江西省萍乡市七年级上期末数学试卷含答案解析.doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年江西省萍乡市七年级(上)期末数学试卷
一、选择题:每小题3分,共30分.
1.如果水位升高3m时水位变化记作+3m,那么水位下降5m时水位变化记作( ) A.﹣5m B.5m C.2m D.﹣2m
2.某中学七年级进行了一次数学测验,参见人数是720人,为了了解这次数学测验成绩,下列所抽取的样本中较为合理的是( )
A.抽取前100名同学的数学成绩
B.抽取后100名同学的数学成绩
C.抽取1、2两班同学的数学成绩
D.抽取各班学号为3的倍数的同学的数学成绩
3.若﹣2a m b4与b n﹣2a3是同类项,则m n的值为( )
A.9 B.﹣9 C.729 D.﹣729
4.如果所示,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为( )
①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE平分∠BAC.
A.1 B.2 C.3 D.4
5.据某市旅游局统计,今年“五一”小长假期间,各旅游景点门票收入约3700万元,数据“3700万”用科学记数法表示为( )
A.3.7×107B.3.7×108C.0.37×108D.37×108
6.如图所示,用一个平面去截一个圆柱,则截得的形状应为( )
A.B.C.D.
7.下面的计算正确的是( )
A.8a﹣7a=1 B.2a+3a2=5a3C.﹣(a﹣b)=﹣a+b D.2(a﹣b)=2a﹣b
8.若|m﹣3|+(n+2)2=0,则3m+2n的值为( )
A.﹣4 B.﹣1 C.5 D.13
9.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t小时两车相距50千米,则t的值是( ) A.2或2.5 B.2或10 C.10或12.5 D.2或12.5
10.探索规律:观察下面的一列单项式:﹣x、2x2、﹣4x3、8x4、﹣16x5、…,根据其中的规律得出的第10个单项式是( )
A.﹣512x10B.512x10C.1024x10D.﹣1024x10
二、填空题:每小题3分,共24分.
11.星期天上午,小明看一本书,他从第a页开始看到b页结束,则他这天上午共看书
__________页.
12.单项式﹣9πx3y2z3的系数是__________,次数是__________.
13.如图所示,线段AB=14cm,C是AB上一点,且AC=9cm,O为AB的中点,线段OC 的长度为__________.
14.下面的频数分布折线图分别表示我国A市与B市在2014年4月份的日平均气温的情况,记该月A市和B市日平均气温是8℃的天数分别为a天和b天,则a+b=__________.
15.如图,将一副三角板的直角顶点重合,若∠AOD=145°,则∠BOC=__________.
16.已知方程2x﹣3=3和方程有相同的解,则m的值为__________.
17.一个两位数,个位上的数字是十位上数字的2倍,它们的和是9,那么这个两位数是__________.
18.已知线段AB,延长AB至点C,使BC=AB,反向延长AB至点D,使AD=AB,若AB=12cm,则CD=__________cm.
三、解答题
19.计算:
(1)(﹣1)2016×5﹣23×;
(2)﹣10+4×(﹣3)2+(﹣6)÷(﹣3)+|﹣7|
20.先化简,再求值:若3x2﹣2x+b﹣(﹣x﹣bx+1)中不存在含x的一次项,求b值.
21.解方程:
(1)4x﹣3(5﹣x)=6
(2).
22.如图,∠AOC=140°,OD平分∠AOC,OE平分∠BOC.
(1)求∠BOE的度数.
(2)求∠DOE的度数.
23.建桥中学有A、B两台速印机.用于印刷学习资料和考试试卷,该校七年级举行期末考试,其数学试卷如果用速印机A、B单独印刷,分别需要50分钟和40分钟,在考试时为了保密需要.不能过早提前印刷试卷,决定在考试前由两台速印机同时印刷.在印刷20分钟后B机出现故障.此时离发卷还有10分钟,请你算一算,如果由A机单独完成剩余的印刷任务,会不会影响按时发卷?为什么?(要求列一元一次方程解应用题)
24.某校组织了“英语手抄报”征集活动,现从中随机抽取部分作品,按A、B、C、D四个等级进行评价,并根据统计结果绘制了如下两幅不完整的统计图.
(1)求抽取了多少份作品;
(2)此次抽取的作品中等级为B的作品有__________份,并补全条形统计图;(3)若该校共征集到600份作品,请估计等级为A的作品约有多少份?
2015-2016学年江西省萍乡市七年级(上)期末数学试卷
一、选择题:每小题3分,共30分.
1.如果水位升高3m时水位变化记作+3m,那么水位下降5m时水位变化记作( ) A.﹣5m B.5m C.2m D.﹣2m
【考点】正数和负数.
【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.
【解答】解:∵水位升高3m时水位变化记作+3m,
∴水位下降5m时水位变化记作﹣5m.
故选:A.
【点评】此题主要考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
2.某中学七年级进行了一次数学测验,参见人数是720人,为了了解这次数学测验成绩,下列所抽取的样本中较为合理的是( )
A.抽取前100名同学的数学成绩
B.抽取后100名同学的数学成绩
C.抽取1、2两班同学的数学成绩
D.抽取各班学号为3的倍数的同学的数学成绩
【考点】抽样调查的可靠性.
【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.
【解答】解:要使所抽取的样本较为合理,应尽量使抽样调查能够很好的反映总体的情况,所以抽取各班学号为3号的倍数的同学的数学成绩是较为合理的,它属于简单随机抽样,具有对总体的代表性.
故选D
【点评】此题考查抽样调查问题,关键是根据抽样调查的样本必须具有代表性和广泛性.
3.若﹣2a m b4与b n﹣2a3是同类项,则m n的值为( )
A.9 B.﹣9 C.729 D.﹣729
【考点】同类项.
【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值,代入代数式计算即可.
【解答】解:∵﹣2a m b4与b n﹣2a3是同类项,
∴m=3,n﹣2=4,
∴m=3,n=6,
∴m n=36=729,
故选:C.
【点评】本题考查了同类项的知识,属于基础题,掌握同类项中的两个相同是关键,①所含字母相同,②相同字母的指数相同.
4.如果所示,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为( )
①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE平分∠BAC.
A.1 B.2 C.3 D.4
【考点】三角形的角平分线、中线和高.
【分析】根据角平分线的定义进行判断即可.
【解答】解:AD不一定平分∠BAF,①错误;
AF不一定平分∠DAC,②错误;
∵∠1=∠2,∴AE平分∠DAF,③正确;
∵∠1=∠2,∠3=∠4,
∴∠1+∠3=∠2+∠4,即∠BAE=∠CAE,
∴AE平分∠BAC,④正确;
故选:B.
【点评】本题考查的是三角形的角平分线、中线和高的概念和性质,掌握角平分线的定义是解题的关键.
5.据某市旅游局统计,今年“五一”小长假期间,各旅游景点门票收入约3700万元,数据“3700万”用科学记数法表示为( )
A.3.7×107B.3.7×108C.0.37×108D.37×108
【考点】科学记数法—表示较大的数.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于3700万有8位,所以可以确定n=8﹣1=7.
【解答】解:3700万=3.7×107.
故选A.
【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.
6.如图所示,用一个平面去截一个圆柱,则截得的形状应为( )
A.B.C.D.
【考点】截一个几何体.
【分析】当截面的角度和方向不同时,圆柱体的截面不相同.
【解答】解:平面平行圆柱底面截圆柱可以得到一个圆,而倾斜截得到椭圆,故选B.【点评】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.
7.下面的计算正确的是( )
A.8a﹣7a=1 B.2a+3a2=5a3C.﹣(a﹣b)=﹣a+b D.2(a﹣b)=2a﹣b
【考点】合并同类项;去括号与添括号.
【分析】分别利用合并同类项法则以及去括号法则分别分析得出答案.
【解答】解:A、8a﹣7a=a,故此选项错误;
B、2a+3a2无法计算,故此选项错误;
C、﹣(a﹣b)=﹣a+b,正确;
D、2(a﹣b)=2a﹣2b,故此选项错误;
故选:C.
【点评】此题主要考查了合并同类项法则以及去括号法则,正确掌握相关运算法则是解题关键.
8.若|m﹣3|+(n+2)2=0,则3m+2n的值为( )
A.﹣4 B.﹣1 C.5 D.13
【考点】代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.
【分析】根据非负数的性质列出方程求出m、n的值,代入所求代数式计算即可.
【解答】解:∵|m﹣3|+(n+2)2=0,
∴,
解得,
∴3m+2n=9﹣4=5.
故选:C.
【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.
9.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t小时两车相距50千米,则t的值是( ) A.2或2.5 B.2或10 C.10或12.5 D.2或12.5
【考点】一元一次方程的应用.
【专题】行程问题;压轴题.
【分析】如果甲、乙两车是在环形车道上行驶,则本题应分两种情况进行讨论:
一、两车在相遇以前相距50千米,在这个过程中存在的相等关系是:甲的路程+乙的路程=(450﹣50)千米;
二、两车相遇以后又相距50千米.在这个过程中存在的相等关系是:甲的路程+乙的路程=450+50=500千米.
已知车的速度,以及时间就可以列代数式表示出路程,得到方程,从而求出时间t的值.【解答】解:(1)当甲、乙两车未相遇时,根据题意,得120t+80t=450﹣50,
解得t=2;
(2)当两车相遇后,两车又相距50千米时,
根据题意,得120t+80t=450+50,
解得t=2.5.
故选A.
【点评】本题解决的关键是:能够理解有两种情况、能够根据题意找出题目中的相等关系.
10.探索规律:观察下面的一列单项式:﹣x、2x2、﹣4x3、8x4、﹣16x5、…,根据其中的规律得出的第10个单项式是( )
A.﹣512x10B.512x10C.1024x10D.﹣1024x10
【考点】单项式.
【专题】规律型.
【分析】根据符号的规律:n为奇数时,单项式为负号,n为偶数时,符号为正号;系数的绝对值的规律:第n个对应的系数的绝对值是2n﹣1.指数的规律:第n个对应的指数是n
解答即可.
【解答】解:根据分析的规律,得
第10个单项式是29x10=512x10.
故选B.
【点评】本题考查了单项式的知识,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.
二、填空题:每小题3分,共24分.
11.星期天上午,小明看一本书,他从第a页开始看到b页结束,则他这天上午共看书(b ﹣a+1)页.
【考点】列代数式.
【分析】用结束的页数减去开始的页数再加上1就是一共看的页数.
【解答】解:从第a页开始看到b页结束共有(b﹣a+1)页,
故答案为:(b﹣a+1).
【点评】本题考查了列代数式的知识,本题中的答案可以结合实际例子得到结论.
12.单项式﹣9πx3y2z3的系数是﹣9π,次数是8.
【考点】单项式.
【分析】根据单项式系数的定义来求解,单项式中数字因数叫做单项式的系数.单项式的次数就是所有字母指数的和.
【解答】解:单项式﹣9πx3y2z3的系数是﹣9π,次数是8.
故答案为:﹣9π,8.
【点评】本题考查了单项式的系数与次数的定义,需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.
13.如图所示,线段AB=14cm,C是AB上一点,且AC=9cm,O为AB的中点,线段OC 的长度为2cm.
【考点】两点间的距离.
【分析】先根据O是线段AC的中点求出OC的长度,再根据OC=OB﹣OC即可得出结论.
【解答】解:∵AB=14cm,AC=9cm,如果O是线段AB的中点,
∴OB=AB=×14=7cm,BC=AB﹣AC=14﹣9=5cm,
∴OC=OB﹣BC=7﹣5=2cm.
故答案为:2cm.
【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.
14.下面的频数分布折线图分别表示我国A市与B市在2014年4月份的日平均气温的情况,记该月A市和B市日平均气温是8℃的天数分别为a天和b天,则a+b=12.
【考点】频数(率)分布折线图.
【专题】计算题;数形结合.
【分析】根据折线图即可求得a、b的值,从而求得代数式的值.
【解答】解:根据图表可得:a=10,b=2,
则a+b=10+2=12.
故答案为:12.
【点评】本题考查读频数分布折线图的能力和利用统计图获取信息的能力.
利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
15.如图,将一副三角板的直角顶点重合,若∠AOD=145°,则∠BOC=35°.
【考点】余角和补角.
【分析】根据题意,将∠AOD分解为∠AOC+∠BOC+∠BOD,根据
∠AOB+∠COD=∠AOC+2∠BOC+∠BOD=180°,易得答案.
【解答】解:根据题意,易得∠AOB+∠COD=180°,
即∠AOC+2∠BOC+∠BOD=180°,
而∠AOD=145°,即∠AOC+∠BOC+∠BOD=145°,
则∠BOC=180°﹣145°=35°;
故答案为:35°.
【点评】本题考查角平分线的定义与运用,解决本题的关键是注意结合图形,发现角与角之间的关系,利用公共角的作用.
16.已知方程2x﹣3=3和方程有相同的解,则m的值为2.
【考点】同解方程.
【分析】先求出方程2x﹣3=3的解,然后把x的值代入方程,求解m的值.【解答】解:解方程2x﹣3=3得:x=3,
把x=3,代入方程,
得,1﹣=0,
解得:m=2.
故答案为:2.
【点评】本题考查了同解方程,解决本题的关键是能够求解关于x的方程,要正确理解方程解的含义.
17.一个两位数,个位上的数字是十位上数字的2倍,它们的和是9,那么这个两位数是36.【考点】一元一次方程的应用.
【分析】设十位上的数字是x,则个位上的数字是2x,利用个位数字加十位数字的和是9
作为等量关系列方程求解.
【解答】解:设十位上的数字是x,则个位上的数字是2x.
由题意得:x+2x=9,
解得:x=3
则2x=6,
所以该数为:36.
答:这个两位数是36,
故答案为:36
【点评】本题主要考查了一元一次方程的应用,关键是正确理解题意,表示出个位数和十位数字,再抓住关键语句,列出方程.两位数字的表示方法:十位数字×10+个位数字.
18.已知线段AB,延长AB至点C,使BC=AB,反向延长AB至点D,使AD=AB,若
AB=12cm,则CD=23cm.
【考点】比较线段的长短.
【专题】计算题.
【分析】依据题意作出简单的图形,再结合图形进行分析.
【解答】解:如图
∵AB=12cm,∴BC=AB=8cm,AD=AB=3cm,
∴CD=DA+AB+BC=3+12+8=23cm.
【点评】能够求解一些简单的线段的长度计算问题.
三、解答题
19.计算:
(1)(﹣1)2016×5﹣23×;
(2)﹣10+4×(﹣3)2+(﹣6)÷(﹣3)+|﹣7|
【考点】有理数的混合运算.
【分析】(1)先算乘方,再算乘除,最后算减法;
(2)先算乘方,再算乘除,最后算加减.
【解答】解:(1)原式=1×5﹣8××
=5﹣8
=﹣3;
(2)原式=﹣1+4×9+2+7
=﹣1+36+2+7
=44.
【点评】此题考查有理数的混合运算,掌握运算顺序与符号的判定是正确计算的关键.
20.先化简,再求值:若3x2﹣2x+b﹣(﹣x﹣bx+1)中不存在含x的一次项,求b值.【考点】整式的加减.
【分析】先去括号,再合并同类项,令x的系数为0即可.
【解答】解:原式=3x2﹣2x+b+x+bx﹣1
=3x2﹣(1﹣b)x+b﹣1,
∵不存在含x的一次项,
∴1﹣b=0,
解得b=1.
【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.
21.解方程:
(1)4x﹣3(5﹣x)=6
(2).
【考点】解一元一次方程.
【专题】计算题;一次方程(组)及应用.
【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;
(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.
【解答】解:(1)去括号得:4x﹣15+3x=6,
移项合并得:7x=21,
解得:x=3;
(2)去分母得:2(2x+1)﹣(x﹣4)=12,
去括号得:4x+2﹣x+4=12,
移项合并得:3x=6,
解得:x=2.
【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.
22.如图,∠AOC=140°,OD平分∠AOC,OE平分∠BOC.
(1)求∠BOE的度数.
(2)求∠DOE的度数.
【考点】角平分线的定义.
【分析】(1)根据邻补角的性质可得∠COB=180°﹣140°=40°,再根据角平分线的性质可得答案;
(2)由角平分线的定义可知==70°,又∠COE=∠BOE=20°,
∠DOE=∠DOC+∠COE,可得结果.
【解答】解:(1)∵∠AOC=140°,
∴∠COB=180°﹣140°=40°,
∵OE平分∠BOC,
∴∠BOE=∠BOC=20°;
(2)∵∠AOC=140°,OD平分∠AOC,
∴==70°,
∵∠COE=∠BOE=20°,
∴∠DOE=∠DOC+∠COE=70°+20°=90°.
【点评】本题主要考查了角平分线的定义,利用角平分线的定义计算角的度数是解答此题的关键.
23.建桥中学有A、B两台速印机.用于印刷学习资料和考试试卷,该校七年级举行期末考试,其数学试卷如果用速印机A、B单独印刷,分别需要50分钟和40分钟,在考试时为了保密需要.不能过早提前印刷试卷,决定在考试前由两台速印机同时印刷.在印刷20分钟后B机出现故障.此时离发卷还有10分钟,请你算一算,如果由A机单独完成剩余的印刷任务,会不会影响按时发卷?为什么?(要求列一元一次方程解应用题)
【考点】一元一次方程的应用.
【分析】通过理解题意可知本题的等量关系,即两台复印机同时复印20min的工作量+A复印机单独完成的工作量=1,列方程求解,再与10min做比较即可.
【解答】解:不会,设A复印机需xmin印完余下的试卷,
则:(+)×20+=1,
解得:x=5,
∵5<10,
∴不会影响按时发卷.
答:如果由A机单独完成剩下的复印任务,不会影响按时发卷.
【点评】本题考查了一元一次方程的应用,关键是要掌握工作量的有关公式:工作总量=工作时间×工作效率.把工作总量看为“1”也是经常采用的方法.
24.某校组织了“英语手抄报”征集活动,现从中随机抽取部分作品,按A、B、C、D四个等级进行评价,并根据统计结果绘制了如下两幅不完整的统计图.
(1)求抽取了多少份作品;
(2)此次抽取的作品中等级为B的作品有48份,并补全条形统计图;
(3)若该校共征集到600份作品,请估计等级为A的作品约有多少份?
【考点】条形统计图;用样本估计总体;扇形统计图.
【专题】计算题;数形结合;统计的应用.
【分析】(1)用C等级份数除以C等级所占的百分比,可得抽取的数量;
(2)用(1)中所求总份数减去A、C、D三等级数量即可得到B等级作品数,并补全统计图;
(3)利用样本估计总体,将样本中A等级所占比例乘以600,可估计A等级数量.
【解答】解:(1)根据题意,共抽取作品30÷25%=120(份);
(2)B等级作品数为:120﹣36﹣30﹣6=48(份),
补全条形统计图如图所示:
(3)600×=180,
答:若该校共征集到600份作品,估计等级为A的作品约有180份.
【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,属中档题.。

相关文档
最新文档