晶体培养
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我常用的溶剂:
下层用良溶剂—————-如DMF,DMAC,DMSO,CH2Cl2,苯胺等
上层用不良溶剂————如醇类,醚类,乙腈等
当然也用混合溶剂了。
单晶培养的方法
一、挥发法
⌝原理:依靠溶液的不断挥发,使溶液由不饱和达到饱和过饱和状态。
条件:固体能溶解于较易挥发的有机溶剂⌝
一般丙酮、甲醇、乙醇、乙腈、乙酸乙酯、三氯甲烷、苯、甲苯、四氢呋喃、水等。
理论上,所有溶剂都可以,但一般选择
60~120℃。
注意:不同溶剂可能培养出的单晶结构不同
⎫方法:将固体溶解于所选有机溶剂,有时可采用加热的办法使固体完全溶解,冷却至室温或者再加溶剂使之不饱和,过滤,封口,静置培养。
⎫经验:
1.掌握好溶解度,一般100mL可溶解0.2g~2g, 50mL的烧杯,0.5g~0.8g.υ
υ 2.纯度大的易长出晶体。
3. 可选用混合溶剂,但必须遵循高沸点的难溶低沸点易容的原则。
混合溶剂必须选用完全互溶的二种或多种溶剂。
υ
※怎么看是否形成单晶:
如果析出的固体有发亮的颗粒或者在显微镜下可观察到凹凸的多面体形状。
※怎么挑选单晶:
不要等溶剂挥发完再挑,一定要在有母液存在下挑单晶,用毛细管将晶体吸出,滴到滤纸上,用针将单晶挑到密封管中,3~5颗即可。
二、扩散法
∮原理:利用二种完全互溶的沸点相差较大的有机溶剂。
固体易溶于高沸点的溶剂,难溶或不溶于低沸点溶剂。
在密封容器中,使低沸点溶剂挥发进入高沸点溶剂中,降低固体的溶解度,从而析出晶核,生长成单晶。
⎫一般选难挥发的溶剂,如DMF,DMSO,甘油甚至离子液体等。
∮条件:固体在难挥发的溶剂中溶解度较大或者很大,在易挥发溶剂中不溶或难溶。
经验:⌝
固体在难挥发溶剂中溶解度越大越好。
培养时,固体在高沸点溶剂中必须达到饱和或接近过饱和。
方法:⌝
将固体加热溶解于高沸点溶剂,接近饱和,放置于密封容器中,密封容器中放入易挥发溶剂,密封好,静置培养。
三、温差法
☆原理:利用固体在某一有机溶剂中的溶解度,随温度的变化,有很大的变化,使其在高温下达到饱和或接近饱和,然后缓慢冷却,析出晶核,生长成单晶。
⎫一般,水,DMF, DMSO,尤其是离子液体适用此方法。
☆条件:溶解度随温度变化比较大。
☆经验:高温中溶解度越大越好,完全溶解。
☆推广:建议大家考虑使用离子液体做溶剂,尤其是对多核或者难溶性的配合物。
四、接触法
* 原理:如果配合物极易由二种或二种以上的物种合成,选择性高且所形成的配合物很难找到溶剂溶解,则可使原料缓慢接触,在接触处形成晶核,再长大形成单晶。
一般无机合成,快反应使用此方法。
* 方法:
• 1.用U形管,可采用琼脂降低离子扩散速度。
• 2.用直管,可做成两头粗中间细。
• 3.用缓慢滴加法或稀释溶液法(对反应不很快的体系可采用)
• 4.缓慢升温度(对温度有要求的体系适用)
经验:原料的浓度尽可能的降低,可以人为的设定浓度或比例。
0.1g~0.5g的溶质量即可。
我总结了几条经验:
1.作晶体的试管烧杯最好碱水泡,极容易洗也容易出晶体。
通常都是碱水泡上一晚上早上乳胶手套抚摸一遍冲洗干净倒扣在桌子上。
(如果放置两天你会发现烧杯外壁都回落上一层白色的灰尘。
这说明碱水泡过的玻璃容易吸附东西的,这比钢丝刷子刮强多了。
)
2.扩散法,加上中间层。
加完溶液再加上一滴管的溶剂我用的是甲醇。
再加乙醚或者正己烷不起浑浊不起沉淀,还能得到很好缓冲作用。
我的晶体都是在这个缓冲层长出来的。
3.底部浓度要大。
溶液的浓度不能小了,不管他是什么颜色的。
我用的都是黑黑的。
稀了是红色,但是稀了浓度不够怎么也不出。
你说咋办!!!!!!
、三氯、醇、DMF、1,4-二氧六烷、四氢呋喃等
1 将配合物粉末溶于一些极性比较强大溶剂(如DMF,DMSO),然后放入乙醚蒸汽中,看看能不能把晶体给逼出来
晶体的生长是一个动力学过程,由化合物的内因(分子间色散力偶极力及氢键)与外因(溶剂极性、挥发或扩散速度及温度)决定。
晶体的培养实质是一个饱和溶液的重结晶过程,使溶液慢慢饱和的方法(如溶液挥发、不良溶剂的扩散及温度的降低)都可。
有些化合物易结晶,经常有人将无机盐晶体去检测的例子(无机盐易结晶)。
有以下两种方法较常用:
1) 挥发溶剂法:
将纯的化合物溶于适当溶剂或混和溶剂。
(理想的溶剂是一个易挥发的良溶剂
和一个不易挥发的不良溶剂的混和物。
)此溶液最好稀一些。
用氮/氩鼓泡
除氧。
容器可用橡胶塞(可缓慢透过溶剂)。
为了让晶体长得致密,要挥发得
慢一些,溶剂挥发性大的可置入冰箱。
大约要长个几天到几星期吧。
2) 扩散法:
在一个大容器内置入易挥发的不良溶剂(如戊烷、已烷),其中加一个内管,置入
化合物的良溶剂溶液。
将大容器密闭,也可放入冰箱。
经易挥发溶剂向内管扩散
可得较好的晶体。
时间可能比挥发法要长。
另外如果这一化合物是室温反应得到,且产物比较单一,溶解度较小,可将反应物
溶液分两层放置,不加搅拌,令其缓慢反应沉淀出晶体。
容易结晶的东西放在那里自己就出单晶,不容易结晶的怎么弄也是不出。
好
象不是想做就能做出来的。
---
首先看一下产物的溶解度,将产物抽干后用良性溶剂溶解成饱和溶液(如用二氯甲烷),然后加入相同体积的不良性溶剂,若产物不稳定应在惰性气体的保护下进行操作,完成后置于冰箱中冷冻至单晶析出,或直接用惰性气体鼓泡直至单晶析出。
单晶培养的方法
一、挥发法
⌝原理:依靠溶液的不断挥发,使溶液由不饱和达到饱和过饱和状态。
条件:固体能溶解于较易挥发的有机溶剂⌝
一般丙酮、甲醇、乙醇、乙腈、乙酸乙酯、三氯甲烷、苯、甲苯、四氢呋喃、水等。
理论上,所有溶剂都可以,但一般选择
60~120℃。
注意:不同溶剂可能培养出的单晶结构不同
⎫方法:将固体溶解于所选有机溶剂,有时可采用加热的办法使固体完全溶解,冷却至室温或者再加溶剂使之不饱和,过滤,封口,静置培养。
⎫经验:
1.掌握好溶解度,一般100mL可溶解0.2g~2g, 50mL的烧杯,0.5g~0.8g.υ
2.纯度大的易长出晶体。
3. 可选用混合溶剂,但必须遵循高沸点的难溶低沸点易容的原则。
混合溶剂必须选用完全互溶的二种或多种溶剂。
υ
※怎么看是否形成单晶:
如果析出的固体有发亮的颗粒或者在显微镜下可观察到凹凸的多面体形状。
※怎么挑选单晶:
不要等溶剂挥发完再挑,一定要在有母液存在下挑单晶,用毛细管将晶体吸出,滴到滤纸上,用针将单晶挑到密封管中,3~5颗即可。
二、扩散法
原理:利用二种完全互溶的沸点相差较大的有机溶剂。
固体易溶于高沸点的溶剂,难溶或不
溶于低沸点溶剂。
在密封容器中,使低沸点溶剂挥发进入高沸点溶剂中,降低固体的溶解度,从而析出晶核,生长成单晶。
一般选难挥发的溶剂,如DMF,DMSO,甘油甚至离子液体等。
条件:固体在难挥发的溶剂中溶解度较大或者很大,在易挥发溶剂中不溶或难溶。
经验:
固体在难挥发溶剂中溶解度越大越好。
培养时,固体在高沸点溶剂中必须达到饱和或接近过饱和。
方法:
将固体加热溶解于高沸点溶剂,接近饱和,放置于密封容器中,密封容器中放入易挥发溶剂,密封好,静置培养。
三、温差法
☆原理:利用固体在某一有机溶剂中的溶解度,随温度的变化,有很大的变化,使其在高温下达到饱和或接近饱和,然后缓慢冷却,析出晶核,生长成单晶。
一般,水,DMF, DMSO,尤其是离子液体适用此方法。
☆条件:溶解度随温度变化比较大。
☆经验:高温中溶解度越大越好,完全溶解。
☆推广:建议大家考虑使用离子液体做溶剂,尤其是对多核或者难溶性的配合物。
四、接触法
* 原理:如果配合物极易由二种或二种以上的物种合成,选择性高且所形成的配合物很难找到溶剂溶解,则可使原料缓慢接触,在接触处形成晶核,再长大形成单晶。
一般无机合成,快反应使用此方法。
* 方法: 1.用U形管,可采用琼脂降低离子扩散速度。
2.用直管,可做成两头粗中间细。
3.用缓慢滴加法或稀释溶液法(对反应不很快的体系可采用)
4.缓慢升温度(对温度有要求的体系适用)
经验:原料的浓度尽可能的降低,可以人为的设定浓度或比例。
0.1g~0.5g的溶质量即可。
五、高压釜法
★原理:利用水热或溶剂热,在高温高压下,是体系经过一个析出晶核,生长成单晶的过程,因高温高压条件下,可发生许多不可预料的反应。
★方法:将原料按组合比例放入高压釜中,选择好溶剂,利用溶剂的沸点选择体系的温度,高压釜密封好后放入烘箱中,调好温度,反应1~4小时均可。
然后,关闭烘箱,冷至室温,打开反应釜,观察情况按如下过程处理:
1 没有反应——重新组合比例,调节条件,包括换溶剂,调pH值,加入新组分等。
2. 反应但全是粉末,且粉末什么都不溶解,首先从粉末中挑选单晶或晶体,若不成,
A:改变条件,换配体或加入新的盐,如季铵盐,羧酸盐等;
B:破坏性实验,设法使其反应变成新物质。
3.部分固体,部分在溶液中:首先通过颜色或条件变化推断两部分的大致组分,是否相同组成,固体挑单晶,溶液挥发培养单晶,若组成不同固体按1或2的方法处理。
4.全部为溶液——旋蒸得到固体,将固体提纯,将主要组成纯化,再根据特点接上述四种单晶培养方法培养单晶。
1.本人只会培养单晶不会解析结构,有关单晶的软件我都是在网上免费下的。
搜索关键词为:软件名+FREE.
2.这几天刚好参观了一个金属有机实验室,学到了金属配合物单晶培养-无水无氧
条件下的单晶培养,特与大家共享,麻烦的方法我就不说了,最简单的方法就是将你的固体样品加入一带橡皮塞的容器(最常用的就是核磁管,塞子不是我们常用的硬塞子,而是软的橡皮塞(随便什么塞子都行,只要能密封且能扎针头),先抽真空,然后通氮气,再用注射器加入良性溶剂,充分溶解(超声),然后再用注射器沿器壁加入不良溶剂即可。
(网上的无水无氧方法不是用到真空线就是用到schlenk瓶,一般的实验室哪有这东西?)
3。
还有一种稍复杂的方法
即加工一个能塞翻口塞的双层套管(上部是相通的),方法同上,不过不良溶剂是加在两层管之间,即上述方法是液相扩散法,而本方法是气相扩散法。
再补充一个最简单的方法:
在上用“金属配合物单晶”搜索,你不但能学到单晶培养知识,同时能了解许多你以前不知道的有用的化学论坛
单晶高手的经验:简单、实用-给搞有机的
版上已有一些单晶培养经验,我个人感觉有关键细节没有写出,特说说我的经验。
本文主要针对搞有机的。
配合物的单晶培养,各实验室都有家传,而且以此为主业,不必看本文。
1.单晶培养的方法多种多样,我们没必要掌握那些难以操作的,如升华法、共结晶
法等。
最简单的最实用。
常用的有1.溶剂缓慢挥发法;2.液相扩散法;3.气相扩散
法。
99%的单晶是用以上三种方法培养出来的。
2.单晶培养所需样品用量
一般以10-25mg为佳,如果你只有2mg左右样品,也没关系,但这时就要选择液相扩散法和气相扩散法,不能使用溶剂缓慢挥发法。
3.单晶培养的样品的预处理
样品溶解后一定要过滤,不能用滤纸,而是用一小团棉花轻轻的塞在滴管的中下部或下部,不要塞太紧,否则流的太慢。
样品当然是越纯越好,不过如果实在没办法弄纯也没关系,培养一次就相当于提纯了一次,我经常用一些TLC显示有杂点的东西长单晶,但得多养几次。
4.一定要做好记录
一次就得到单晶的可能性比较小。
因此最好的方法就是在第一次培养单晶的时候,采取少量多溶剂体系的办法。
如果你有50mg样品,建议你以5mg为一单位,这样你可以同时实验10种溶剂体系,而不是选两种溶剂体系,每个体系25mg。
这是做好记录就特别重要,以免下次又采用已经失败的溶剂体系,而且单晶解析时必须知道所用的溶剂。
5.培养单晶时,最好放到没人碰的地方,这点大家都知道。
我想说的是你不能一天去看几次也不能放在那里5,6天不管。
也许有的溶剂体系一天就析出了晶体,结果
5天后,溶剂全干了。
一般一天看一次合适,看的时候不要动它。
明显不行的体系(如析出絮状固体)就要重新用别的溶剂体系再重新培养。
6.液相扩散法中良溶剂与不良溶剂的比例最好为1:2-1:4。
7.烷基链超过4个碳的很难培养单晶。
8.分子中最好不要有叔丁基,因为容易无序,影响单晶解析的质量。
9.含氯的取代基一般容易长单晶,如4-氯苯基取代化合物比苯基取代化合物容易长单晶。
10.有具体问题可以问我,乐意回答。
zsychem 单晶培养的经验
1.单晶培养的方法多种多样,我们没必要掌握那些难以操作的,如升华法、共结晶法等。
最
简单的最实用。
常用的有1.溶剂缓慢挥发法;2.液相扩散法;3.气相扩散法。
99%的单晶是用以上三种方法培养出来的。
2.单晶培养所需样品用量
一般以10-25mg为佳,如果你只有2mg左右样品,也没关系,但这时就要选择液相扩散法和气相扩散法,不能使用溶剂缓慢挥发法。
3.单晶培养的样品的预处理
样品溶解后一定要过滤,不能用滤纸,而是用一小团棉花轻轻的塞在滴管的中下部或下部,不要塞太紧,否则流的太慢。
样品当然是越纯越好,不过如果实在没办法弄纯也没关系,培养一次就相当于提纯了一次,我经常用一些TLC显示有杂点的东西长单晶,但得多养几次。
4.一定要做好记录
一次就得到单晶的可能性比较小。
因此最好的方法就是在第一次培养单晶的时候,采取少量多溶剂体系的办法。
如果你有50mg样品,建议你以5mg为一单位,这样你可以同时实验10种溶剂体系,而不是选两种溶剂体系,每个体系25mg。
这是做好记录就特别重要,以免下次又采用已经失败的溶剂体系,而且单晶解析时必须知道所用的溶剂。
5.培养单晶时,最好放到没人碰的地方,这点大家都知道。
我想说的是你不能一天去看几次也不能放在那里5,6天不管。
也许有的溶剂体系一天就析出了晶体,结果
5天后,溶剂全干了。
一般一天看一次合适,看的时候不要动它。
明显不行的体系(如析出絮状固体)就要重新用别的溶剂体系再重新培养。
6.液相扩散法中良溶剂与不良溶剂的比例最好为1:2-1:4。
7.烷基链超过4个碳的很难培养单晶。
8.分子中最好不要有叔丁基,因为容易无序,影响单晶解析的质量。
9.含氯的取代基一般容易长单晶,如4-氯苯基取代化合物比苯基取代化合物容易
wjxxj金属配合物单晶的培养
方法一:挥发
用金属配合物的良溶剂将其溶解在小烧杯中,小烧杯的内表面越光滑单晶性越好,否则晶体形状不好缺陷多就会给后面的收单晶衍射数据带来麻烦,甚至会造成无法解晶体结构,那将是非常可惜的;烧杯用滤纸或塑料薄膜封口防止灰尘落入,同时减慢挥发速度,长出较好晶形的单晶,一般挥发性稍差的溶剂用滤纸,如,水等。
静置至发现满意的晶体出现。
方法二:扩散
用金属配合物的良溶剂将其溶解在小烧杯或广口瓶中,塑料薄膜封口(用针戳3-5个小孔),
放于盛有该金属配合物的挥发性不良溶剂(一般用乙醚)的大瓶子中。
静置至发现满意的晶体出现。
方法三:分层
将金属的水溶液放于试管下层,配体的有机溶剂溶液放于试管上层,中间是水和有机溶剂的混合溶剂,封口。
操作要小心,最好是用滴管伸进试管靠近液面缓慢滴加。
静置至发现满意的晶体出现。
以上是我在培养配合物单晶常用的方法,一般是几种方法同时做,不是每种方法都能或总能培养出单晶,更多的是取决于配合物的结晶性好坏。
总之就是多试:不同的温度、溶剂、混合溶剂的比例……
1.制备结晶,要注意选择合宜的溶剂和应用适量的溶剂。
合宜的溶剂,最好是在冷时对所需要的成分溶解度较小,而热时溶解度较大。
溶剂的沸点亦不宜太高。
一般常用甲醇、丙酮、氯仿、乙醇、乙酸乙醋等。
但有些化合物在一般溶剂中不易形成结晶,而在某些溶剂中则易于形成结晶。
2.制备结晶的溶液,需要成为过饱和的溶液。
一般是应用适量的溶剂在加温的情况下,将化合物溶解再放置冷处。
如果在室温中可以析出结晶,就不一定放置于冰箱中,以免伴随结晶析出更多的杂质。
“新生态”的物质即新游离的物质或无定形的粉未状物质,远较晶体物质的溶解度大,易于形成过饱和溶液。
一般经过精制的化合物,在蒸去溶剂抽松为无定形粉未时就是如此,有时只要加入少量溶剂,往往立即可以溶解,稍稍放置即能析出结晶。
3.制备结晶溶液,除选用单一溶剂外,也常采用混合溶剂。
一般是先将化合物溶于易溶的溶剂中,再在室温下滴加适量的难溶的溶剂,直至溶液微呈浑浊,并将此溶液微微加温,使溶液完全澄清后放置。
4.结晶过程中,一般是溶液浓度高,降温诀,析出结晶的速度也快些。
但是其结晶的颗粒较小,杂质也可能多些。
有时自溶液中析出的速度太快,超过化合物晶核的形成劝分子定向排列的速度,往往只能得到无定形粉未。
有时溶液太浓,粘度大反而不易结晶化。
如果溶液浓度适当,温度慢慢降低,有可能析出结晶较大而纯度较高的结晶。
有的化合物其结晶的形成需要较长的时间。
5.制备结晶除应注意以上各点外,在放置过程中,最好先塞紧瓶塞,避免液面先出现结晶,而致结晶纯度较低。
如果放置一段时间后没有结晶析出,可以加入极微量的种晶,即同种化合物结晶的微小颗粒。
加种晶是诱导晶核形成常用而有效的手段。
一般地说,结晶化过程是有高度选择性的,当加入同种分子或离子,结晶多会立即长大。
而且溶液中如果是光学异构
体的混合物,还可依种晶性质优先析出其同种光学异构体。
没有种晶时,可用玻璃棒蘸过饱和溶液一滴,在空气中任溶剂挥散,再用以磨擦容器内壁溶液边缘处,以诱导结晶的形成。
如仍无结晶析出,可打开瓶塞任溶液逐步挥散,慢慢析晶。
或另选适当溶剂处理,或再精制一次,尽可能除尽杂质后进行结晶操作。
6.在制备结晶时,最好在形成一批结晶后,立即倾出上层溶液,然后再放置以得到第二批结晶。
晶态物质可以用溶剂溶解再次结晶精制。
这种方法称为重结晶法。
结晶经重结晶后所得各部分母液,再经处理又可分别得到第二批、第三批结晶。
这种方法则称为分步结晶法或分级结晶法。
晶态物质在一再结晶过程中,结晶的析出总是越来越快,纯度也越来越高。
分步结晶法各部分所得结晶,其纯度往往有较大的差异,但常可获得一种以上的结晶成分,在未加检查前不要贸然混在一起。
7.化合物的结晶都有一定的结晶形状、色泽、熔点和熔距,一可以作为鉴定的初步依据。
这是非结晶物质所没有的物理性质。
化合物结晶的形状和熔点往往因所用溶剂不同而有差异。
原托品碱在氯仿中形成棱往状结晶,熔点207℃;在丙酮中则形成半球状结晶,熔点203℃;在氯仿和丙酮混合溶剂中则形成以上两种晶形的结晶。
所以文献中常在化合物的晶形、熔点之后注明所用溶剂。
一般单体纯化合物结晶的熔距较窄,有时要求在0.5℃左右,如果熔距较长则表示化合物不纯。
不知这些可否对各位朋友有些许帮助?
单晶培养的具体操作方法:四条注意事项:1、结晶容器的选择(敞口烧杯,既不能用从未使用过的新烧杯,也不能用很旧的烧杯。
可能原因为,烧杯太新,不利于晶核的形成,而太旧则形成晶核的部位太多,不利于单晶的生长。
)2、溶剂的选择(合适的溶剂将物质溶解,溶解性不能太好也不能太差且具有一定的挥发性,不能挥发太快也不能太慢)3、结晶速度(尽量慢的让溶剂挥发,一旦析出结晶,过滤,可能得到单晶也可能是混晶,千万别用母液洗晶体)4、环境的选择(放在一个平稳的地方,千万不能有一丝一毫的震动,否则即使得到单晶也全完了)。
单晶,多晶,非晶,微晶,无定形,准晶的区别
理解这几个概念,首先要理解晶体概念,以及晶粒概念。
我想学固体物理的或者金属材料的都会对这些概念很清楚!
自然界中物质的存在状态有三种:气态、液态、固态
固体又可分为两种存在形式:晶体和非晶体
晶体是经过结晶过程而形成的具有规则的几何外形的固体;晶体中原子或分子在空间按一定
规律周期性重复的排列。
晶体共同特点:
均匀性:晶体内部各个部分的宏观性质是相同的。
各向异性:晶体种不同的方向上具有不同的物理性质。
固定熔点:晶体具有周期性结构,熔化时,各部分需要同样的温度。
规则外形:理想环境中生长的晶体应为凸多边形。
对称性:晶体的理想外形和晶体内部结构都具有特定的对称性。
对晶体的研究,固体物理学家从成健角度分为
离子晶体原子晶体分子晶体金属晶体
显微学则从空间几何上来分,有七大晶系,十四种布拉菲点阵,230种空间群,用拓扑学,群论知识去研究理解。
可参考《晶体学中的对称群》一书(郭可信,王仁卉著)。
与晶体对应的,原子或分子无规则排列,无周期性无对称性的固体叫非晶,如玻璃,非晶碳。
一般,无定型就是非晶英语叫amorphous,也有人叫glass(玻璃态).
晶粒是另外一个概念,搞材料的人对这个最熟了。
首先提出这个概念的是凝固理论。
从液态转变为固态的过程首先要成核,然后生长,这个过程叫晶粒的成核长大。
晶粒内分子、原子都是有规则地排列的,所以一个晶粒就是单晶。
多个晶粒,每个晶粒的大小和形状不同,而且取向也是凌乱的,没有明显的外形,也不表现各向异性,是多晶。
英文晶粒用Grain表示,注意与Particle是有区别的。
有了晶粒,那么晶粒大小(晶粒度),均匀程度,各个晶粒的取向关系都是很重要的组织(组织简单说就是指固体微观形貌特征)参数。
对于大多数的金属材料,晶粒越细,材料性能(力学性能)越好,好比面团,颗粒粗的面团肯定不好成型,容易断裂。
所以很多冶金学家材料科学家一直在开发晶粒细化技术。
科学总是喜欢极端,看得越远的镜子叫望远镜;看得越细的镜子叫显微镜。
晶粒度也是这样的,很小的晶粒度我们喜欢,很大的我们也喜欢。
最初,显微镜倍数还不是很高的时候,能看到微米级的时候,觉得晶粒小的微米数量是非常小的了,而且这个时候材料的力学性能特别好。
人们习惯把这种小尺度晶粒较微晶。
然而科学总是发展的,有一天人们发现如果晶粒度在小呢,材料性能变得不可思议了,什么量子效应,隧道效应,超延展性等等很多小尺寸效应都出来了,这就是现在很热的,热得不得了的纳米,晶粒度在1nm-100nm之间的晶粒我们叫纳米晶。
再说说非晶,非晶是无规则排列,无周期无对称特征,原子排列无序,没有一定的晶格常数,。