变焦遗传算法优化变增益模糊arx模型研究
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
焦遗传算法能在不同前代种群情况下更新不同数量基因ꎬ以提高搜索速度ꎻ用不同的概率选择交叉位置ꎬ可避免早熟现象ꎬ并能在较
短时间内达到最优或次优解ꎮ 变增益模糊 ARX 模型可根据非线性系统的变化改变其增益ꎬ使模型的辨识精度提高ꎮ 利用改进变焦
遗传算法的优点ꎬ对变增益模糊 ARX 模型的参数进行优化ꎬ并通过两入两出多时滞离散非线性系统进行试验仿真ꎮ 试验结果证明了
fuzzy ARX model to improve the identification accuracy of the model. The improved zooming genetic algorithm could update
different quantities of genes in different predecessor populations to improve search speedꎬ and select crossover positions with
Keywords: Zooming genetic algorithmꎻ Fuzzy modelꎻ ARX modelꎻ Variable gainꎻ Identification accuracyꎻ Parameter optimizationꎻ
Nonlinear system
0Байду номын сангаас 引言
遗传算法( genetic algorithmsꎬGA) 常用于进行搜
第 41 卷 第 2 期
2020 年 2 月
自 动 化 仪 表
PROCESS AUTOMATION INSTRUMENTATION
Vol 41 No 2
Feb. 2020
变焦遗传算法优化变增益模糊 ARX 模型研究
刘 冲1 ꎬ宋智星2 ꎬ刘 彬2
(1. 河北化工医药职业技术学院信息工程系ꎬ 河北 石家庄 050026ꎻ
Experimental results proved the effectiveness of the proposed optimization methodꎬwhich provided a way for the combination of the
zooming genetic algorithm and the fuzzy model.
Research on Optimization of Variable Gain Fuzzy ARX Model
by Zooming Genetic Algorithm
LIU Chong1 ꎬSONG Zhixing2 ꎬLIU Bin2
(1. Department of Information EngineeringꎬHebei Chemical & Pharmaceutical CollegeꎬHebei 050026ꎬChinaꎻ
2. 燕山大学电气工程学院ꎬ河北 秦皇岛 066004)
摘 要: 针对传统 ARX 模型对非线性系统模型辨识精度比较低的问题ꎬ进行了模糊模型和 ARX 模型相关优化算法的调查ꎬ介绍了遗
传算法优化模糊模型的现状ꎬ提出采用改进变焦遗传算法优化变增益模糊 ARX 模型参数的方法以提高模型的辨识精度ꎮ 改进的变
改进变焦遗传算法优化变增益模糊 ARX 模型参数的方法能提高模型辨识精度ꎬ表明了提出的优化方法的有效性ꎬ为变焦遗传算法与
模糊模型的结合提供了一种途径ꎮ
关键词: 变焦遗传算法ꎻ 模糊模型ꎻ ARX 模型ꎻ 变增益ꎻ 辨识精度ꎻ 参数优化ꎻ 非线性系统
中图分类号: TH ̄39 文献标志码: A DOI:10. 16086 / j. cnki. issn1000 ̄0380. 2019040025
accuracy of the model. By using the advantages of improved zooming genetic algorithmꎬthe parameters of variable gain fuzzy ARX
model were optimizedꎬand the experimental simulation was carried out by two ̄ in ̄ two ̄ out multi ̄ delay discrete nonlinear system.
2. School of Electrical EngineeringꎬYanshan UniversityꎬHebei 066004ꎬChina)
Abstract: Aiming at the problem of low identification accuracy of traditional ARX model for non ̄ linear system modelꎬthe related
optimization algorithms of fuzzy model and ARX model were investigatedꎬthe current situation of optimizing fuzzy model by genetic
algorithm was introducedꎬand an improved zooming genetic algorithm was proposed for optimizing the parameters of variable gain
different probabilities to avoid premature phenomena and achieve optimal or sub ̄ optimal solutions in a relatively short time.
Variable gain fuzzy ARX model could change its gain according to the change of the non ̄ linear systemto improve the identification
短时间内达到最优或次优解ꎮ 变增益模糊 ARX 模型可根据非线性系统的变化改变其增益ꎬ使模型的辨识精度提高ꎮ 利用改进变焦
遗传算法的优点ꎬ对变增益模糊 ARX 模型的参数进行优化ꎬ并通过两入两出多时滞离散非线性系统进行试验仿真ꎮ 试验结果证明了
fuzzy ARX model to improve the identification accuracy of the model. The improved zooming genetic algorithm could update
different quantities of genes in different predecessor populations to improve search speedꎬ and select crossover positions with
Keywords: Zooming genetic algorithmꎻ Fuzzy modelꎻ ARX modelꎻ Variable gainꎻ Identification accuracyꎻ Parameter optimizationꎻ
Nonlinear system
0Байду номын сангаас 引言
遗传算法( genetic algorithmsꎬGA) 常用于进行搜
第 41 卷 第 2 期
2020 年 2 月
自 动 化 仪 表
PROCESS AUTOMATION INSTRUMENTATION
Vol 41 No 2
Feb. 2020
变焦遗传算法优化变增益模糊 ARX 模型研究
刘 冲1 ꎬ宋智星2 ꎬ刘 彬2
(1. 河北化工医药职业技术学院信息工程系ꎬ 河北 石家庄 050026ꎻ
Experimental results proved the effectiveness of the proposed optimization methodꎬwhich provided a way for the combination of the
zooming genetic algorithm and the fuzzy model.
Research on Optimization of Variable Gain Fuzzy ARX Model
by Zooming Genetic Algorithm
LIU Chong1 ꎬSONG Zhixing2 ꎬLIU Bin2
(1. Department of Information EngineeringꎬHebei Chemical & Pharmaceutical CollegeꎬHebei 050026ꎬChinaꎻ
2. 燕山大学电气工程学院ꎬ河北 秦皇岛 066004)
摘 要: 针对传统 ARX 模型对非线性系统模型辨识精度比较低的问题ꎬ进行了模糊模型和 ARX 模型相关优化算法的调查ꎬ介绍了遗
传算法优化模糊模型的现状ꎬ提出采用改进变焦遗传算法优化变增益模糊 ARX 模型参数的方法以提高模型的辨识精度ꎮ 改进的变
改进变焦遗传算法优化变增益模糊 ARX 模型参数的方法能提高模型辨识精度ꎬ表明了提出的优化方法的有效性ꎬ为变焦遗传算法与
模糊模型的结合提供了一种途径ꎮ
关键词: 变焦遗传算法ꎻ 模糊模型ꎻ ARX 模型ꎻ 变增益ꎻ 辨识精度ꎻ 参数优化ꎻ 非线性系统
中图分类号: TH ̄39 文献标志码: A DOI:10. 16086 / j. cnki. issn1000 ̄0380. 2019040025
accuracy of the model. By using the advantages of improved zooming genetic algorithmꎬthe parameters of variable gain fuzzy ARX
model were optimizedꎬand the experimental simulation was carried out by two ̄ in ̄ two ̄ out multi ̄ delay discrete nonlinear system.
2. School of Electrical EngineeringꎬYanshan UniversityꎬHebei 066004ꎬChina)
Abstract: Aiming at the problem of low identification accuracy of traditional ARX model for non ̄ linear system modelꎬthe related
optimization algorithms of fuzzy model and ARX model were investigatedꎬthe current situation of optimizing fuzzy model by genetic
algorithm was introducedꎬand an improved zooming genetic algorithm was proposed for optimizing the parameters of variable gain
different probabilities to avoid premature phenomena and achieve optimal or sub ̄ optimal solutions in a relatively short time.
Variable gain fuzzy ARX model could change its gain according to the change of the non ̄ linear systemto improve the identification