2014年线性代数考研笔记-知识点总结

合集下载

线性代数知识点全归纳

线性代数知识点全归纳

线性代数知识点全归纳线性代数是数学的一个重要分支,研究向量空间及其上的线性映射。

它广泛应用于物理、工程、计算机科学等领域。

下面将对线性代数的主要知识点进行全面归纳。

1.矩阵及其运算:矩阵是线性代数的基本概念之一,由若干行和列组成的方阵。

常见的矩阵运算有加法、减法、数乘、矩阵乘法和转置等。

2.向量及其运算:向量是一个有序数组,具有大小和方向。

常见的向量运算有加法、减法、数乘、点乘和叉乘等。

3.线性方程组:线性方程组是线性代数的核心内容之一、包括齐次线性方程组和非齐次线性方程组。

解线性方程组的方法有高斯消元法、克莱姆法则和矩阵求逆等。

4.向量空间与线性变换:向量空间是线性代数的基本概念之一,包含零向量、加法和数乘运算。

线性变换是一种保持向量空间结构的映射。

5.基与维度:基是向量空间的一组线性无关向量,可以由基线性组合得到向量空间中的任意向量。

维度是向量空间中基的数量。

6.线性相关与线性无关:向量组中的向量线性相关指存在非零的线性组合,其系数不全为零。

如果向量组中的向量线性无关,则任何线性组合的系数都为零。

7.线性变换与矩阵:线性变换可以用矩阵表示,矩阵的列向量表示线性变换作用于基向量上后的结果。

矩阵乘法可以将多个线性变换组合为一个线性变换。

8.特征值与特征向量:对于一个线性变换,如果存在一个非零向量,使得它在该线性变换下只发生伸缩而不发生旋转,那么这个向量称为该线性变换的特征向量,对应的伸缩比例为特征值。

9.二次型与正定矩阵:二次型是线性代数中的重要概念,是一个关于变量的二次函数。

正定矩阵是指二次型在所有非零向量上的取值都大于零。

10.内积与正交性:内积是向量空间中的一种运算,它满足线性性、对称性和正定性。

正交性是指两个向量的内积为零,表示两个向量互相垂直。

11.正交变换与正交矩阵:正交变换是指保持向量长度和向量之间夹角的变换。

正交矩阵是一种特殊的方阵,它的行向量和列向量两两正交,并且长度为112.奇异值分解与特征值分解:奇异值分解将一个矩阵分解为三个矩阵的乘积,其中一个是正交矩阵,另外两个是对角矩阵。

线性代数知识点归纳

线性代数知识点归纳

线性代数知识点归纳线性代数复习要点第一部分行列式1.排列的逆序数2.行列式按行(列)展开法则3.行列式的性质及行列式的计算行列式的定义行列式的计算:①(定义法)②(降阶法)行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.③(化为三角型行列式)上三角、下三角行列式等于主对角线上元素的乘积④若都是方阵(不必同阶)则⑤关于副对角线:⑦型公式:⑧(升阶法)在原行列式中增加一行一列,保持原行列式不变的方法.⑨(递推公式法)对阶行列式找出与或,之间的一种关系——称为递推公式,其中,,等结构相同,再由递推公式求出的方法称为递推公式法.(拆分法)把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以例计算.⑩(数学归纳法)2.对于阶行列式,恒有:,其中为阶主子式;3.证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值.4.代数余子式和余子式的关系:第二部分矩阵矩阵的运算性质矩阵求逆矩阵的秩的性质矩阵方程的求解矩阵的定义由个数排成的行列的表称为矩阵.记作:或(同型矩阵:两个矩阵的行数相等、列数也相等.(矩阵相等:两个矩阵同型,且对应元素相等.(矩阵运算a.矩阵加(减)法:两个同型矩阵,对应元素相加(减).b.数与矩阵相乘:数与矩阵的乘积记作或,规定为.c.矩阵与矩阵相乘:设,,则,其中注:矩阵乘法不满足:交换律、消去律,即公式不成立.a.分块对角阵相乘:b.用对角矩阵乘一个矩阵相当于用的对角线上的各元素依次乘此矩阵的向量;用对角矩阵乘一个矩阵相当于用的对角线上的各元素依次乘此矩阵的向量d.两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,⑤矩阵的转置:把矩阵的行换成同序数的列得到的新矩阵,叫做的转置矩阵,记作.a.对称矩阵和反对称矩阵:是对称矩阵.是反对称矩阵.b.分块矩阵的转置矩阵:⑥伴随矩阵:,为中各个元素的代数余子式.,,.分块对角阵矩阵转置的性质:矩阵可逆的性质:伴随矩阵的性质:(无条件恒成立) 2.逆矩阵的求法方阵可逆.①伴随矩阵法:②初等变换法③分块矩阵的逆矩阵:④,⑤配方法或者待定系数法(逆矩阵的定义)行阶梯形矩阵可画出一条阶梯线,线的下方全为;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零.当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是时,称为行最简形矩阵初等变换与初等矩阵对换变换、倍乘变换、倍加(或消法)变换初等变换初等矩阵初等矩阵的逆初等矩阵的行列式 () () () ?矩阵的初等变换和初等矩阵的关系:(对施行一次初等变换得到的矩阵,等于用相应的初等矩阵乘;(对施行一次初等变换得到的矩阵,等于用相应的初等矩阵乘.注意:初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵.矩阵的秩关于矩阵秩的描述:①、,中有阶子式不为0,阶子式(存在的话)全部为0;②、,的阶子式全部为0;③、,中存在阶子式不为0;矩阵的秩的性质:①;;≤≤②③④⑤≤⑥若、可逆,则;即:可逆矩阵不影响矩阵的秩.⑦若;若⑧等价标准型.⑨≤,≤≤⑩,求秩矩阵方程的解法):设法化成第三部分线性方程组1.向量组的线性表示2.向量组的线性相关性3.向量组的秩4.向量空间5.线性方程组的解的判定6.线性方程组的解的结构(通解)(1)齐次线性方程组的解的结构(基础解系与通解的关系)(2)非齐次线性方程组的解的结构(通解)线性表示:对于给定向量组,若存在一组数使得,则称是的线性组合,或称称可由的线性表示.线性表示的判别定理:可由的线性表示由个未知数个方程的方程组构成元线性方程:①、有解②、③、(全部按列分块,其中);④、(线性表出)⑤、有解的充要条件:(为未知数的个数或维数)2.设的列向量为的列向量为,,为的解可由线性表示.即:的列向量能由的列向量线性表示,为系数矩阵. 同理:的行向量能由的行向量线性表示,为系数矩阵. 即:线性相关性判别方法:法1法2法3推论线性相关性判别法(归纳)线性相关性的性质零向量是任何向量的线性组合零向量与任何同维实向量正交单个零向量线性相关;单个非零向量线性无关部分相关整体必相关;整体无关部分必无关原向量组无关接长向量组无关;接长向量组相关原向量组相关两个向量线性相关对应元素成比例;两两正交的非零向量组线性无关向量组中任一向量≤都是此向量组的线性组合若线性无关,而线性相关则可由线性表示且表示法一向量组的秩向量组的极大无关组所含向量的个数,称为这个向量组的秩.记作矩阵等价经过有限次初等变换化为向量组等价和可以相互线性表示记作:矩阵的行向量组的秩列向量组的秩阶梯形矩阵的秩等于它的非零行的个数矩阵的初等变换不改变矩阵的秩且不改变行向量间的线性关系向量组可由向量组线性表示且,则线性相关向量组线性无关且可由线性表示则.向量组可由向量组线性表示且则两向量组等价任一向量组和它的极大无关组等价向量组极大无关组若两个线性无关的向量组等价则它们包含的向量个数相等设是矩阵若,的行向量线性无关;线性方程组的矩阵式向量式(1)解得判别定理(2)线性方程组解的性质:判断是的基础解系的条件:①线性无关;②是的解;③.(4)求非齐次线性方程组Ax=b的通解的步骤(5)其他性质一个齐次线性方程组的基础解系不唯一.√若是的一个解,是的一个解线性无关√与同解(列向量个数相同):①它们的极大无关组相对应从而秩相等②它们对应的部分组有一样的线性相关性③它们有相同的内在线性关系与的行向量组等价齐次方程组与同解(左乘可逆矩阵);矩阵与的列向量组等价(右乘可逆矩阵).第四部分方阵的特征值及特征向量1.施密特正交化过程2.特征值、特征向量的性质及计算3.矩阵的相似对角化,尤其是对称阵的相似对角化1.(标准正交基个维线性无关的向量两两正交每个向量长度为1与的内积(.记为:④向量的长度⑤是单位向量的向量.2.内积的性质:①正定性:②对称性:③线性:(设A是一个n阶方阵,若存在数和n维非零列向量,使得,则称是方阵A的一个特征值,为方阵A的对应于特征值的一个特征向量.(的特征矩阵).(的特征多项式).④是矩阵的特征多项式⑤,称为矩阵的迹.⑥上三角阵、下三角阵、对角阵的特征值就是主对角线上的各元素若则为的的基础解系即为属于的线性无关的特征向量.⑧一定可分解为=、,从而的特征值为:,.为各行的公比,为各列的公比.⑨若的全部特征值,是多项式,则:①若满足的任何一个特征值必满足②的全部特征值为;.⑩与有相同的特征值,但特征向量不一定相同.特征值与特征向量的求法(1)写出矩阵A的特征方程,求出特征值.(2)根据得到A对应于特征值的特征向量.设的基础解系为其中.则A对应于特征值的全部特征向量为其中为任意不全为零的数.(与相似(为可逆矩阵)(与正交相似(为正交矩阵)(可以相似对角化与对角阵相似.(称是的相似标准形)6.相似矩阵的性质:①,从而有相同的特征值,但特征向量不一定相同.是关于的特征向量,是关于的特征向量.②③从而同时可逆或不可逆④⑤若与相似,则的多项式与的多项式相似.矩阵对角化的判定方法①n阶矩阵A可对角化(即相似于对角阵)的充分必要条件是A有n 个线性无关的特征向量.这时,为的特征向量拼成的矩阵,为对角阵,主对角线上的元素为的特征值.设为对应于的线性无关的特征向量,则有:.②可相似对角化,其中为的重数恰有个线性无关的特征向量.:当为的重的特征值时,可相似对角化的重数基础解系的个数.③若阶矩阵有个互异的特征值可相似对角化.实对称矩阵的性质:①特征值全是实数,特征向量是实向量;②不同特征值对应的特征向量必定正交;:对于普通方阵,不同特征值对应的特征向量线性无关;③一定有个线性无关的特征向量.若有重的特征值,该特征值的重数=;④必可用正交矩阵相似对角化,即:任一实二次型可经正交变换化为标准形;⑤与对角矩阵合同,即:任一实二次型可经可逆线性变换化为标准形;⑥两个实对称矩阵相似有相同的特征值.9.正交矩阵正交矩阵的性质①;②;③正交阵的行列式等于1或-1④是正交阵则也是正交阵⑤两个正交阵之积仍是正交阵⑥的行(列)向量都是单位正交向量组.10.11.施密特线性无关单位化:其中为对称矩阵,(与合同.()(正惯性指数二次型的规范形中正项项数负惯性指数二次型的规范形中负项项数符号差(为二次型的秩)④两个矩阵合同它们有相同的正负惯性指数他们的秩与正惯性指数分别相等.⑤两个矩阵合同的充分条件是:与等价⑥两个矩阵合同的必要条件是:2.经过化为标准形.(正交变换法(配方法(1)若二次型含有的平方项,则先把含有的乘积项集中,然后配方,再对其余的变量同样进行,直到都配成平方项为止,经过非退化线性变换,就得到标准形;若二次型中不含有平方项,但是(),则先作可逆线性变换,化二次型为含有平方项的二次型,然后再按(1)中方法配方.(初等变换法3. 正定二次型不全为零,.正定矩阵正定二次型对应的矩阵.4.为正定二次型(之一成立):(1),;(2)的特征值全大于;(3)的正惯性指数为;(4)的所有顺序主子式全大于;(5)与合同,即存在可逆矩阵使得;(6)存在可逆矩阵,使得;5.(1)合同变换不改变二次型的正定性.(2)为正定矩阵;.(3)为正定矩阵也是正定矩阵.(4)与合同,若为正定矩阵为正定矩阵(5)为正定矩阵为正定矩阵,但不一定为正定矩阵. 半正定矩阵的判定一些重要的结论:全体维实向量构成的集合叫做维向量空间.√关于:①称为的标准基,中的自然基,单位坐标向量;②线性无关;③;④;⑤任意一个维向量都可以用线性表示.7第1页共20页。

线性代数知识点总结

线性代数知识点总结

向量的模长
• 定义:向量的大小
• 计算公式:|v| = √(x² + y² + ... + n²)
向量的加法运算
向量加法的定义
• 两个向量的和是一个新的向量,其坐标等于两个向量坐标的和
• 向量加法满足交换律和结合律
向量加法的计算
• 直接将两个向量的对应坐标相加
• 可以用坐标法表示向量加法
向量加法的性质
正定二次型
• 二次型的标准化是将二次型表示为标准二次型的形式
• 正定二次型是指二次型对应的矩阵是正定矩阵
• 标准二次型的形式为f(x) = x′Ax + λx′x
• 正定二次型的二次函数在向量空间的原点处取得最小值
08
线性规划
线性规划问题的定义与模型
线性规划问题的定义
• 线性规划问题是一种优化问题,要求求解一组变量的最优值
06
特征值与特征向量
特征值与特征向量的定义与性质
01
特征值的定义
• 特征值是线性变换特征方程的根
• 特征值表示线性变换对向量的放大倍数
02
特征向量的定义
• 特征向量是线性变换特征方程的解向量
• 特征向量表示线性变换对向量的方向
03
特征值与特征向量的性质
• 特征值具有唯一性和稳定性
• 特征向量具有线性无关性
二次型的定义与表示
二次型的定义
二次型的表示
• 二次型是一种二次函数,表示为f(x) = Ax² + Bx + C
• 二次型可以用矩阵表示,为f(x) = x′Ax + x′Bx + x′Cx
• 其中,A、B、C是常数矩阵
• 其中,A、B、C是二次型的系数矩阵

线性代数知识点全面总结

线性代数知识点全面总结

线性代数知识点全面总结线性代数是研究向量空间、线性变换、矩阵、线性方程组及其解的一门数学学科。

它是高等数学的基础课程之一,广泛应用于物理学、工程学、计算机科学等领域。

下面将全面总结线性代数的知识点。

1.向量向量是线性代数的基本概念之一,它表示有方向和大小的物理量。

向量可以表示为一个有序的元素集合,也可以表示为一个列向量或行向量。

向量的加法、减法、数乘等运算满足一定的性质。

2.向量空间向量空间是一组向量的集合,其中的向量满足一定的性质。

向量空间中的向量可以进行线性组合、线性相关、线性无关等运算。

向量空间的维数是指向量空间中线性无关向量的个数,也称为向量空间的基的个数。

3.矩阵矩阵是线性代数中的另一个重要概念,它是由若干个数排成的矩形阵列。

矩阵可以表示线性方程组、线性变换等。

矩阵的加法、数乘运算满足一定的性质,矩阵的乘法满足结合律但不满足交换律。

4.线性方程组线性方程组是由线性方程组成的方程组。

线性方程组可以表示为矩阵乘法的形式,其中未知数对应为向量。

线性方程组的解可以通过高斯消元法、矩阵的逆等方法求解。

5.行列式行列式是一个包含数字的方阵。

行列式的值可以通过一系列的数学运算求得,它可以表示方阵的一些性质,例如可逆性、行列式的大小等。

6.矩阵的特征值与特征向量矩阵的特征值和特征向量是矩阵的重要性质。

特征值表示线性变换后的方向,特征向量表示与特征值对应的方向。

通过求解特征值和特征向量可以分析矩阵的性质,例如对角化、矩阵的相似等。

7.线性变换线性变换是指一个向量空间到另一个向量空间的映射,它满足线性性质。

线性变换可以通过矩阵的乘法表示,矩阵中的元素代表了向量的变换规则。

8.最小二乘法最小二乘法是一种通过最小化误差的平方和来求解线性方程组的方法。

最小二乘法可以用于求解多项式拟合、数据拟合等问题,它可以通过求矩阵的伪逆来得到解。

9.正交性与正交变换正交性是指向量或函数满足内积为零的性质。

正交变换是一种保持向量长度和夹角不变的线性变换。

04184线性代数知识点

04184线性代数知识点

b b1. 已知 2 阶行列式 a 1 a 1= N , b 1 b c 1 c 线性代数知识点 = n ,则 b 1 b 2 a 1 + c 1 a 2 + c 22. 设 A 是 n 阶矩阵,C 是 n 阶正交阵,且 B=C T AC ,则 A 与 B 等价、A 与 B 有相同的特征值、A 与 B 相似3. n 元线性方程组 Ax=b 有两个解 a 、c ,则 a-c 是 Ax=0 的解。

4.4.设 A ,B ,C 均为 n 阶方阵,AB= BA ,AC=CA ,则 ABC=BCA5. 非齐次线性方程组 Ax=b 中,系数矩阵 A 和增广矩阵的秩都等于 4,A 是 4×6 矩阵,则方程组有无穷多解6. α,β,γ是三维列向量,且|α,β,γ|≠0,则向量组α,β,γ的线性相关性是线性无关7.(-1,1)不能表示成(1,0)和(2,0)的线性组合8.(4,0)能表示成(-1,2),(3,2)和(6,4)的线性组合,且系数不唯一9.设β=(1,0,1),γ=(1,1,-1),则满足条件 3x+β=γ的 x 为 1/3(0, 1, -2)10.设α,β,γ都是 n 维向量,k ,l 是数,(α+β)+γ=α+(β+γ)、α+β=β+α、α+(-α)=011.属于不同特征值的特征向量必线性无关、相似矩阵必有相同的特征值、特征值相同的矩阵未必相似12. 已知矩阵 A = 5 2 1有一个特征值为 0,则 x= 2.5 13. 已知 3 阶矩阵 A 的特征值为 1,2,3,则|A-4E|=-614. 已知 f (x )=x 2+x+1 方阵 A 的特征值 1,0,-1,则 f (A )的特征值为 3,1,115. 要保证 n 阶实对称阵 A 为正定,则 A -1 正定 、A 合同于单位阵、A 的正惯性指数等于 n16.二次型 f (x 1,x 2,x 3)= x 12+ x 22+x 32+2x 1x 2+2x 1x 3+2x 2x 3,其秩为 117. 设 f=X T AX ,g=X T BX 是两个 n 元正定二次型,则 X T ABX 未必是正定二次型。

线性代数总结知识点

线性代数总结知识点

线性代数总结知识点线性代数是数学的一个分支,主要研究向量、向量空间(也称为线性空间)、线性变换以及线性方程组的理论。

它是现代数学的基础工具之一,广泛应用于物理学、工程学、计算机科学、经济学和社会科学等领域。

以下是线性代数的一些核心知识点总结:1. 向量与向量运算- 向量的定义:向量可以是有序的数字列表,用于表示空间中的点或方向。

- 向量加法:两个向量对应分量相加得到新的向量。

- 标量乘法:一个向量与一个标量相乘,每个分量都乘以该标量。

- 向量的数量积(点积):两个向量的对应分量乘积之和,用于计算向量的长度或投影。

- 向量的向量积(叉积):仅适用于三维空间,结果是一个向量,表示两个向量平面的法向。

2. 矩阵- 矩阵的定义:一个由数字排列成的矩形阵列。

- 矩阵加法和减法:对应元素相加或相减。

- 矩阵乘法:第一个矩阵的列数必须等于第二个矩阵的行数,结果矩阵的每个元素是两个矩阵对应行列的乘积之和。

- 矩阵的转置:将矩阵的行变成列,列变成行。

- 单位矩阵:对角线上全是1,其余位置全是0的方阵。

- 零矩阵:所有元素都是0的矩阵。

3. 线性相关与线性无关- 线性相关:如果一组向量中的任何一个可以通过其他向量的线性组合来表示,则这组向量是线性相关的。

- 线性无关:如果只有所有向量的零组合才能表示为零向量,则这组向量是线性无关的。

4. 向量空间(线性空间)- 定义:一组向量,它们在向量加法和标量乘法下是封闭的。

- 子空间:向量空间的子集,它自身也是一个向量空间。

- 维数:向量空间的基(一组线性无关向量)的大小。

- 基和坐标:向量空间的一组基可以用来表示空间中任何向量的坐标。

5. 线性变换- 定义:保持向量加法和标量乘法的函数。

- 线性变换可以用矩阵表示,矩阵的乘法对应线性变换的复合。

6. 特征值和特征向量- 特征值:对应于线性变换的标量,使得变换后的向量与原向量成比例。

- 特征向量:与特征值对应的非零向量,变换后的向量与原向量方向相同。

线性代数知识点总结汇总

线性代数知识点总结汇总

线性代数知识点总结1行列式(一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变行列式的某一行(列)的所有元素都乘以同一数 k,等于用数k 乘此行列式 行列式中如果某一行(列)的元素都是两组数之和,那么这个 行列式就等于两个行列式之和。

(5) —行(列)乘k 加到另一行(列),行列式的值不变。

(6)两行成比例,行列式的值为0。

(二)重要行列式 4、上(下)三角(主对角线)行列式的值 等于主对角线元素的乘积n(n -1)5、副对角线行列式的值等于副对角线元素的乘积乘 & La place 展开式:(A 是m 阶矩阵,B 是n 阶矩阵),则7、n 阶(n 》2)范德蒙德行列式(2)两行(列) 互换,行列式变号(3)提公因式: (4)拆列分配:9、按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0(四)行列式公式 10、行列式七大公式:|kA|=k n |A|I 创=匸[人若A 的特征值入1入2……?n ,则 =1(7)若A 与B 相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1 )非齐次线性方程组的系数行列式不为0 ,那么方程为唯一解 1 1 电 -1-2 = …# =n (兀-巧)■ T …严数学归纳法证明对角线的元素为a, ★ 8 其余元素为b 的行列式的值:(三)按行(列) 展开(3) (4) (5) |AB|=|A ||A T |=|A| |A --|B|-1|A*|=|A|n-1D. X, -— “ J - 1丄…』 'D 」(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为 0(3)若齐次线性方程组的系数行列式不为 0,则齐次线性方程组只有0解;如 果方程组有非零解,那么必有 D=0。

《线性代数》知识点_归纳整理

《线性代数》知识点_归纳整理

《线性代数》知识点_归纳整理线性代数是数学的一个重要分支,研究向量空间及其上的线性映射、线性方程组和矩阵等基本概念和性质。

它在数学、物理、工程、计算机科学等领域都有广泛的应用。

下面将对线性代数的一些重要知识点进行归纳整理。

1.向量空间:向量空间是线性代数的核心概念,它是一组向量的集合,满足加法和数乘运算的封闭性、结合律、交换律和分配律等性质。

向量空间的例子包括实数空间R^n、矩阵空间M(m,n)等。

2.线性映射:线性映射是指一个向量空间到另一个向量空间的映射,满足保持加法和数乘运算的性质。

线性映射可以表示为矩阵乘法的形式,其中矩阵的每一列对应于一个基向量在映射后的值。

3.线性方程组:线性方程组是由一组线性方程组成的方程组,其中每个方程都是关于未知数的线性表达式。

解线性方程组的方法包括高斯消元法、矩阵求逆法和克拉默法则等。

4.矩阵:矩阵是由数按矩形排列成的数组,是线性代数的重要工具。

矩阵可以表示线性映射、线性方程组和向量空间的基等。

矩阵的运算包括加法、数乘、矩阵乘法和转置等。

5.行列式:行列式是一个标量,它由矩阵的元素按一定规则计算得到。

行列式可以用于判断方阵的可逆性、计算线性映射的缩放因子和求解线性方程组等。

6.特征值和特征向量:特征值和特征向量是矩阵的重要性质。

特征值是一个标量,特征向量是一个非零向量,它们满足A*v=lambda*v的关系式,其中A是矩阵,v是特征向量,lambda是特征值。

特征值和特征向量可以用于矩阵的对角化和矩阵的谱分解等。

7.正交性:正交性是指向量之间的垂直关系。

在内积空间中,如果两个向量的内积为零,则它们是正交的。

正交向量组和正交矩阵是线性代数中常见的概念,它们在解线性方程组和进行特征值分解等方面具有重要作用。

8.线性相关性和线性无关性:线性相关性和线性无关性是向量组的重要性质。

如果一个向量可以由其他向量线性表示,则称这个向量与其他向量线性相关;如果一个向量不能由其他向量线性表示,则称这个向量与其他向量线性无关。

(完整版)线性代数知识点总结

(完整版)线性代数知识点总结

线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n nn nj j j j j j j j j nija a a a ...)1(21212121)..(∑-=τ(奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。

(转置行列式TD D =) ②行列式中某两行(列)互换,行列式变号。

推论:若行列式中某两行(列)对应元素相等,则行列式等于零。

③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。

推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。

④行列式具有分行(列)可加性⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。

克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,。

化为三角形行列式 ⑤上(下)三角形行列式:行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:n m A *(零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) 矩阵的运算:加法(同型矩阵)---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0 转置A A T T =)( TT T B A B A +=+)( T T kA kA =)( TT T A B AB =)((反序定理) 方幂:2121k k k kA AA +=2121)(k k k k A A +=几种特殊的矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 AB 都是n 阶对角阵数量矩阵:相当于一个数(若……)单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置 注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A=-1(非奇异矩阵、奇异矩阵|A|=0、伴随矩阵)初等变换1、交换两行(列)2.、非零k 乘某一行(列)3、将某行(列)的K 倍加到另一行(列)初等变换不改变矩阵的可逆性 初等矩阵都可逆 初等矩阵:单位矩阵经过一次初等变换得到的(对换阵 倍乘阵 倍加阵) 等价标准形矩阵⎪⎪⎭⎫ ⎝⎛=O OO I D rr矩阵的秩r(A):满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则r (AB )=r (B ) 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n n ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。

线性代数知识点全面总结

线性代数知识点全面总结

线性代数知识点全面总结线性代数是数学的重要分支,广泛应用于各个领域,如物理学、计算机科学、经济学等。

本文将全面总结线性代数的知识点,帮助读者系统地了解和掌握该学科。

1. 线性代数的基本概念1.1 向量及其表示:向量是线性代数的基本概念,可以用有序数对、矩阵或列向量表示,具有方向和大小。

1.2 矩阵及其运算:矩阵是由数字排列成的矩形数组,可以进行加法、乘法、转置等运算。

1.3 线性方程组:线性方程组是由一组线性方程组成的方程组,可以用矩阵和向量的表示形式来求解。

2. 向量空间2.1 向量空间的定义:向量空间是由一组满足一定条件的向量构成的集合,满足加法和数乘运算的封闭性。

2.2 子空间:子空间是向量空间的子集,也是向量空间,满足加法和数乘运算的封闭性。

2.3 线性无关与生成子空间:线性无关是指向量组中的向量之间不存在线性关系,生成子空间是指向量组中所有向量的线性组合的集合。

3. 线性映射3.1 线性映射的定义:线性映射是一个将一个向量空间映射到另一个向量空间的映射,保持加法和数乘运算的性质。

3.2 线性映射的矩阵表示:线性映射可以用矩阵表示,将一个向量空间的向量转化为另一个向量空间的向量。

3.3 核与像:核是线性映射中被映射为零向量的向量集合,像是线性映射中所有被映射到的向量组成的集合。

4. 矩阵的特征值与特征向量4.1 特征值和特征向量的定义:特征值是一个矩阵对应的线性变换中不改变方向的标量因子,特征向量是在特征值下发生伸缩的向量。

4.2 特征值与特征向量的计算:特征值与特征向量可以通过求解特征方程来计算。

4.3 对角化与相似矩阵:若一个矩阵相似于一个对角矩阵,则称其可对角化,对角矩阵是一个形式为对角线非零、其余元素均为零的矩阵。

5. 线性代数的应用5.1 物理学中的应用:线性代数在量子力学、力学等物理学领域有广泛应用,如描述粒子的状态和变换等。

5.2 计算机科学中的应用:线性代数在计算机图形学、机器学习等领域起到重要作用,如图像处理、数据分析等。

线性代数知识点总结归纳

线性代数知识点总结归纳

线性代数知识点总结归纳线性代数是数学中的一个重要分支,研究向量空间和线性方程组等内容。

它在许多领域都有广泛的应用,如物理学、工程学、经济学等。

下面将对线性代数的常见知识点进行总结归纳。

1.向量和向量空间:-向量是由有序的数字组成的数组,可以用于表示空间中的点、力、速度等。

-向量的运算包括加法和数乘,其中加法满足结合律和交换律,数乘满足分配律。

-向量空间是由一组向量组成的集合,满足加法和数乘的封闭性、结合律、交换律等性质。

2.线性方程组:- 线性方程组是由多个线性方程组成的方程集合,形如a1x1 + a2x2 + ... + anxn = b。

-线性方程组可以用矩阵和向量的形式表示,即Ax=b,其中A是系数矩阵,x是未知向量,b是常数向量。

-解线性方程组的方法有高斯消元法、矩阵的逆、克拉默法则等。

3.矩阵和矩阵运算:-矩阵是由数构成的矩形阵列,可以用于表示线性变换、方程组等。

-矩阵的运算包括加法、数乘和乘法。

矩阵的乘法满足结合律,但不满足交换律。

-矩阵的转置、逆矩阵、伴随矩阵是常见的矩阵运算。

4.线性变换:-线性变换是指保持向量空间的加法和数乘运算的一种映射关系。

-线性变换可以用矩阵表示,通过矩阵与向量的乘法来实现。

-线性变换有许多重要的性质,如保持向量加法、数乘运算、保持原点不变等。

5.特征值和特征向量:-特征值是线性变换中的一个重要概念,表示线性变换沿一些方向拉伸或压缩的比例因子。

-特征向量是与特征值相关联的向量,在经过线性变换后,仅被拉伸或压缩,方向不变。

-特征值和特征向量可以通过求解线性方程组(A-λI)v=0来求得。

6.内积空间:-内积空间是一个向量空间,其中定义了一个内积运算,满足对称性、线性性、正定性等性质。

-内积可以用于定义向量的长度(模)和夹角,进而可以定义正交、正交补等概念。

- 常见的内积空间包括Euclid空间和多项式空间等。

7.正交和正交投影:-正交是指两个向量的内积为零,即它们垂直于彼此。

《线性代数》知识点归纳整理

《线性代数》知识点归纳整理

《线性代数》知识点归纳整理线性代数是数学的一个分支,主要研究向量、向量空间以及线性映射等概念和性质。

它在数学领域具有广泛的应用,被广泛应用于物理学、计算机科学、经济学、工程学等领域。

以下是对《线性代数》的知识点进行归纳整理:1.矩阵和向量:矩阵是一个二维的数字阵列,可以表示为一个矩阵的形式。

向量是矩阵的特殊情况,只有一个列的矩阵。

矩阵和向量可以进行加法和数乘运算。

2.矩阵乘法:矩阵乘法是矩阵运算中的重要操作,它利用矩阵的行和列的组合,将两个矩阵相乘得到新的矩阵。

3.行列式:行列式是一个标量值,用于判断一些矩阵是否可逆。

行列式的值为0表示矩阵不可逆,非零表示矩阵可逆。

4.向量空间:向量空间是一组向量的集合,满足一定的条件。

向量空间具有加法和数乘运算,并满足一定的性质,如封闭性、结合律、分配律等。

5.线性相关与线性无关:向量集合中的向量如果不能由其他向量线性组合得到,则称这个向量集合是线性无关的;反之,如果存在一个向量可以由其他向量线性组合得到,则称这个向量集合是线性相关的。

6.基与维数:如果向量集合是线性无关的,并且能够生成整个向量空间中的所有向量,则称这个向量集合是向量空间的一组基。

向量空间的维数是指基向量的个数。

7.矩阵的秩:矩阵的秩是指矩阵列向量或行向量中的线性无关向量的个数。

秩表示矩阵中线性无关的方向个数。

8.特征值与特征向量:对于一个n维矩阵A,如果存在一个标量λ和非零向量X,使得AX=λX成立,则λ称为矩阵A的特征值,对应的非零向量X称为矩阵A的特征向量。

9.对角化:如果矩阵A可以通过相似变换得到一个对角矩阵B,则称矩阵A可以被对角化。

对角化后的矩阵可以简化各种计算。

10.线性变换:线性变换是指一个向量空间到另一个向量空间的映射,它满足线性性质。

线性变换可以用矩阵来表示,通过矩阵乘法来表示向量的线性变换。

11.正交性:向量集合中的向量如果互相垂直,则称这个向量集合是正交的。

如果正交向量集合中的每个向量都是单位向量,则称这个向量集合是标准正交的。

线性代数重要知识点总结

线性代数重要知识点总结

线性代数重要知识点总结线性代数是数学中的一个重要分支,它研究向量、向量空间以及线性变换等概念。

在科学、工程、计算机科学等领域中都广泛应用线性代数的知识。

下面是线性代数的一些重要知识点的总结。

1.向量:向量是表示大小和方向的量,可以用有序数组表示。

向量的加法和数乘运算满足交换律、结合律和分配律。

2.向量空间:向量空间是一组向量的集合,在其中向量可以进行加法和数乘运算。

向量空间必须满足闭合性、加法逆元、加法交换律、加法结合律、数乘结合律和数乘分配律等性质。

3.线性相关与线性无关:向量组中的向量可以是线性相关的,也可以是线性无关的。

线性相关表示一些向量可以由其他向量线性表示出来,而线性无关表示所有向量不能通过线性组合得到零向量。

4.矩阵:矩阵是二维数组,也可以看作是向量的扩展。

矩阵的加法和数乘运算满足交换律、结合律和分配律。

5.矩阵乘法:矩阵乘法是矩阵之间的一种运算,前提是第一个矩阵的列数等于第二个矩阵的行数。

矩阵乘法满足结合律,但不满足交换律。

6.线性方程组:线性方程组是一组线性方程的集合。

可以使用矩阵的形式表示线性方程组,通过高斯消元法或矩阵求逆等方法求解线性方程组。

7.特征值与特征向量:在线性代数中,对于一个n维向量,如果它乘以一个n×n的矩阵后,仍然保持方向不变(可能会变长或变短),那么这个向量称为这个矩阵的特征向量,而乘以矩阵后的长度变化倍数称为特征值。

8.内积与外积:内积是向量之间的一种运算,满足交换律和分配律,内积为一个标量。

外积是向量之间的一种运算,满足反对称性和分配律,外积为一个向量。

9.正交与正交子空间:正交指的是两个向量的内积为零,正交子空间是由正交向量组成的向量空间。

10.线性变换:线性变换是将一个向量空间映射到另一个向量空间的变换,保持向量空间的线性运算性质。

11.特征值分解:矩阵的特征值分解是将一个矩阵分解为特征值和特征向量的乘积的形式。

12.奇异值分解:矩阵的奇异值分解是将一个矩阵分解为奇异值和左右奇异向量的乘积的形式。

线性代数知识点归纳

线性代数知识点归纳

线性代数知识点归纳线性代数是现代数学中的一个重要分支,主要研究向量空间及其上的线性映射。

它在许多科学领域中都有广泛的应用,包括物理学、计算机科学、经济学等。

本文将对线性代数中的一些重要知识点进行归纳总结,以帮助读者更好地理解和掌握这门学科。

一、向量与矩阵1. 向量的定义与运算- 向量的表示:向量可以用有序数组表示,也可以用线段箭头表示。

- 向量的加法与减法:向量之间可以进行加法和减法运算,满足交换律和结合律。

- 向量的数乘:向量与实数之间可以进行数乘运算。

- 内积与外积:向量之间有内积和外积两种运算,分别表示向量的夹角和与之垂直的面积。

2. 矩阵的定义与运算- 矩阵的表示:矩阵可以用二维数组表示,其中每个元素称为矩阵的一个元。

- 矩阵的加法与减法:矩阵之间可以进行加法和减法运算,要求矩阵的维度相同。

- 矩阵的数乘:矩阵与实数之间可以进行数乘运算。

- 矩阵乘法:矩阵乘法满足结合律,但不满足交换律。

二、线性方程组与矩阵运算1. 线性方程组- 线性方程组的定义:线性方程组由一组线性方程组成,其中每个方程都是线性的。

- 解的存在性与唯一性:线性方程组的解可能没有,可能有唯一解,也可能有无穷多解。

- 线性方程组的求解方法:高斯消元法、矩阵求逆、克拉默法则等。

2. 矩阵的逆与行列式- 矩阵的逆:若矩阵A存在逆矩阵A^-1,满足A·A^-1 = A^-1·A = I,其中I为单位矩阵。

- 行列式:行列式是一个与矩阵相关的标量值,用于判断矩阵的可逆性和计算矩阵的特征值。

三、线性映射与特征值问题1. 线性映射- 线性映射的定义:线性映射是一个满足线性性质的函数,将一个向量空间映射到另一个向量空间。

- 线性映射的表示与运算:线性映射可以用矩阵表示,可以进行加法、减法和数乘。

- 线性映射的核与像:线性映射的核是所有映射到零向量的向量集合,像是所有映射到的向量集合。

2. 特征值与特征向量- 特征值与特征向量的定义:对于一个线性映射,若存在一个非零向量使得线性映射作用于该向量后相当于对该向量进行标量乘法,该向量称为特征向量,该标量称为特征值。

线性代数知识点汇总

线性代数知识点汇总

线性代数知识点汇总线性代数是数学中的一个分支,研究向量空间及其上的线性变换。

它是现代数学中的一个重要基础学科,广泛应用于各个领域,如物理学、计算机科学、经济学等。

下面是线性代数的主要知识点的汇总。

1.向量空间:向量空间是线性代数的基本概念,它是一个集合,其中的元素称为向量,满足一定的运算规则,如加法和数乘。

向量空间具有加法和数乘封闭性、结合律、分配律等性质。

2.线性变换:线性变换是向量空间之间的一种映射,它保持向量空间中的加法和数乘运算。

线性变换可以用矩阵表示,矩阵的乘法运算对应于线性变换的复合运算。

3.矩阵:矩阵是线性代数中的一种重要工具,它是一个由数构成的矩形阵列。

矩阵可以表示向量空间中的线性变换,也可以用于解线性方程组、计算行列式、求逆矩阵等。

4.行列式:行列式是一个标量值,它是一个方阵的特征量。

行列式的值可以用于判断矩阵的可逆性、计算矩阵的逆、求解线性方程组等。

5.矩阵的逆:对于一个可逆矩阵,存在一个矩阵使得两者的乘积等于单位矩阵。

这个矩阵称为原矩阵的逆矩阵,它具有一些重要的性质,如对角矩阵的逆矩阵等。

6.线性方程组:线性方程组是线性代数中的一种基本问题,它由一组线性方程组成。

线性方程组的解可以通过矩阵的运算(如高斯消元法、矩阵的逆等)来求解。

7.特征值和特征向量:对于一个线性变换,存在一些特殊的向量,使得它们在变换后只改变了大小而没有改变方向。

这些向量称为特征向量,对应的大小称为特征值。

特征值和特征向量可以用于矩阵的对角化、求解差分方程等。

8.内积空间:内积空间是一种向量空间,它定义了一种内积运算。

内积运算满足对称性、线性性、正定性等性质,它可以用于定义向量的长度、角度、正交性等。

9.正交性:在内积空间中,两个非零向量的内积为零时称为正交。

正交性是线性代数中的一个重要概念,它可以用于构造正交基、正交投影、最小二乘法等。

10.最小二乘法:最小二乘法是一种用于拟合数据的方法,它通过最小化残差平方和来确定最优解。

(完整版)线性代数知识点全归纳

(完整版)线性代数知识点全归纳

1线性代数知识点1、行列式1.n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3.代数余子式和余子式的关系:(1)(1)i j i j ij ijij ijM A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =;5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;22、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----===***111()()()T T T AB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B OB ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯)33、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ;2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11kk k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)4⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式; 二项展开式:01111110()nn n n m n m mn n n n m m n mn n n n n n m a b C a C a b C a b C a b C b C a b-----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化:7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1n r A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;511. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩; ②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTm βββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4.()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :6若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤; 向量组A 能由向量组B 线性表示,则()()r A r B ≤;向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆);9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,A 与B 的任何对应的列向量组有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩;10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,【考试中可以直接作为定理使用,而无需证明】 ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关;14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;715. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ;5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格);6. A 为对称阵,则A 为二次型矩阵;7.n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数;A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)8第一章 随机事件互斥对立加减功,条件独立乘除清; 全概逆概百分比,二项分布是核心; 必然事件随便用,选择先试不可能。

线性代数各章复习重点汇总

线性代数各章复习重点汇总

线性代数各章复习重点汇总线性代数是数学的一个重要分支,研究向量空间、线性变换、线性方程组等概念和性质。

下面是线性代数各章的复习重点汇总。

1.线性方程组:-线性方程组的基本概念和性质,包括齐次线性方程组、非齐次线性方程组等。

-线性方程组的解的存在性与唯一性,以及求解线性方程组的方法(高斯消元法、矩阵求逆法、克拉默法则等)。

-线性方程组的等价关系与等价变换。

2.矩阵与行列式:-矩阵的基本概念和性质,如矩阵的加法、减法、乘法等运算。

-方阵的特殊性质,如对称矩阵、反对称矩阵、单位矩阵等。

-行列式的定义和性质,包括行列式的展开定理、行列式的性质推导等。

3.向量空间:-向量空间的定义和性质,如线性相关性、线性无关性、基、维数等。

-子空间的概念和性质,包括子空间的交、和、直和等操作。

-线性组合、张成空间、极大线性无关组等概念。

4.线性变换与矩阵:-线性变换的定义和性质,包括线性变换的特征值、特征向量等。

-线性变换的矩阵表示,以及矩阵与线性变换之间的转换关系。

-线性变换的合成、逆变换等操作,以及线性变换的标准形式(例如,矩阵的对角化)。

5.特征值与特征向量:-特征值与特征向量的定义和性质,包括特征值的重数、特征向量的线性无关性等。

-特征值与特征向量的计算方法,如特征方程的求解、特征值的代入等。

-特征值与特征向量的应用,如对角化矩阵、相似矩阵等。

6.正交性与标准正交基:-向量的正交性和标准正交性的概念和性质,包括向量的点积、向量的夹角等。

-标准正交基的定义和求解方法,如施密特正交化过程等。

-正交矩阵的定义和性质,以及正交矩阵与标准正交基之间的关系。

以上是线性代数各章的复习重点汇总,希望能够帮助你理清知识重点,并提高复习效率。

祝你取得好成绩!。

2014年考研线代数习重点解析.doc

2014年考研线代数习重点解析.doc

逆矩阵、矩阵的秩及包含伴随矩阵的矩阵方程等。

另外,这几年还经常出现与初等变换与初等矩阵相关的命题。

本章常见题型有:计算方阵的幂、与伴随矩阵相关的命题、与初等变换相关的命题、有关逆矩阵的计算与证明、解矩阵方程等。

3、向量本章的核心考点是向量组的线性相关性的判断,它也是线性代数的重点,同时也是考研的重点。

2014年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,在做此处题目的时候要学会与线性表出、向量组的秩及线性方程组等相关知识联系,从各个方面加强对向量组线性相关性的理解。

此章常见的考试题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题(数一要求)。

4、线性方程组考研数学重点考查的章节,从历年真题来看,方程组出题的频率较高,几乎每年都有考题。

本章的核心考点有:解的判定与解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论)。

主要的题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题等。

本章节常与向量章节联系在一起出题,二者属于同一问题的不同描述,在考题中经常是交替出现的。

5、特征值与特征向量考研数学重点考查的章节,线性代数的核心内容,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。

核心题型有:数值型矩阵的特征值和特征向量的计算、抽象型矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求矩阵A、有关实对称矩阵的问题。

本章节与二次型联系也很紧密。

6、二次型这部分需要掌握两点:一是用正交变换法和配方法化二次型为标准形,核心是正交变换法。

但是需要注意的是对于出现多重特征值时,解方程组所得的对应的特征向量不一定是正交的,这时需要对所得到的向量组进行施密特正交化,然后再规范化。

线性代数知识点总结

线性代数知识点总结

线性代数知识点总结线性代数是数学中的一个重要分支,研究向量、向量空间、线性变换、矩阵等概念及其性质。

它是许多学科领域的基础,包括物理学、工程学、计算机科学等。

本文将对线性代数的主要知识点进行总结。

1.向量:向量是有方向和大小的量,用箭头表示。

一个向量可以表示一个物体的位移、速度、加速度等。

向量有加法和标量乘法两种运算。

在数学中,一般用坐标表示一个向量,如n维向量可以表示为(x1,x2,...,xn)。

2.向量空间:向量空间是指由一组向量及其运算构成的集合。

它有以下特点:-任意两个向量的加法运算仍为向量空间中的向量。

-向量与标量的乘法运算仍为向量空间中的向量。

-加法运算满足交换律和结合律。

-标量乘法运算满足结合律和分配律。

-向量空间中存在零向量,即加法运算的单位元。

-每一个向量都存在相反向量,即加法运算的逆元。

3.线性变换:线性变换是指将一个向量空间的向量映射到另一个向量空间的向量,并保持向量的线性组合关系。

线性变换有以下特点:-保持向量加法:T(u+v)=T(u)+T(v)。

-保持标量乘法:T(λv)=λT(v)。

-保持零向量:T(0)=0。

4.矩阵:矩阵是一个由元素排列成矩形阵列的数学结构。

矩阵可以表示线性方程组,其中每个方程可以看作是一个向量的线性组合。

矩阵有以下运算:-矩阵加法:对应位置元素相加。

-矩阵数乘:将矩阵的每个元素乘以一个标量。

-矩阵乘法:行乘以列的方式进行运算。

5.矩阵的性质:-矩阵的转置:将矩阵的行转换为列,列转换为行。

-矩阵的逆:若矩阵A与矩阵A的逆矩阵相乘结果为单位矩阵,则称矩阵A可逆。

-矩阵的秩:矩阵的秩是指矩阵中的线性无关行或列的最大数目。

- 矩阵的特征值和特征向量: 矩阵A的特征值是指满足方程det(A-λI)=0的λ值,而对应于特征值的特征向量是指满足方程(A-λI)x=0的非零向量。

6.行列式:行列式是一个将矩阵映射到一个实数的函数。

它用来描述矩阵的面积或体积的变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A 0.

x1 x2 x3 a b c 2 2 2 ax bx cx a b c 1 2 3 设有方程组 bcx1 acx2 abx3 3abc
(1)证明此方程组有唯一解的充分必要条件为 a,b,c 两两不等. (2)在此情况求解. 分析:
官方网址 北大、人大、中财、北外教授创办 集训营、一对一保分、视频、小班、少干、强军
9 x 3 y 3( z 1) 0 解析:思路:利用性质 8
x y z
拉普拉斯公式的一个特殊情形: 如果 A 与 B 都是方阵(不必同阶),则
例 设 4 阶矩阵
A ( , 1 , 2 , 3 ), B ( , 1 , 2 , 3 ), A 2, B 3, 求 A B
解:
A B ( ,21 ,2 2 ,23 ), A B ,21 ,2 2 ,23 8 , 1 , 2 , 3 8 , 1 , 2 , 3 8 , 1 , 2 , 3 40
和,这两个行列式分别是把原行列式的该行(列)向量 行列式.
换为 或 所得到的
, 1 例如
问题:
2 , , 1 , , 2 ,
A B A B ?
2 3 1 2 3 ,B 1
例如: A
A B 1 1 2 2 3 3 1 2 2 3 3 1 2 2 3 3 2 1 2 3 3 1 3 3 1 2 2 3 3 A B (另外的6个)
由克莱姆法则法则可知
A 0 (b a)(c a)(c b) 0
故 a,b,c 两两不相等
(2 )
1 1 1 abc 0 ba ca b 2 c 2 ab ac 0 0 (c a)(c b) c(c a)(c b) 1 1 0 ab 1 0 0 a 0 b a 0 b 2 ab 0 1 0 b 0 0 1 c 0 0 1 c 解为x (a, b, c)T
三.其它性质 行列式还有以下性质: 3.把行列式转置值不变,即
AT A
.
4.作第一类初等变换, 行列式的值变号. 5.作第二类初等变换, 行列式的值乘 c. 问题:
cA ?
n
cA
n ; c A ;c A ; c A
6.对一行或一列可分解,即如果某个行(列)向量,则原行列式等于两个行列式之
官方网址 北大、人大、中财、北外教授创办 集训营、一对一保分、视频、小班、少干、强军
A * A 0 AB 0 B * B
1 a1 2 a1 范德蒙行列式:形如 n i a1
1 a2 2 a2 n i a2
1 a3 2 a3 n i a3
1 an 2 an 的行列式(或其转置).它 n i an
由 a1 , a2 , a3 ,, an 所决定,它的值等于 因此范德蒙行列式不等于 0

(a j ai )
对于元素有
i j
a1 , a2 , a3 ,, an 两两不同.
规律的行列式(包括 n 阶行列式),常常可利用性质简化计算.
四.克莱姆法则 克莱姆法则 矩阵)时. 此解为 当线性方程组的方程个数等于未知数个数 n (即系数矩阵 A 为 n 阶
A 0
方程组有唯一解. 的第 i 个列向量换成
官方网址 北大、人大、中财、北外教授创办 集训营、一对一保分、视频、小班、少干、强军
官方网址 北大、人大、中财、北外教授创办 集训营、一对一保分、视频、小班、少干、强军
( D1 / A , D2 / A , DN / A )T , Di 是把 A
官方网址 北大、人大、中财、北外教授创办 集训营、一对一保分、视频、小班、少干、强军
常数列向量 所得到的行列式. 1.
A 0 是方程组有唯一解的充分必要条件.
( A ) ( B )
0 0
0 0

0 0
2a 0 0 0 0
1 3a 2 0
0 0
0 0

0 0
2a 1 a2 0 0 0 0 0
0 2a 1 a 2 2a 0 0 0 1 (n 1)a n
问题:
A B? A 0 B 0
于是只用说明
B 0 是方程组有唯一解的充分必要条件.
2. 实际上求解可用初等变换法:对增广矩阵 ( A ) 作初等行变换,使得 A 变为 单位矩阵: ( A )
( E ) ; 就是解.
用在齐次方程组上 :如果齐次方程组的系数矩阵 A 是方阵,则它只有零解的充分 必要条件是
0 2a 1 a 2 2a

4a 0 3 0 0 0
3a 4a (n 1)a 2a (n 1)a n 2 3 n
4. 化零降阶法 用命题把行列式的某一行或列化到只有一个元素不为 0,再用定理. 于是化为计算一个低 1 阶的行列式.
0 0 0 2a 1 a 2 2a
. 证明|A|=(n+1)an.
官方网址 北大、人大、中财、北外教授创办 集训营、一对一保分、视频、小班、少干、强军
2a 0 0 0 0 2a 0 0 0 0
1 3a 2 a2 1 3a 2 0
3.命题 第三类初等变换不改变行列式的值.
3 4 6 9 4 5 9 4 2 0 1 0 0 1 27 18 7 4 5 7 18 5 7
2a a2 0 A 08 题 0 0
分析: 证明:初等变换
1 2a a2
0 0 1 0 2a 1 a2 0
官方网址 北大、人大、中财、北外教授创办 集训营、一对一保分、视频、小班、少干、强军
证明: (1)
1 a bc 1 a 0 1 0 0
1 1 abc b c a 2 b 2 c 2 阶梯形矩阵转换 ac ab 3abc 1 1 abc ba c a b 2 c 2 ab ac ac bc ab bc 2abc b 2c bc 2 1 1 abc ba ca b 2 c 2 ab ac 0 (c a)(c b) c(c a)(c b)
7.如果一个行(列)向量是另一个行(列)向量的倍数,则行列式的值为 0. 8.某一行(列)的各元素与另一行(列)的对应元素的代数余子式乘积之和=0.
例 已知行列式
a b c d x 1 y z 1 1 z x3 y y 2 x 1 0 z3
的代数余子式
A11=-9,A12=3,A13=-1,A14=3,求 x,y,z.
相关文档
最新文档