滨湖镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
滨湖镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)如图,AB∥CD,EF⊥CD,FG平分∠EFC,则()
A.∠1<∠2
B.∠1>∠2
C.∠1=∠2
D.不能确定
【答案】C
【考点】对顶角、邻补角,平行线的性质
【解析】【解答】解:∵AB∥CD,
∴∠2=∠CFG,
又∵FG平分∠EFC,
∴∠1=∠CFG,
∴∠1=∠2,
故答案为:C.
【分析】根据平行线性质可得∠2=∠CFG,由角平分线性质得∠1=∠CFG,等量代换即可得证.
2、(2分)如图,在某张桌子上放相同的木块,R=34,S=92,则桌子的高度是()
A. 63
B. 58
C. 60
D. 55
【答案】A
【考点】三元一次方程组解法及应用
【解析】【解答】解:设木块的长为x,宽为y,桌子的高度为z,
由题意得:,
由①得:y-x=34-z,
由②得:x-y=92-z,
即34-z+92-z=0,
解得z=63;
即桌子的高度是63.
故答案为:A.
【分析】由第一个图形可知:桌子的高度+木块的宽=木块的长+R;由第二个图形可知:桌子的高度+木块的长=木块的宽+S;设未知数,列方程组,求解即可得出桌子的高度。
3、(2分)如图,与∠1是内错角的是()
A. ∠2
B. ∠3
C. ∠4
D. ∠5
【答案】D
【考点】同位角、内错角、同旁内角
【解析】【解答】解:∠1与∠2是邻补角,故A不符合题意;∠1与∠3是同位角,故B不符合题意;∠1与∠4不满足三线八角的关系,故C不符合题意;∠1与∠5是内错角,故D符合题意。
故答案为:D。
【分析】根据三线八角的定义,两条直线被第三条直线所截,截出的八个角中,位置上形如“F”的两个角是同位角;位置上形如“Z”的两个角是内错角;位置上形如“U”的两个角是同旁内角;根据定义意义判断即可。
4、(2分)如图(1)是长方形纸带,∠DEF=α,将纸带沿EF折叠成图(2),再沿BF折叠成图(3),则图(3)中的∠CFE的度数是()
A.2α
B.90°+2α
C.180°﹣2α
D.180°﹣3α
【答案】D
【考点】平行线的性质,翻折变换(折叠问题)
【解析】【解答】解:∵AD∥BC,
∴∠DEF=∠EFB=α
在图(2)中,∠GFC=180°-2EFG=180°-2α,
在图(3)中,∠CFE=∠GFC-∠EFC=180°-2α-α=180°-3α。
故答案为:D。
【分析】根据题意,分别在图2和图3中,根据∠DEF的度数,求出最终∠CFE的度数即可。
5、(2分)如图所示,点P到直线l的距离是()
A. 线段PA 的长度
B. 线段PB 的长度
C. 线段PC 的长度
D. 线段PD 的长度
【答案】B
【考点】点到直线的距离
【解析】【解答】解:∵PB ⊥直线l 于点B
∴点P 到直线l 的距离是线段PB 的长度
故答案为:B
【分析】根据点到直线的距离(直线外一点到这条直线的垂线段的长度)的定义,即可求解。
6、 ( 2分 ) 已知 = - ,其中A,B 为常数,则4A-B 的值为( ) A. 13 B. 9 C. 7 D. 5
【答案】A 【考点】代数式求值,解二元一次方程组,解分式方程
【解析】【解答】解:
∴解之:
∴4A-B=4×-=13
故答案为:A
【分析】先将等式的右边通分化简,再根据分子中的对应项系数相等,建立关于A 、B 的方程组,求出A 、B 的值,再求出4A-B 的值即可。
7、(2分)已知方程5m-2n=1,当m与n相等时,m与n的值分别是()
A.
B.
C.
D.
【答案】D
【考点】解二元一次方程组
【解析】【解答】解:根据已知,得
解得
同理,解得
故答案为:D
【分析】根据m与n相等,故用m替换方程5m-2n=1 的n即可得出一个关于m的方程,求解得出m的值,进而得出答案。
8、(2分)用加减法解方程组时,下列解法错误的是()
A. ①×3-②×2,消去x
B. ①×2-②×3,消去y
C. ①×(-3)+②×2,消去x
D. ①×2-②×(-3),消去y
【答案】D
【考点】解二元一次方程组
【解析】【解答】解:A、①×3-②×2,可消去x,故不符合题意;
B、①×2-②×3,可消去y,故不符合题意;
C、①×(-3)+②×2,可消去x,故不符合题意;
D、①×2-②×(-3),得13x-12y=31,不能消去y,符合题意.
故答案为:D
【分析】若要消去x,可将①×3-②×2或①×(-3)+②×2;若消去y,可将①×2-②×3,观察各选项,就可得出解法错误的选项。
的
9、(2分)已知a<b,则下列不等式中不正确的是()
A. a+4<b+4
B. a﹣4<b﹣4
C. ﹣4a<﹣4b
D. 4a<4b
【答案】C
【考点】不等式及其性质
【解析】【解答】解:A、两边都加4,不等号的方向不变,A不符合题意;
B、两边都减4,不等号的方向不变,B不符合题意;
C、两边都乘以﹣4,不等号的方向改变,C符合题意;
D、两边都乘以4,不等号的方向不变,D不符合题意;
故答案为:C.
【分析】本题是让找不正确的选项,因为a<b,所以两边同时加上4或减去4,不等号的方向不改变;当两边同时乘以或除以一个负数时,不等号的方向要改变.
10、(2分)若a,b为实数,且|a+1|+ =0,则(ab)2 017的值是()
A. 0
B. 1
C. -1
D. ±1
【答案】C
【考点】非负数之和为0
【解析】【解答】解:因为|a+1|+ =0,
所以a+1=0且b-1=0,
解得:a=-1,b=1,
所以(ab)2 017=(-1)2 017=-1.
故答案为:C
【分析】先根据若几个非负数的和等于0,则每个非负数都等于0,建立关于a、b的方程组求解,再将a、b 的值代入代数式求值即可。
11、(2分)若关于x的不等式(2﹣m)x<1的解为x>,则m的取值范围是()
A. m>0
B. m<0
C. m>2
D. m<2
【答案】C
【考点】不等式及其性质,解一元一次不等式
【解析】【解答】解:∵关于x的不等式(2﹣m)x<1的解为x>
∴2-m<0解得:m>2
故答案为:C
【分析】通过观察发现不等号方向发生了改变,根据不等式的性质,在不等式的两边除以同一个负数,不等号方向改变,从而得出2-m<0,求解得出m的取值范围。
12、(2分)如果(y+a)2=y2-8y+b,那么a,b的值分别为()
A. 4,16
B. -4,-16
C. 4,-16
D. -4,16
【答案】D
【考点】平方根,完全平方公式及运用
【解析】【解答】解:因为(y+a)2=y2+2ay+a2=y2-8y+b,
解得
故答案为:D
【分析】利用完全平方公式将等式左边的括号展开,根据对应项的系数相等,建立关于a、b的方程组,求解即可。
二、填空题
13、(1分)已知方程组由于甲看错了方程①中a得到方程组的解为,乙看
错了方程组②中的b得到方程组的解为,若按正确的a,b计算,则原方程组的解为________.
【答案】
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:将代入②得,﹣12+b=﹣2,b=10;
将代入①,5a+20=15,a=﹣1.
故原方程组为,
解得.
故答案为:.
【分析】甲看错了方程①中的a 但没有看错b,所以可把x=-3和y=-1代入方程②得到关于b的方程,激发出可求得b的值;乙看错了方程组②中的b 但没有看错a,所以把x=5和y=4代入①可得关于a的方程,解方程可求得a的值;再将求得的a、b的值代入原方程组中,解这个新的方程组即可求解。
14、(1分)点A,B在数轴上,以AB为边作正方形,该正方形的面积是49.若点A对应的数是-2,则点B对应的数是________.
【答案】5
【考点】数轴及有理数在数轴上的表示,算术平方根
【解析】【解答】解:∵正方形的面积为49,
∴正方形的边长AB==7
∵点A对应的数是-2
∴点B对应的数是:-2+7=5
故答案为:5
【分析】根据正方形的面积求出正方形的边长,就可得出AB的长,然后根据点A对应的数,就可求出点B 表示的数。
15、(1分)二元一次方程的非负整数解为________
【答案】,,,,
【考点】二元一次方程的解
【解析】【解答】解:将方程变形为:y=8-2x
∴二元一次方程的非负整数解为:
当x=0时,y=8;
当x=1时,y=8-2=6;
当x=2时,y=8-4=4;
当x=3时,y=8-6=2;
当x=4时,y=8-8=0;
一共有5组
故答案为:,,,,
【分析】用含x的代数式表示出y,由题意可知x的取值范围为0≤x≤4的整数,即可求出对应的y的值,即可得出答案。
16、(2分)如图所示,数轴上点A表示的数是﹣1,O是原点,以AO为边作正方形AOBC,以A为圆心、AB长为半径画弧交数轴于P1、P2两点,则点P1表示的数是________,点P2表示的数是________.
【答案】﹣1﹣;﹣1+
【考点】实数在数轴上的表示
【解析】【解答】解:∵点A表示的数是﹣1,O是原点,
∴AO=1,BO=1,
∴AB= = ,
∵以A为圆心、AB长为半径画弧,
∴AP1=AB=AP2= ,
∴点P1表示的数是﹣1﹣,
点P2表示的数是﹣1+,
故答案为:﹣1﹣;﹣1+
【分析】根据在数轴上表示无理数的方法,我们可知与AB大小相等,都是,因在-1左侧,
所以表示-1-,而在-1右侧,所以表示-1+
17、(1分)若x+y+z≠0且,则k=________.
【答案】3
【考点】三元一次方程组解法及应用
【解析】【解答】解:∵,
∴,
∴,即.
又∵,
∴.
【分析】将已知方程组转化为2y+z=kx;2x+y=kz;2z+x=ky,再将这三个方程相加,由x+y+z≠0,就可求出k 的值。
18、(1分)的立方根是________.
【答案】4
【考点】立方根及开立方
【解析】【解答】解:=64
∴的立方根为=4.
故答案为:4
【分析】先求出的值,再求出64的立方根。
三、解答题
19、(5分)在数轴上表示下列数(要准确画出来),并用“<”把这些数连接起来.-(-4),-|-
3.5|,,0,+(+2.5),1
【答案】解:如图,
-|-3.5|<0< <1 <+(+2.5)< -(-4)
【考点】数轴及有理数在数轴上的表示,有理数大小比较,实数在数轴上的表示,实数大小的比较
【解析】【分析】将需化简的数进行化简;带根号的无理数,需要在数轴上构造边长为1的正方形,其对
角的长度为;根据每个数在数轴上的位置,左边的数小于右边的数.
20、(5分)如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.
【答案】解:∵∠FOC=90°,∠1=40°,
∴∠3=∠AOB-∠FOC-∠1=180°-90°-40°=50°,
∴∠DOB=∠3=50°
∴∠AOD=180°-∠BOD=130°
∵OE平分∠AOD
∴∠2=∠AOD=×130°=65°
【考点】角的平分线,对顶角、邻补角
【解析】【分析】根据平角的定义,由角的和差得出∠3的度数,根据对顶角相等得出∠DOB=∠3=50°,再根据邻补角的定义得出∠AOD=180°-∠BOD=130°,再根据角平分线的定义即可得出答案。
21、(5分)如图,直线a,b相交,∠1=40°,求∠2、∠3、∠4的度数.
【答案】解:∵∠1=40°,∴∠3=∠1=40°,∴∠2=∠4=180°-∠1=180°-40°=140°
【考点】对顶角、邻补角
【解析】【分析】根据图形得到对顶角∠3=∠1、∠2=∠4,∠1+∠2=180°,由∠1的度数求出∠2、∠3、∠4的度数.
22、(5分)已知数a、b、c在数轴上的位置如图所示,化简:|a+b|-|a-b|+|a+c|.
【答案】解:由数轴可知:c<a<0<b,|c|>|b|>|a|,
∴a+b>0,a-b<0,a+c<0,∴|a+b|-|a-b|+|a+c|=a+b-[-(a-b)]+[-(a+c)],
=a+b+a-b-a-c,
=a-c.
【考点】实数在数轴上的表示,实数的绝对值
【解析】【分析】根据数轴可知c<a<0<b,从而可得a+b>0,a-b<0,a+c<0,再由绝对值的性质化简、计算即可.
23、(5分)如图,直线AB、CD相交于O,射线OE把∠BOD分成两个角,若已知∠BOE= ∠AOC,∠EOD=36°,
求∠AOC的度数.
【答案】解:∵∠AOC=∠BOD是对顶角,
∴∠BOD=∠AOC,
∵∠BOE=∠AOC,∠EOD=36º,
∴∠EOD=2∠BOE=36º,
∴∠EOD=18º,
∴∠AOC=∠BOE=18º+36º=54º.
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等可知∠BOD=∠AOC,再由∠BOE= ∠AOC知∠EOD=∠BOD,代入数据求得∠BOD,再求得∠AOC。
24、(5分)如图,直线AB和CD相交于点O,OD平分∠BOF,OE⊥CD于点O,∠AOC=40°,求∠EOF 的度数.
【答案】解:OE⊥CD,∴∠EOD=90°,∵∠AOC=40°,∴∠BOD=40°,∵OD平分∠BOF,∴∠DOF=∠BOD=40°,∴∠BOF=2∠DOF=80°,∴∠EOF=90°+40°=130°
【考点】角的平分线,角的运算,对顶角、邻补角
【解析】【分析】根据题意和对顶角相等,求出∠BOD的度数,由角平分线性质求出∠BOF=2∠DOF=2∠BOD 的度数,求出∠EOF的度数.
25、(10分)近年来,由于乱砍滥伐,掠夺性使用森林资源,我国长江、黄河流域植被遭到破坏,土地沙化严重,洪涝灾害时有发生,沿黄某地区为积极响应和支持“保护母亲河”的倡议,建造了长100千米,宽0.5千米的防护林.有关部门为统计这一防护林共有多少棵树,从中选出10块防护林(每块长1km、宽0.5km)进行统计.
(1)在这个问题中,总体、个体、样本各是什么?
(2)请你谈谈要想了解整个防护林的树木棵数,采用哪种调查方式较好?说出你的理由.
【答案】(1)解:总体:建造的长100千米,宽0.5千米的防护林中每块长1km、宽0.5km的树的棵树;个体:一块(每块长1km、宽0.5km)防护林的树的棵树;
样本:抽查的10块防护林的树的棵树
(2)解:采用抽查的方式较好,因为数量较大,不容易调查
【考点】全面调查与抽样调查,总体、个体、样本、样本容量
【解析】【分析】(1)总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量,根据总体、个体和样本的定义即可解答;
(2)一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,根据抽样调查和普查的定义及特征进行选择即可.
26、(5分)如图所示是小明自制对顶角的“小仪器”示意图:
(1 )将直角三角板ABC的AC边延长且使AC固定;
(2 )另一个三角板CDE的直角顶点与前一个三角板直角顶点重合;
(3 )延长DC,∠PCD与∠ACF就是一组对顶角,已知∠1=30°,∠ACF为多少?
【答案】解:∵∠PCD=90°-∠1,又∵∠1=30°,∴∠PCD=90°-30°=60°,而∠PCD=∠ACF,∴∠ACF=60°.
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据题意画出图形,根据三角板各个角的度数和∠1的度数以及对顶角相等,求出∠ACF的度数.。