2021福州1月份质检理数(word版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福州市2021-2021学年第一学期高三期末质量检测
理科数学试卷
(满分:150分;完卷时间:120分钟)
注意事项:
1.本科考试分试题卷和答题卷,考生须在答题卷上作答,答题前,请在答题卷的密封线内
填写学校、班级、准考证号、姓名;
2.本试卷分为第I卷(选择题)和第II卷(非选择题)两部分,全卷满分150分,考试时间
120分钟。

第I卷(选择题共60分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题所给的四个答案中有且只
有一个答案是正确的.把正确选项涂在答题卡的相应位置上.)
1.已知全集U=R,集合A={1,2,3,4,5},B=[3,十 ),则图中阴影部分所表示的集合为
A. {0,1,2}
B. {0,1},
C. {1,2}
D.{1}
2、设a是实数,若复数(i为虚数单位)在复平面内对应的点在直线x+y=0上,则a的值为
A、-1 B.0 C.1 D.2
3.设则a,b,c的大小关系为
A. a<c<b
B. b<a<c
C. a<b<c
D. b<c<a
4.阅读右边程序框图,为使输出的数据为30,则判断框中应填
人的条件为
A.i≤4
B. i≤5`
C. i≤6
D. i≤7
量为50的样本,且随机抽得的号码为003,这500名学生分住在三个营区,从001到200
在第
一营区,从201到355在第二营区,从356到500在第三营区,三个营区被抽中的人数为
A.20,15,15
B.20,16,14
C.12,14,16
D.21,15,14
6. 的展开式中,二次式系数最大的项是
A.20x3
B.15x2
C.15 x4
D. x6
7.已知函数的图像在点A(l,f(1))处的切线l与直线x十3y+2=0垂直,若数列的前n项和为Sp,则S2013的值为
8.若实数,则函数f(x)=2sinx十acosx的图象的一条对称轴方程为
9.如图,△ABC中,∠C =90°,且AC=BC=4,点M满足,
则=
A.2
B.3
C.4
D.6
10.已知实数4,m,9构成一个等比数列,则圆锥曲线的离心率为
11.如图,偶函数f(x)的图像形如字母M,奇函数g(x)的图像形如字母N,若方程
的实根
个数分别为a,b,c,d,则a+b+c+d=
A.27
B.30
C.33
D.36
12.已知函数f(x十1)是定义在R上的奇函数,若对于任意给定的不等实数,不等式恒成立,则不等式f(1-x)<0的解集为
A.(1,+∞)
B.(一∞,0)
C.(0,+∞)D(一∞,1)
第II卷(非选择题共90分)
二、填空题(本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置上)
13.在平面直角坐标系中,不等式组所表示的平面区域的面积是9,则实数
a的值
为____.
14.在平面直角坐标系xoy中,过坐标原点的一条直线与函数的图像交于P、Q 两点,则线段PQ长的最小值是____
15、如右图,三角形数阵满足:
(1)第n行首尾两数均为n;
(2)表中的递推关系类似杨辉三角4
则第n行(n≥2 )第2个数是____.
16.给出下列命题:
①“x=一1”是“x2一5x一6=0”的必要不充分条件;
②在△ABC中,已知;
③在边长为1的正方形ABCD内随机取一点M,MA<1的概率为于
④若命题p是::对任意的,都有sinx≤1,则为:存在,使得sinx > 1.
其中所有真命题的序号是____
三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算过程.)
17.(本小题满分12分)
已知,函数
(I)求方程g(x)=0的解集;
(B)求函数f(x)的最小正周期及其单调增区
18.(本小题满分12分)
在数列中,
(I)证明是等比数列,并求的通项公式;
(n)求的前n项和Sn
19.(本小题满分12分)
为了倡导健康、低碳、绿色的生活理念,某市建立了公共自行车服务系统鼓励市民租用公
共自行车出行,公共自行车按每车每次的租用时间进行收费,具体收费标准如下:
①租用时间不超过1小时,免费;
②租用时间为1小时以上且不超过2小时,收费1元;
③租用时间为2小时以上且不超过3小时,收费2元;
④租用时间超过3小时的时段,按每小时2元收费(不足1小时的部分按1小时计算)
已知甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设
甲、乙租用时间不超过1小时的概率分别是0. 4和0. 5 ;租用时间为1小时以上且不超过2 小时的概率分别是0.5和0.3.
(I)求甲、乙两人所付租车费相同的概率;
(11)设甲、乙两人所付租车费之和为随机变量,求的分布列和数学期望E
20.(本小题满分12分)
某工厂的固定成本为3万元,该工厂每生产100台某产品的生产成本为1万元,设生产该
产品x(百台),其总成本为g(x)万元(总成本=固定成本+生产成本),并且销售收人r(x) 满足
假定该产品产销平衡,根据上述统计规律求:
(I)要使工厂有盈利,产品数量x应控制在什么范围?
(B)工厂生产多少台产品时盈利最大?
21.(本小题满分12分)
已知中心在原点的双曲线C的一个焦点是F1(一3,0),一条渐近线的方程是
(I)求双曲线C的方程;
(11)若以k(k≠0)为斜率的直线l与双曲线C相交于两个不同的点M, N,且线段MA 的
垂直平分线与两坐标轴围成的三角形的面积为,求k的取值范围。

22.(本小题满分14分) 已知函数
(I )当a =2时,求函数y =f(x)的图象在x=0处的切线方程; (II )判断函数f(x)的单调性; (III) 求证:
福州市2013—2014学年第一学期高三期末质量检测
数学(理科)试卷 参考答案与评分标准
第Ⅰ卷 (选择题 共60分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题所给的四个答案中有且只有一个答案是正确的.把正确选项涂在答题卡的相应位置上.)
1. C
2. B
3. B 4.A 5. B 6. A 7. D 8. B 9. C 10.C 11. B 12. B
第Ⅱ卷 (非选择题 共90分)
二.填空题(本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置上.)
13.1 14.42 15.222
n n -+ 16..②③④
三、解答题(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算过程.) 17.(本小题满分12分) 解: (Ⅰ)
x
b x g 2sin 1)(22
=-=→- ··········································· 2分
由0)(=x g 得()Z k k x x ∈=∴=π202sin 即
()Z k k x ∈=2
π
····························· 5分 故方程)(x g =0的解集为
{()}
Z k k x x ∈=2
π
························································ 6分
(Ⅱ)
1
2sin 3cos 21)2sin ,1()3,cos 2(1)(22-+=-⋅=-⋅=→
-→-x x x x b a x f ·
······ 7分
)
6
2sin(22sin 32cos π+
=+=x x x ·
··················································· 9分 ∴函数)(x f 的最小周期
π
π
==2
2T ······································································· 10分 由
()
Z k k x k ∈+≤
+
≤+-
ππ
π
ππ
22
6
222

()
Z k k x k ∈+≤
≤+-
ππ
ππ
6
3
故函数)(x f 的单调增区间为
()Z k k k ∈⎥⎦

+⎢⎣⎡
+-ππ
ππ6,3. ( 开区间也可以)
··································································································································· 12分
18. (本小题满分12分) 解:(Ⅰ)
1111
,0
33n n n n a a a a n
++==∴> 1111==n 13n
13
n n a a a +∴+,又 ·
······································································· 2分 n n a ⎧⎫
∴⎨⎬⎩⎭
11为首项为,公比为的等比数列
33
·············································· 4分 n 1
n
11n
==n 333
n n a a -⎛⎫
∴⨯∴ ⎪⎝⎭
, ·
··············································································· 6分 (Ⅱ)
123123
333
3
n n n S =+++
+……① ·
···································································· 7分 231
1121333
33
n n n n n S +-∴=++++……② ·
·················································· 8分 ①-② 得:12312
111
13333
33
n n n n S +=++++- ·
·································· 9分 1
111331313
n n n +⎛⎫
- ⎪⎝⎭=-- ··················································· 10分
3114323n n n
n S ⎛⎫∴=--
⎪⨯⎝⎭
133243n n n
n S +--∴=
⨯ ·
················································································· 12分
19. (本小题满分12分) .解:(Ⅰ)根据题意,
分别记“甲所付租车费0元、1元、2元”为事件
123,,A A A ,它们彼此互斥,
且123
()0.4,()0.5,()10.40.50.1P A P A P A ==∴=--=
分别记“乙所付租车费0元、1元、2元”为事件123
,,B B B ,它们彼此互斥,
且123()0.5,()0.3,()10.50.30.2P B P B P B ==∴=--= ·
··························· 2分 由题知,123,,A A A 与123,,B B B 相互独立, ·
····················································· 3分 记甲、乙两人所扣积分相同为事件M ,则112233M A B A B A B =++
所以112233
()()()()()()()P M P A P B P A P B P A P B =++
0.40.50.50.30.10.20.20.150.020.37=⨯+⨯+⨯=++= ······· 6分 (Ⅱ) 据题意ξ的可能取值为:0,1,2,3,4 ························································ 7分 11(0)()()0.2P P A P B ξ===
1221(1)()()()()0.40.30.50.50.37P P A P B P A P B ξ==+=⨯+⨯=
132231(2)()()()()()()0.40.20.50.30.10.50.28P P A P B P A P B P A P B ξ==++=⨯+⨯+⨯=
2332(3)()()()()0.50.20.10.30.13P P A P B P A P B ξ==+=⨯+⨯=
33(4)()()0.10.20.02P P A P B ξ===⨯= ··························································· 10分
所以ξ的分布列为:
ξ的数学期望00.210.3720.2830.1340.02 1.4E ξ=⨯+⨯+⨯+⨯+⨯= ·
···· 11分 答:甲、乙两人所扣积分相同的概率为0.37,ξ的数学期望 1.4E ξ=·
···················· 12分
20.(本小题满分12分)
解:依题意得g(x)3x =+,设利润函数为f(x),则f(x)(x)g(x)r =-, 所以
20.5613.5
(0x 7)f(x),
10.5(x 7)
x x x
⎧-+-≤≤=⎨
->⎩ ·
································ 2分 (I )要使工厂有盈利,则有f (x )>0,因为
f (x )>0⇔
2
0x 77
0.5613.5010.50
x x x x ≤≤>⎧⎧⎨⎨-+->->⎩⎩或, ·
···························· 4分 ⇒
20x 771227010.50x x x x ≤≤>⎧⎧⎨⎨-+<->⎩⎩或⇒
0x 7
710.5
39x x ≤≤⎧<<⎨
<<⎩

⇒3x 7<≤或7x 10.5<, ·
··············································· 6分 即3x
10.5<. ·
···································································· 7分 所以要使工厂盈利,产品数量应控制在大于300台小于1050台的范围内.····· 8分 (II )当3x 7<≤时, 2f(x)0.5(6) 4.5x =--+
故当x =6时,f (x )有最大值4.5. ···················································· 10分 而当x >7时,f(x)10.57 3.5<-=.
所以当工厂生产600台产品时,盈利最大. ········································ 12分
21. (本小题满分12分) 解:(I )设双曲线C 的方程为2
2
221(00)x y a b a b -=>>,,
································ 1分 由题设得
229a b b a
⎧+=⎪
⎨=⎪⎩,
·················································································· 2分
解得
2
2
45.
a b ⎧=⎪⎨=⎪⎩,
, ····································································································· 3分
所以双曲线C 的方程为2
2
145
x y -=; ······························································ 4分 (II )设直线l 的方程为(0)y kx m k =+≠,点11()M x y ,,22()N x y ,的坐标满
足方程组
2
2
1.4
5y kx m x y =+⎧⎪⎨-=⎪⎩,
① ②,将①式代入②式,得2
2
()145
x kx m +-=, 整理得222(54)84200k x kmx m ----=, ·················································· 6分 此方程有两个不等实根,于是2540k -≠, 且222(8)4(54)(420)0km k m ∆=-+-+>,
整理得22540m k +->.③ ·
·········································································· 7分 由根与系数的关系可知线段MN 的中点坐标00
()x y ,满足: 12024254x x km x k +==-,002554m y kx m k =+=
-, ·
······························· 8分 从而线段MN 的垂直平分线的方程为
225145454m km y x k k k ⎛⎫-=-- ⎪--⎝⎭,
···· 9分
此直线与x 轴,y 轴的交点坐标分别为
29054km k ⎛⎫ ⎪-⎝⎭,,
29054m k ⎛
⎫ ⎪-⎝⎭
,, 由题设可得
2
219981254542km
m k k =--,整理得222(54)k m k
-=
,0k ≠,
································································································································· 10分 将上式代入③式得
22
2(54)540k k k
-+->, ·
··········································· 11分 整理得
22(45)(45)0
k k k --->,0k ≠,解得

54k >, 所以k 的取值范围是
5555004224⎛⎫
⎛⎫⎛
⎫⎛⎫
---+ ⎪ ⎪ ⎪
⎪ ⎪ ⎪⎝
⎭⎝⎭⎝⎭⎝⎭
∞,,,,∞. ·
······ 12分 22. (本小题满分14分) 解:(Ⅰ)当2a =时,
2()ln(1)1
x f x x x =++
+,
∴22
123()1(1)(1)x f x x x x +'=+=+++, ·
····································································· 1分 ∴ (0)3f '=,所以所求的切线的斜率为3. ·
·························································· 2分 又∵()00f =,所以切点为()0,0. ····································································· 3分
故所求的切线方程为:3y x =. ·
·········································································· 4分 (Ⅱ)∵()ln(1)1
ax f x x x =+++(1)x >-, ∴22
1(1)1()1(1)(1)a x ax x a f x x x x +-++'=+=+++. ·
·························································· 6分 ①当0a ≥时,∵1x >-,∴()0f x '>; ·
····························································· 7分 ②当0a <时,
由()01f x x '<⎧⎨>-⎩,得11x a -<<--;由()01
f x x '>⎧⎨>-⎩,得1x a >--; ····················· 8分 综上,当0a ≥时,函数()f x 在(1,)-+∞单调递增;
当0a <时,函数()f x 在(1,1)a ---单调递减,在(1,)a --+∞上单调递增. ·
···· 9分 (Ⅲ)方法一:由(Ⅱ)可知,当1a =-时,
()()ln 11
x f x x x =+-+在()0,+∞上单调递增. ·················································· 10分 ∴ 当0x >时,()()
00f x f >=,即()ln 11x x x +>+. ································· 11分 令1x n =(*n ∈N ),则111ln 111
1n n n n
⎛⎫+>= ⎪+⎝⎭+. ············································· 12分 另一方面,∵()2
111n n n <+,即21111n n n -<+, ∴ 2
1111n n n >-+. ······························································································ 13分 ∴
2111ln 1n n n ⎛⎫+>- ⎪⎝⎭(*n ∈N ). ····································································· 14分 方法二:构造函数2()ln(1)F x x x x =+-+,(01)x ≤≤ ·
································ 10分
∴1(21)'()1211
x x F x x x x +=-+=++, ·
····························································· 11分 ∴当01x <≤时,'()0F x >;
∴函数()F x 在(0,1]单调递增. ·
········································································· 12分 ∴函数()(0)F x F > ,即()0F x >
∴(0,1]x ∀∈,
2ln(1)0x x x +-+>,即2ln(1)x x x +>- ····························· 13分 令1x n =(*n ∈N ),则有2111ln 1n n n
⎛⎫+>- ⎪⎝⎭. ··················································· 14分。

相关文档
最新文档