3
C.
D. -
2.(2分)(2015•甘南州)2的相反数是()
A. 2
B. -2
C.
D.
3.(2分)(2015•崇左)如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()
A. 的
B. 中
C. 国
D. 梦
4.(2分)(2015•眉山)某市在一次扶贫助残活动中,共捐款5280000元,将5280000用科学记数法表示为()
A. 5.28×106
B. 5.28×107
C. 52.8×106
D. 0.528×107
5.(2分)备受宁波市民关注的象山港跨海大桥在2012年12月29日建成通车,此项目总投资约77亿元,77亿元用科学记数法表示为()
A. 7.7×109元
B. 7.7×1010元
C. 0.77×1010元
D. 0.77×1011元
6.(2分)(2015•襄阳)﹣2的绝对值是()
A. 2
B. -2
C.
D.
7.(2分)首都北京奥运会体育场——“鸟巢”能容纳91000位观众,将91000用科学记数法表示为
A. B. C. D.
8.(2分)(2015•潍坊)2015年5月17日是第25个全国助残日,今年全国助残日的主题是“关注孤独症儿童,走向美好未来”.第二次全国残疾人抽样调查结果显示,我国0~6岁精神残疾儿童约为11.1万人.11.1万用科学记数法表示为()
A. 1.11×104
B. 11.1×104
C. 1.11×105
D. 1.11×106
9.(2分)(2015•广东)据国家统计局网站2014年12月4日发布的消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为()
A. 1.3573×
B. 1.3573×
C. 1.3573×
D. 1.3573×
10.(2分)(2015•龙岩)﹣1的倒数是()
A. ﹣1
B. 0
C. 1
D. ±1
11.(2分)(2015•眉山)﹣2的倒数是()
A. B. 2 C. D. -2
12.(2分)(2015•丹东)据统计,2015年在“情系桃源,好运丹东”的鸭绿江桃花观赏活动中,6天内参与人次达27.8万.用科学记数法将27.8万表示为()
A. 2.78×106
B. 27.8×106
C. 2.78×105
D. 27.8×105
二、填空题
13.(1分)(2015•通辽)一列数x1,x2,x3,…,其中x1=,x n=(n为不小于2的整数),则x2015= ________.
14.(1分)(2015•湘潭)计算:23﹣(﹣2)=________ .
15.(1分)(2015•常德)取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.最少经过下面5步运算可得1,即:

如果自然数m最少经过7步运算可得到1,则所有符合条件的m的值为________ .
16.(1分)(2015•永州)国家森林城市的创建极大地促进了森林资源的增长,美化了城市环境,提升了市民的生活质量,截至2014年.全国已有21个省、自治区、直辖市的75个城市获得了“国家森林城市”乘号.永州市也在积极创建“国家森林城市”.据统计近两年全市投入“创森”资金约为365000000元,365000000用科学记数法表示为________ .
17.(1分)(2015•遂宁)把96000用科学记数法表示为________ .
18.(1分)(2015•岳阳)单项式的次数是________ .
三、解答题
19.(15分)双11购物节期间,某运动户外专营店推出满500送50元券,满800送100元券活动,先领券,再购物。

某校准备到此专营店购买羽毛球拍和羽毛球若干.已知羽毛球拍60元1个,羽毛球3元一个,买一个羽毛球拍送3个羽毛球.
(1)如果要购买羽毛球拍8个,羽毛球50个,要付多少钱?
(2)如果购买羽毛球拍x个(不超过16个),羽毛球50个,要付多少钱?用含x的代数式表示.
(3)该校买了羽毛球50个若干个羽毛球拍,共花费712元,请问他们买了几个羽毛球拍.
20.(12分)【新知理解】
如图①,点C在线段AB上,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率
伴侣线段.
(1)若AC=3,则AB=________;
(2)若点D也是图①中线段AB的圆周率点(不同于点C),则AC________BD;(填“=”或“≠”)
(3)【解决问题】
如图②,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.
若点M、N是线段OC的圆周率点,求MN的长;
(4)图②中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.
21.(6分)小明拿扑克牌若千张变魔术,将这些扑克牌平均分成三份,分别放在左边,中间,右边,第一次从左边一堆中拿出两张放在中间一堆中,第二次从右边一堆中拿出一张放在中间一堆中,第三次从中间一堆中拿出一些放在左边一堆中,使左边的扑克牌张数是最初的2倍.
(1)如一开始每份放的牌都是8张,按这个规则魔术,你认为最后中间一堆剩________张牌?
(2)此时,小慧立即对小明说:“你不要再变这个魔术了,只要一开始每份放任意相同张数的牌(每堆牌不少于两张),我就知道最后中间一堆剩几张牌了,我想到了其中的奥秘!”请你帮小慧揭开这个奥秘.(要求:用所学的知识写出揭秘的过程)
22.(3分)数轴上点对应的数为,点对应的数为,点为数轴上一动点.
(1)AB的距离是________.
(2)①若点到点的距离比到点的距离大1,点对应的数为________.
(3)当点以每秒钟个单位长度从原点向右运动时,点以每秒钟个单位长度的速度从点向左
运动,点以每秒钟个单位长度的速度从点向右运动,问它们同时出发________秒钟时,
(直接写出答案即可).
23.(10分)已知一个装满水的圆柱形容器底面半径为高为.
(1)求圆柱内水的体积.(提示:结果保留)
(2)若将该圆柱内的水全部倒入一个长为,宽为,高为的长方体容器内,是否有溢出?
(取)
24.(15分)一棉花种植区的农民研制出采摘棉花的单人便携式采棉机,采摘效率高,能耗低,绿色环保.经测试,一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,购买一台采棉机需900元.雇人采摘棉花,按每采摘1公斤棉花元的标准支付雇工工资,雇工每天工作8小时.
(1)一个雇工手工采摘棉花,一天能采摘多少公斤?
(2)一个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,求a的值;
(3)在(2)的前提下,种植棉花的专业户张家和王家均雇人采摘棉花,王家雇用的人数是张家的2倍.张家
雇人手工采摘,王家所雇的人中有的人自带采棉机采摘,的人手工采摘.两家采摘完毕,采摘的天数刚好一样,张家付给雇工工钱总额为14400元.王家这次采摘棉花的总重量是多少?
25.(11分)
(1)【归纳】观察下列各式的大小关系:
|-2|+|3|>|-2+3| |-6|+|3|>|-6+3|
|-2|+|-3|=|-2-3| |0|+|-8|=|0-8|
归纳:|a|+|b|________|a+b|(用“>”或“<”或“=”或“≥”或“≤”填空)
(2)【应用】根据上题中得出的结论,若|m|+|n|=13,|m+n|=1,求m的值.
(3)【延伸】a、b、c满足什么条件时,|a|+|b|+|c|>|a+b+c|.
26.(15分)粮库3天内发生粮食进出库的吨数如下(“ +”表示进库“﹣”表示出库)
+26,﹣32,﹣15,+34,﹣38,﹣20.
(1)经过这3天,粮库里的粮食是增多还是减少了?
(2)经过这3天,仓库管理员结算发现库里还存480吨粮,那么3天前库里存粮多少吨?
(3)如果进出的装卸费都是每吨5元,那么这3天要付多少装卸费?
黄陵镇初中2018-2019学年初中七年级上学期数学第一次月考试卷(参考答案)
一、选择题
1.【答案】A
【考点】相反数及有理数的相反数
【解析】【解答】﹣3的相反数是3,
故选:A.
【分析】根据相反数的概念解答即可.
2.【答案】B
【考点】相反数及有理数的相反数
【解析】【解答】2的相反数为:﹣2.
故选:B.
【分析】根据相反数的定义求解即可.
3.【答案】D
【考点】几何体的展开图
【解析】【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“们”与“中”是相对面,
“我”与“梦”是相对面,
“的”与“国”是相对面.
故选:D.
【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
4.【答案】A
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:5280000=5.28×106,
故选A.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.
5.【答案】A
【考点】科学记数法—表示绝对值较大的数
【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把
原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【解答】77亿=77 0000 0000=7.7×109,
故选:A.
【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
6.【答案】A
【考点】绝对值及有理数的绝对值
【解析】【解答】解:﹣2的绝对值是2,
即|﹣2|=2.
故选:A.
【分析】根据负数的绝对值等于它的相反数解答.
7.【答案】D
【考点】科学记数法—表示绝对值较大的数
【解析】【分析】.
故选D.
8.【答案】C
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:将11.1万用科学记数法表示为1.11×105.
故选C.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
9.【答案】B
【考点】科学记数法—表示绝对值较大的数
【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【解答】将13 573 000用科学记数法表示为:1.3573×107.
故选:B.
10.【答案】A
【考点】倒数
【解析】【解答】解:﹣1的倒数是﹣1,故选:A.
【分析】根据乘积为1的两个数互为倒数,可得答案.
11.【答案】C
【考点】倒数
【解析】【解答】解:﹣2的倒数是-,
故选C.
【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
12.【答案】C
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:将27.8万用科学记数法表示为2.78×105.
故选:C.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
二、填空题
13.【答案】2
【考点】探索数与式的规律
【解析】【解答】解:根据题意得,a2==2,
a3==﹣1,
a4==,
…,
依此类推,每三个数为一个循环组依次循环,
∵2015÷3=671…2,
∴a2015是第671个循环组的第2个数,与a2相同,
即a2015=2.
故答案为:2.
【分析】根据表达式求出前几个数不难发现,每三个数为一个循环组依次循环,用2015除以3,根据商和余数的情况确定a2015的值即可.
14.【答案】10
【考点】有理数的减法,有理数的乘方
【解析】【解答】解:23﹣(﹣2)
=8+2
=10.
故答案为:10.
【分析】根据有理数的混合计算解答即可.
15.【答案】128、21、20、3
【考点】探索数与式的规律
【解析】【解答】解:根据分析,可得
则所有符合条件的m的值为:128、21、20、3.
故答案为:128、21、20、3.
【分析】首先根据题意,应用逆推法,用1乘以2,得到2;用2乘以2,得到4;用4乘以2,得到8;用8乘以2,得到16;然后分类讨论,判断出所有符合条件的m的值为多少即可.
16.【答案】3.65×108
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:将365000000用科学记数法表示为3.65×108.
故答案为:3.65×108.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
17.【答案】9.6×104
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:把96000用科学记数法表示为9.6×104.
故答案为:9.6×104.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
18.【答案】5
【考点】单项式
【解析】【解答】解:单项式﹣x2y3的次数是2+3=5.
故答案为:5.
【分析】根据单项式的次数的定义:单项式中,所有字母的指数和叫做这个单项式的次数解答.
三、解答题
19.【答案】(1)解:60×8+(50-8×3)×3-50=508(元)
(2)解:x≤6时,60x+(50-3x)×3=150+51x;7≤x≤12时,60x+(50-3x)×3-50=100+51x;13≤x≤16时,60x+(50-3x)×3-100=50+51x
(3)解:设共买了x个羽毛球拍,根据题意得,60x+(50-3x)×3-50=712,解得,x=12.答:共买了12个羽毛球拍.
【考点】整式的加减运算,一元一次方程的实际应用-销售问题
【解析】【分析】(1)根据题意直接列式计算。

(2)根据满500送50元券,满800送100元券活动,分三种情况讨论:x≤6时;7≤x≤12时;13≤x≤16时,分别用含x的代数式表示出要付的费用。

(3)根据一共花费712元,列方程求解即可。

20.【答案】(1)3+3
(2)=
(3)解:∵d=1,
∴c=d=,
∴C点表示的数为:+1,
∵M、N都是线段OC的圆周率点,
设点M离O点近,且OM=x,则CM=x,∵OC=OM+ MC,
∴+1=x+x,
解得:x=1,
∴OM=CN=1,
∴MN=OC-OM-CN=+1-1-1=-1.
(4)解:设点D表示的数为x,则OD=x,①若CD=OD,如图1,
∵OC=OD+CD,
∴+1=x+x,
解得:x=1,
∴点D表示的数为1;
②若OD=CD,如图2,
∵OC=OD+CD,
∴+1=x+,
解得:x=,
∴点D表示的数为;
③若OC=CD,如图3,
∵CD=OD-OC=x--1,
∴+1=(x--1),
解得:x=++1,
∴点D表示的数为++1;
④若CD=OC,如图4,
∵CD=OD-OC=x--1,
∴x--1=(+1),
解得:x=2+2+1,
∴点D表示的数为2+2+1;
综上所述:点D表示的数为:1、、++1、2+2+1.
【考点】数轴及有理数在数轴上的表示,一元一次方程的其他应用,定义新运算
【解析】【解答】解:(1)∵AC=3,BC=AC,
∴BC=3
∴AB=AC+CB=3+3.
故答案为:3+3.
(2)∵点D、C都是线段AB的圆周率点且不重合,
∴BC=AC,AD=BD,
设AC=x,BD=y,则BC=x,AD=y,
∵AB=AC+CB=AD+DB,
∴x+x=y+y,
∴x=y,
∴AC=BD.
故答案为:=.
【分析】(1)由已知条件求得BC长,再由AB=AC+CB即可求得答案.
(2)根据题意可得BC=AC,AD=BD,由此设AC=x,BD=y,则BC=x,AD=y,
由AB=AC+CB=AD+DB即可得AC=BD.
(3)根据题意可得C点表示的数为+1,根据M、N都是线段OC的圆周率点,设点M离O点近,且
OM=x,则CM=x,由OC=OM+ MC列出方程+1=x+x,解之可得OM=CN=1,由MN=OC-OM-CN即可求得.
(4)设点D表示的数为x,则OD=x,根据题意分情况讨论:①若CD=OD,②若OD=CD,③若OC= CD,④若CD=OC,根据题中定义分别列出方程,解之即可得出答案.
21.【答案】(1)1
(2)解:不论一开始每堆有几张相同的扑克牌数,按这样的游戏规则,最后中间一堆只剩1张扑克牌.理由是:设一开始每堆扑克牌都是x张,按这样的游戏规则:第一次:左边,中间,右边的扑克牌分别是(x-2)张,(x+2)张,x张;第二次:左边,中间,右边的扑克牌分别是(x-2)张,(x+3)张,(x-1)张,第三
次:若中间一堆中拿y张扑克牌到左边,此时左边有(x-2)+y=2x张;即:y=2x-(x-2)=(x+2)张,所以,这时中间一堆剩(x+3)-y=(x+3)-(x+2)=1张扑克牌,所以,最后中间一堆只剩1张扑克牌.
【考点】列式表示数量关系,整式的加减运算
【解析】【解答】解:(1)设每份x张,第三次从中间一堆中拿出y张放进左边一堆中,由题意列等式的x-2+y=2x,解得y=x+2,
即y是x的一次函数,
当x=8时,y=10,
把x=8,y=10代入x+2-y+1=1.
最后中间一堆剩1张牌,
故答案为:1;
【分析】(1)设每份x张,第三次从中间一堆中拿出y张放进左边一堆中,第一次从左边一堆中拿出两张放在中间一堆中左边一堆剩x-2张,第二次左边的牌的数量没有发生变化,第三次从中间一堆中拿出y张放在左边一堆中,左边一堆中共有(x-2+y)张,又第三次后左边的扑克牌张数是最初的2倍.从而列出方程,然后举哀那个x=8代入即可算出y的值,进而即可得出答案;
(2)不论一开始每堆有几张相同的扑克牌数,按这样的游戏规则,最后中间一堆只剩1张扑克牌.理由是:设一开始每堆扑克牌都是x张,分别写出第一次,第二次,第三次左边、中间、右边的牌的数量,然后根据题意列出方程,求解即可。

22.【答案】(1)6
(2)1.5
②若点其对应的数为,数轴上是否存在点,使点到点,点的距离之和为8?若存在,请求出
的值;若不存在,请说明理由.
解:若点在点的左边,
若点在点的右边,
(3)2
【考点】数轴及有理数在数轴上的表示
【解析】【解答】解:(1)|AB|=|-2-4|=6;
(2 )①设点P表示的数为x,根据题意得,
|x+2|-|4-x|=1,
当x<-2时,方程无解;
当-2≤x<4时,原方程可化为,x+2-4+x=1,解得,x=1.5;
当x≥4时,方程无解.
(3 )设t分钟点P到点M,点N的距离相等,
根据题意得,2t+2+t=4-t +3t,
解得:t=2,
答:2分钟点P到点M,点N的距离相等.
【分析】(1)由数轴易求出;
(2)①由数轴易求出;②此题分两种情况当点P在B的右边时;当点P在B的左边时,分别列出方程求解即可;
(3)设t分钟点P到点M,点N的距离相等,根据题意列方程即可得到结论.
23.【答案】(1)解:
(2)解:
水有溢出
【考点】有理数的乘除混合运算
【解析】【分析】(1)根据圆柱体的体积公式计算可得;
(2)先算出长方体的体积,与圆柱体的体积比较可得.
24.【答案】(1)解:∵一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,∴一个人手工采摘棉花的效率为:35÷3.5=10(公斤/时),
∵雇工每天工作8小时,
∴一个雇工手工采摘棉花,一天能采摘棉花:10×8=80(公斤);
(2)解:由题意,得80×7.5a=900,解得a=
(3)解:设张家雇佣x人采摘棉花,则王家雇佣2x人采摘棉花,其中王家所雇的人中有的人自带彩棉
机采摘,的人手工采摘.
∵张家雇佣的x人全部手工采摘棉花,且采摘完毕后,张家付给雇工工钱总额为14400元,
∴采摘的天数为:= ,
∴王家这次采摘棉花的总重量是:(35×8× +80× )× =51200(公斤).
【考点】一元一次方程的实际应用-工程问题
【解析】【分析】(1)根据已知求出一个人手工采摘棉花的效率,再根据雇工每天工作8小时,就可求出
一个雇工手工采摘棉花,一天能采摘的数量。

(2)根据一个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,建立等量关系,就可求出答案。

(3)此题的等量关系为:两家采摘完毕,采摘的天数刚好一样,设未知数,列方程,求出方程的解,再求出王家这次采摘棉花的总重量。

25.【答案】(1)≥
(2)解:由上题结论可知,因为|m|+|n|=13,|m+n|=1,|m|+|n|≠|m+n|,所以m、n 异号.当m为正数,n 为负数时,m-n=13,则n=m-13,|m+m-13|=1,m=7或6;当m为负数,n为正数时,-m+n=13,则n=m+13,|m+m+13|=1,m=-7或-6.综上所述:m为±6或±7
(3)解:若按a、b、c中0的个数进行分类,可以分成四类:第一类:A.b、c三个数都不等于0 .①1个正数,2个负数,此时|a|+|b|+|c|>|a+b+c|;②1个负数,2个正数,此时|a|+|b|+|c|>|a+b+c|;③3个正数,此时|a|+|b|+|c|=|a+b+c|,故排除;④3个负数,此时|a|+|b|+|c|=|a+b+c|,故排除;第二类:A.b、c三个数中有1个0 【结论同第(1)问①1个0,2个正数,此时|a|+|b|+|c|=|a+b+c|,故排除;②1个0,2个负数,此时|a|+|b|+|c|=|a+b+c|,故排除;③1个0,1个正数,1个负数,此时|a|+|b|+|c|>|a+b+c|;第三类:A.b、c三个数中有2个0.①2个0,1个正数:此时|a|+|b|+|c|=|a+b+c|,故排除;②2个0,1个负数:此时|a|+|b|+|c|=|a+b+c|,故排除;第四类:A.b、c 三个数都为0,此时|a|+|b|+|c|=|a+b+c|,故排除;综上所述:不等式成立的条件是:1个负数2个正数;1个正数2个负数;1个0,1个正数和1个负数.
【考点】探索数与式的规律
【解析】【分析】(1)由题意可得;
(2)由已知可得≠,所以可知m、n异号,分两种情况讨论即可求解:①当m为正数,n为负数时;②当m为负数,n为正数时;
(3)由题意可按a、b、c中0的个数进行分类,可以分成四类:
第一类:A.b、c三个数都不等于0。

①1个正数,2个负数,结合已知可求解;②1个负数,2个正
数,结合已知可求解;③3个正数,结合已知可求解;
第二类:A.b、c三个数中有1个0 ,①1个0,2个正数,结合已知可求解;②1个0,2个负数,结合已知可求解;③1个0,1个正数,1个负数,结合已知可求解;
第三类:A.b、c三个数中有2个0.①2个0,1个正数,结合已知分析可求解;②2个0,1个负数,结合已知分析可求解;
第四类:A.b、c 三个数都为0,此时|a|+|b|+|c|=|a+b+c| 不符合题意。

26.【答案】(1)解:依题可得,
+26+(-32)+(-15)+(+34)+(-38)+(-20),
=26-32-15+34-38-20,
=(26+34)-(32+15+38+20),
=60-105,
=-45.
∴粮食减少了45吨.
答:粮库里的粮食是减少了,减少了45吨.
(2)解:依题可得:
480-(-45)=480+45=525(吨).
答:3天前库里存粮525吨.
(3)解:依题可得:
(|+26|+|-32|+|-15|+|+34|+|-38|+|-20|)×5,
=(26+32+15+34+38+20)×5,
=165×5,
=825(元).
答:这3天要付825元的装卸费.
【考点】运用有理数的运算解决简单问题
【解析】【分析】(1)根据题意将这3天进库和出库的粮食加起来,根据由有理数加减法计算即可得出答案.(2)根据题意用现在粮库里的粮食吨数减去这3天粮食减少的吨数,计算即可得出答案.
(3)分别求出这3天内进库、出库粮食吨数的绝对值,之后求出它们的和,再用这个和乘以每吨粮食的装卸费即可得出总费用.。

相关文档
最新文档