2020-2021中考数学一元二次方程组综合题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021中考数学一元二次方程组综合题及答案
一、一元二次方程
1.如图,抛物线y=ax 2+bx+c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x=﹣1.
(1)求抛物线的解析式并写出其顶点坐标;
(2)若动点P 在第二象限内的抛物线上,动点N 在对称轴l 上.
①当PA ⊥NA ,且PA=NA 时,求此时点P 的坐标;
②当四边形PABC 的面积最大时,求四边形PABC 面积的最大值及此时点P 的坐标.
【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P 2﹣1,2);②P (﹣
32
,154) 【解析】
试题分析:(1)将B 、C 的坐标代入已知的抛物线的解析式,由对称轴为1x =-即可得到抛物线的解析式;
(2)①首先求得抛物线与x 轴的交点坐标,然后根据已知条件得到PD=OA ,从而得到方程求得x 的值即可求得点P 的坐标;
②ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形,表示出来得到二次函数,求得最值即可.
试题解析:(1)∵抛物线2y ax bx c =++与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为1x =-,∴0
{312a b c c b a
++==-=-,解得:1{23a b c =-=-=,∴二次函数的解析式为223y x x =--+=2(1)4x -++,∴顶点坐标为(﹣1,4);
(2)令2230y x x =--+=,解得3x =-或1x =,∴点A (﹣3,0),B (1,0),作PD ⊥x 轴于点D ,∵点P 在223y x x =--+上,∴设点P (x ,223x x --+), ①∵PA ⊥NA ,且PA=NA ,∴△PAD ≌△AND ,∴OA=PD ,即2232y x x =--+=,解得21(舍去)或x=21-,∴点P (21-,2);
②设P(x ,y),则223y x x =--+,∵ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形
=12OB•OC+12AD•PD+12(PD+OC)•OD=11131+(3)(3)()222x y y x ⨯⨯⨯+++-=333222x y -+ =2333(23)222x x x -+--+=239622x x --+=23375()228
x -++, ∴当x=32-时,ABCP S 四边形最大值=758,当x=32-时,223y x x =--+=154,此时P (32-,154).
考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.
2.阅读下列材料
计算:(1﹣﹣
)×(+)﹣(1﹣﹣)(+),令+=t ,
则:
原式=(1﹣t )(t +)﹣(1﹣t ﹣)t =t +﹣t 2﹣+t 2= 在上面的问题中,用一个字母代表式子中的某一部分,能达到简化计算的目的,这种思想方法叫做“换元法”,请用“换元法”解决下列问题:
(1)计算:(1﹣﹣
)×(+)﹣(1﹣﹣)×
(+) (2)因式分解:(a 2﹣5a +3)(a 2﹣5a +7)+4
(3)解方程:(x 2+4x +1)(x 2+4x +3)=3
【答案】(1)
;(2)(a 2﹣5a +5)2;(3)x 1=0,x 2=﹣4,x 3=x 4=﹣2
【解析】
【分析】
(1)仿照材料内容,令+=t 代入原式计算.
(2)观察式子找相同部分进行换元,令a2﹣5a=t代入原式进行因式分解,最后要记得把t换为a.
(3)观察式子找相同部分进行换元,令x2+4x=t代入原方程,即得到关于t的一元二次方程,得到t的两个解后要代回去求出4个x的解.
【详解】
(1)令+=t,则:
原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣﹣t+t2+=
(2)令a2﹣5a=t,则:
原式=(t+3)(t+7)+4=t2+7t+3t+21+4=t2+10t+25=(t+5)2=(a2﹣5a+5)2
(3)令x2+4x=t,则原方程转化为:
(t+1)(t+3)=3
t2+4t+3=3
t(t+4)=0
∴t1=0,t2=﹣4
当x2+4x=0时,
x(x+4)=0
解得:x1=0,x2=﹣4
当x2+4x=﹣4时,
x2+4x+4=0
(x+2)2=0
解得:x3=x4=﹣2
【点睛】
本题考查用换元法进行整式的运算,因式分解,解一元二次方程.利用换元法一般可达到降次效果,从而简便运算.
3.已知关于x的方程230
x x a
++=①的两个实数根的倒数和等于3,且关于x的方程
2
(1)320
k x x a
-+-=②有实数根,又k为正整数,求代数式
2
2
1
6
k
k k
-
+-
的值.
【答案】0.
【解析】
【分析】
由于关于x的方程x2+3x+a=0的两个实数根的倒数和等于3,利用根与系数的关系可以得到关于a的方程求出a,又由于关于x的方程(k-1)x2+3x-2a=0有实数根,分两种情况讨论,该方程可能是一次方程、有可能是一元二次方程,又k为正整数,利用判别式可以求出k,最后代入所求代数式计算即可求解.
【详解】
解:设方程①的两个实数根分别为x1、x2
则12123940
x x x x a a +-⎧⎪⎨⎪-≥⎩V === , 由条件,知12121211x x x x x x ++==3, 即
33a -=,且94a ≤, 故a =-1, 则方程②为(k -1)x 2+3x +2=0,
Ⅰ.当k -1=0时,k =1,x =23-,则22106
k k k -=+-. Ⅱ.当k -1≠0时,∆=9-8(k -1)=17-6-8k ≥0,则178
k ≤, 又k 是正整数,且k≠1,则k =2,但使2216
k k k -+-无意义. 综上,代数式2216
k k k -+-的值为0 【点睛】
本题综合考查了根的判别式和根与系数的关系,在解方程时一定要注意所求k 的值与方程判别式的关系.要注意该方程可能是一次方程、有可能是一元二次方程,
4.解下列方程:
(1)x 2﹣3x=1.
(2)12
(y+2)2﹣6=0. 【答案】(1)12313313,22x x +-=
= ;(2)12223,223y y =-+=-- 【解析】
试题分析:(1)利用公式法求解即可;
(2)利用直接开方法解即可;
试题解析:解:(1)将原方程化为一般式,得x 2﹣3x ﹣1=0,
∵b 2﹣4ac=13>0

. ∴12313313,22
x x +-==. (2)(y+2)2=12, ∴或,
∴12223,223y y =-+=--
5.如图,在△ABC 中,AB =6cm ,BC =7cm ,∠ABC =30°,点P 从A 点出发,以1cm/s 的速度向B 点移动,点Q 从B 点出发,以2cm/s 的速度向C 点移动.如果P 、Q 两点同时出发,经过几秒后△PBQ 的面积等于4cm 2?
【答案】经过2秒后△PBQ 的面积等于4cm 2.
【解析】
【分析】
作出辅助线,过点Q 作QE ⊥PB 于E ,即可得出S △PQB =12
×PB×QE ,有P 、Q 点的移动速度,设时间为t 秒时,可以得出PB 、QE 关于t 的表达式,代入面积公式,即可得出答案.
【详解】
解:
如图,
过点Q 作QE ⊥PB 于E ,则∠QEB =90°.
∵∠ABC =30°,
∴2QE =QB .
∴S △PQB =12
•PB•QE . 设经过t 秒后△PBQ 的面积等于4cm 2,
则PB =6﹣t ,QB =2t ,QE =t .
根据题意,
12
•(6﹣t )•t =4. t 2﹣6t+8=0.
t 2=2,t 2=4. 当t =4时,2t =8,8>7,不合题意舍去,取t =2.
答:经过2秒后△PBQ 的面积等于4cm 2.
【点睛】
本题考查了一元二次方程的运用,注意对所求的值进行检验,对于不合适的值舍去.
6.已知x 1、x 2是关于x 的﹣元二次方程(a ﹣6)x 2+2ax+a=0的两个实数根.
(1)求a 的取值范围;
(2)若(x 1+1)(x 2+1)是负整数,求实数a 的整数值.
【答案】(1)a≥0且a≠6;(2)a 的值为7、8、9或12.
【解析】
【分析】
(1)根据一元二次方程的定义及一元二次方程的解与判别式之间的关系解答即可;(2)根据根与系数的关系可得x 1+x 2=﹣26a a + ,x 1x 2=6a a + ,由(x 1+1)(x 2+1)=x 1x 2+x 1+x 2+1=﹣66a - 是是负整数,即可得66a -是正整数.根据a 是整数,即可求得a 的值2. 【详解】
(1)∵原方程有两实数根, ∴,
∴a≥0且a≠6.
(2)∵x 1、x 2是关于x 的一元二次方程(a ﹣6)x 2+2ax+a=0的两个实数根,
∴x 1+x 2=﹣,x 1x 2=,
∴(x 1+1)(x 2+1)=x 1x 2+x 1+x 2+1=
﹣+1=﹣. ∵(x 1+1)(x 2+1)是负整数,
∴﹣是负整数,即是正整数.
∵a 是整数,
∴a ﹣6的值为1、2、3或6,
∴a 的值为7、8、9或12.
【点睛】
本题考查了根的判别式和根与系数的关系,能根据根的判别式和根与系数的关系得出关于a 的不等式是解此题的关键.
7.解方程:(x +1)(x -1)=2x.
【答案】x 123,x 223
【解析】
试题分析:根据方程的特点,根据平方差公式化为一般式,然后可根据公式法求解即可. 试题解析:(x +1)(x -1)=2
x 2-22x-1=0
∵a=1,b=-22c=-1 ∴△=b 2-4ac=8+4=12>0
∴24b b c a -±-23 ∴x 123x 223.
8.已知关于x的方程x2﹣2x+m﹣2=0有两个不相等的实数根.
(1)求m的取值范围;
(2)如果m为正整数,且该方程的根都是整数,求m的值.
【答案】(1)m<3;(2)m=2.
【解析】
【分析】
(1)根据题意得出△>0,代入求出即可;
(2)求出m=1或2,代入后求出方程的解,即可得出答案.
【详解】
(1)∵方程有两个不相等的实数根.
∴△=4﹣4(m﹣2)>0.
∴m<3;
(2)∵m<3 且 m为正整数,
∴m=1或2.
当 m=1时,原方程为 x2﹣2x﹣1=0.它的根不是整数,不符合题意,舍去;
当 m=2时,原方程为 x2﹣2x=0.
∴x(x﹣2)=0.
∴x1=0,x2=2.符合题意.
综上所述,m=2.
【点睛】
本题考查了根的判别式和解一元二次方程,能根据题意求出m的值和m的范围是解此题的关键.
9.校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示.
(1)能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.(2)若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.
【答案】(1)长为18米、宽为7米或长为14米、宽为9米;(2)若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.
【解析】
【分析】
(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,再根据矩形面积公式列方程求解即可得到答案.
(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,再根据矩形面积公式
列方程,求得方程无解,即假设不成立.
【详解】
(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,
根据题意得:x(32﹣2x)=126,
解得:x1=7,x2=9,
∴32﹣2x=18或32﹣2x=14,
∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.
(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,
根据题意得:y(36﹣2y)=170,
整理得:y2﹣18y+85=0.
∵△=(﹣18)2﹣4×1×85=﹣16<0,
∴该方程无解,
∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.
10.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20
千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:
(1)每千克核桃应降价多少元?
(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
【答案】(1)4元或6元;(2)九折.
【解析】
【详解】
解:(1)设每千克核桃应降价x元.
根据题意,得(60﹣x﹣40)(100+x
2
×20)=2240,
化简,得 x2﹣10x+24=0,解得x1=4,x2=6.
答:每千克核桃应降价4元或6元.
(2)由(1)可知每千克核桃可降价4元或6元.∵要尽可能让利于顾客,∴每千克核桃应降价6元.
此时,售价为:60﹣6=54(元),54
100%=90% 60
⨯.
答:该店应按原售价的九折出售.
11.自2018年1月10日零时起,高铁开通,某旅行社为吸引广大市民组团去仙都旅游,推出了如下收费标准:如果人数不超过10人,人均旅游费用为200元,如果人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150元.
()1如果某单位组织12人参加仙都旅游,那么需支付旅行社旅游费用________元;
() 2现某单位组织员工去仙都旅游,共支付给该旅行社旅游费用2625元,那么该单位有多少名员工参加旅游?
【答案】(1)2280;(2)15
【解析】
【分析】
对于(1)根据人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150来求解;
对于(2)设这次旅游可以安排x 人参加,而由10×200=2000<2625,可以得出人数大于10人,则根据x 列出方程:(10+x )(200-5x )=2625,求出x ,然后根据人均旅游费用降低5元,但人均旅游费用不得低于150来求出x 的范围,最后得出x 的值.
【详解】
(1)2280
()2因为1020020002625⨯=<.
因此参加人比10人多,
设在10人基础上再增加x 人,
由题意得:()()1020052625x x +-=.
解得 15x = 225x =,
∵2005150x -≥,
∴010x <≤,
经检验 15x =是方程的解且符合题意,225x =(舍去).
1010515x +=+=
答:该单位共有15名员工参加旅游.
【点睛】
本题主要考查一元二次方程的应用和一元一次不等式的应用,根据题意作出判断,列出一元二次方程,求解方程,舍去不符合题意的解,从而得出结果.
12.阅读材料:若22228160m mn n n -+-+=,求m 、n 的值.
解: 22228160m mn n n -+-+=Q ,
222(2)(816)0m mn n n n ∴-++-+=
22()(4)0m n n ∴-+-=,
0,40m n n ∴-=-=,
4,4n m ∴==.
根据你的观察,探究下面的问题:
(1)己知2222210x xy y y ++++=,求x y -的值.
(2)已知△ABC 的三边长a 、b 、c 都是正整数,且满足2268250a b a b +--+=,求边c 的最大值.
(3) 若己知24,6130a b ab c c -=+-+=,求a b c -+的值.
【答案】(1)2(2)6(3)7
【解析】
【分析】
(1)将多项式第三项分项后,结合并利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出x 与y 的值,即可求出x ﹣y 的值;
(2)将已知等式25分为9+16,重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出a 与b 的值,根据边长为正整数且三角形三边关系即可求出c 的长;
(3)由a ﹣b =4,得到a =b +4,代入已知的等式中重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出b 与c 的值,进而求出a 的值,即可求出a ﹣b +c 的值.
【详解】
(1)∵x 2+2xy +2y 2+2y +1=0
∴(x 2+2xy +y 2)+(y 2+2y +1)=0
∴(x +y )2+(y +1)2=0
∴x +y =0 y +1=0
解得:x =1,y =﹣1
∴x ﹣y =2;
(2)∵a 2+b 2﹣6a ﹣8b +25=0
∴(a 2﹣6a +9)+(b 2﹣8b +16)=0
∴(a ﹣3)2+(b ﹣4)2=0
∴a ﹣3=0,b ﹣4=0
解得:a =3,b =4
∵三角形两边之和>第三边
∴c <a +b ,c <3+4,∴c <7.又∵c 是正整数,∴△ABC 的最大边c 的值为4,5,6,∴c 的最大值为6;
(3)∵a ﹣b =4,即a =b +4,代入得:(b +4)b +c 2﹣6c +13=0,整理得:(b 2+4b +4)+(c 2﹣6c +9)=(b +2)2+(c ﹣3)2=0,∴b +2=0,且c ﹣3=0,即b =﹣2,c =3,a =2,则a ﹣b +c =2﹣(﹣2)+3=7.
故答案为7.
【点睛】
本题考查了因式分解的应用,以及非负数的性质,熟练掌握完全平方公式是解答本题的关键.
13.已知关于x 的方程x 2﹣(k +3)x +3k =0.
(1)若该方程的一个根为1,求k 的值;
(2)求证:不论k 取何实数,该方程总有两个实数根.
【答案】(1)k =1;(2)证明见解析.
【分析】
(1)把x=1代入方程,即可求得k的值;
(2)求出根的判别式是非负数即可.
【详解】
(1)把x=1代入方程x2﹣(k+3)x+3k=0得1﹣(k﹣3)+3k=0,
1﹣k﹣3+3k=0
解得k=1;
(2)证明:
==-+=
1,(3),3
a b k c k
24
Q
∆=-
b ac
∴△=(k+3)2﹣4•3k =(k﹣3)2≥0,
所以不论k取何实数,该方程总有两个实数根.
【点睛】
本题考查了一元二次方程的解以及根的判别式,熟练掌握相关知识点是解题关键.
14.如图,一艘轮船以30km/h的速度沿既定航线由南向北航行,途中接到台风警报,某台风中心正以10km/h的速度由东向西移动,距台风中心200km的圆形区域(包括边界)都属台风影响区,当这艘轮船接到台风警报时,它与台风中心的距离BC=500km,此时台风中心与轮船既定航线的最近距离AB=300km.
(1)如果这艘船不改变航向,那么它会不会进入台风影响区?
(2)如果你认为这艘轮船会进入台风影响区,那么从接到警报开始,经过多长时间它就会进入台风影响区?
(3)假设轮船航向不变,轮船航行速度不变,求受到台风影响的时间为多少小时?
【答案】(1)如果这艘船不改变航向,那么它会进入台风影响区.(2)经过1515就会进入台风影响区;(3)15
【解析】
【分析】
(1)作出肯定回答:这艘轮船不改变航向,那么它能进入台风影响区.
(2)首先假设轮船能进入台风影响区,进而利用勾股定理得出等式求出即可.
(3)将轮船刚好进入台风影响区和刚好离开台风影响的两个时间节点相减,即能得出受影
【详解】
解:(1)如图易知AB′=300﹣10t ,AC′=400﹣30t ,
当B′C′=200时,将受到台风影响,
根据勾股定理可得:(300﹣10t )2+(400﹣30t )2=2002,
整理得到:t 2﹣30t +210=0,
解得t 15
由此可知,如果这艘船不改变航向,那么它会进入台风影响区.
(2)由(1)可知经过(1515h 就会进入台风影响区;
(3)由(1)可知受到台风影响的时间为15151515h .
【点睛】
此题主要考查了一元二次方程的应用以及勾股定理等知识,根据题意得出关于x 的等式是解题关键.
15.将进货单价为40元的商品按50元售出,能售出500件,如果该商品涨价1元,其销售量就要减少10件,为了赚取8000元的利润,售价应定为多少元?这时应进货多少件?
【答案】要赚取8000元的利润,售价应定为60元或80元.售价定为60元时,应进货400件;售价定为80元时,应进货200件.
【解析】
【分析】
设每件商品涨价x 元,能赚得8000元的利润;销售单价为(50)x +元,销售量为(50010)x -件;每件的利润为根据为(50+x-40)元,根据总利润=销售量×每个利润,可列方程求解
【详解】
解:设每件商品涨价x 元,则销售单价为(50)x +元,销售量为(50010)x -件. 根据题意,得(50010)[(50)40]8000x x -+-=.
解得110x =,230x =.
经检验,110x =,230x =都符合题意.
当10x =时,5060x +=,50010400x -=;
当30x =时,5080x +=,50010200x -=.
所以,要赚取8000元的利润,售价应定为60元或80元.售价定为60元时,应进货400
件;售价定为80元时,应进货200件.
【点睛】
本题考查一元二次方程的应用,关键看到售价和销售量的关系,然后以利润做为等量关系列方程求解。

相关文档
最新文档