《探索三角形相似的条件》word教案 (公开课获奖)2022北师版 (3)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.4 探索三角形相似的条件
●课 题 黄金分割 ●教学目标
〔一〕教学知识点
1.知道黄金分割的定义.
2.会找一条线段的黄金分割点.
3.会判断某一点是否为一条线段的黄金分割点. 〔二〕能力训练要求
通过找一条线段的黄金分割点,培养学生的理解与动手能力. 〔三〕情感与价值观要求 理解黄金分割的意义,并能动手找到和制作黄金分割点和图形,让学生认识数学与人类生活的密切联系对人类历史开展的作用.
●教学重点
了解黄金分割的意义,并能运用. ●教学难点
找黄金分割点和画黄金矩形. ●教学方法 讲解法 ●教学过程
Ⅰ.创设问题情境,引入新课
[师]生活中我们见到过许许多多的图形,形态各异,美观大方.那么这些漂亮的图形你能画出来吗?比方,右图是一个五角星图案,如何找点C 把AB 分成两段AC 和BC ,使得画出的图形匀称美观呢?本节课就研究这个问题.
Ⅱ.讲授新课
[师]在五角星图案中,大家用刻度尺分别度量线段AC 、BC 的长度,然后计算AB AC 、AC
BC
,它们的值相等吗? [生]相等.
[师]所以AC
BC
AB AC =. 的定义
一般地,点C 把线段AB 分成两条线段AC 和BC ,如果
AC
BC
AB AC =,那么称线段AB 被点C 黄金分割〔golden section 〕,点C 叫做线段AB 的黄金分割点,AC 与AB AB
AC
≈0.618.
2. 计算黄金比.
解:由AC AB =BC AC
,得∴AC 2
=AB ·BC. 设AB =1,AC =x ,那么BC =1- x. ∴x 2
=1×〔1-x 〕 ∴x 2+ x
-1=0 解这个方程,得
x 1=-1+√52或x 2=-1-√52〔不合题意,舍去〕,
所以,黄金比AC AB =
√5-1
2
≈0.618。
3.作一条线段的黄金分割点.
如图,线段AB ,按照如下方法作图: 〔1〕经过点B 作BD ⊥AB ,使BD =AB . 〔2〕连接DA ,在DA 上截取DE =DB .
〔3〕在AB 上截取AC =AE .那么点C 为线段AB 的黄金分割点. [师]你知道为什么吗?
假设点C 为线段AB 的黄金分割点,那么点C 分线段AB 所成的两条线段AC 、BC 间须满足
AC
BC
AB AC =.下面请大家进行验证.自己有困难时可以互相交流.为了计算方便,可设AB =1. 证明:∵AB =1,AC =x ,BD =AB = ∴AD =x +
在Rt △ABD 中,由勾股定理,得
〔x +〕2=12+〔〕2
∴x 2
+x +=1+ ∴x 2
=1-x ∴x 2
=1·〔1-x 〕
∴AC 2
=AB ·BC
即:AC
BC
AB AC = 即点C 是线段AB 的一个黄金分割点,
在x 2
=1-x 中
整理,得x 2
+x -1=0 ∴x =
2
5
12411±-=
+±- ∵AC 为线段长,只能取正
∴AC =2
1
5-≈ ∴
AB
AC
≈ ∴黄金比约为0.618.
古希腊时期的巴台农神庙〔Parthenom Temple 〕.把它的正面放在一个矩形ABCD 中,以矩形ABCD 的宽AD 为边在其内部作正方形AEFD ,那么我们可以惊奇地发现,
BC
AB
BE BC =,点E 是AB 的黄金分割点吗?矩形ABCD 的宽与长的比是黄金比吗?
[师]请大家互相交流.
[生]因为四边形AEFD 是正方形,所以AD =BC =AE ,又因为BC AB BE BC =,所以AE
AB
BE AE =,即
AE
BE
AB AE =,因此点E 是AB 的黄金分割点,矩形ABCD 宽与长的比是黄金比. [师]在上面这个矩形中,宽与长的比是黄金比,这个矩形叫做黄金矩形.你学会作了吗?
Ⅲ.课时小结
本节课学习了:1.黄金分割点的定义及黄金比.
2.如何找一条线段的黄金分割点,以及会画黄金矩形.
3.能根据定义判断某一点是否为一条线段的黄金分割点. Ⅳ.课后作业
Ⅴ.活动与探究 要配制一种新农药,需要兑水稀释,兑多少才好呢?太浓太稀都不行.什么比例最适宜,要通过试验来确定.如果知道稀释的倍数在1000和2000之间,那么,可以把1000和2000看作线段的两个端点,选择AB 的黄金分割点C 作为第一个试验点,C 点的数值可以算是1000+×=1618.试验的结果,如果按16AC 的黄金分割点D ,D 的位置是1000+〔1618-1000〕×0.618,约等于1382,如果D 浓,可以选DC 之间的黄金分割点;如果太稀,可以选AD 之间的黄金分割点,用这样的方法,可以较快地找到适宜的浓度数据.
这种方法叫做“黄金分割法〞.用这样的方法进行科学试验,可以用最少的试验次数找到最正确的数据,既节省了时间,也节约了原材料.
●板书设计
§—— 黄金分割
一、1.黄金分割的定义.
2.作一条线段的黄金分割点及黄金矩形.
第五章反比例函数
一、学生知识状况分析
通过本章的学习,学生已经经历抽象反比例函数概念的过程,理解了反比例函数的概念,会作出反比例函数的图象,并探索和掌握其性质,能从函数图象中获取信息来解决实际问题。
本章的教学主要以直观操作,观察,概括和交流作为主要的活动方式。
通过这些活动,对函数的三种表示方法进行有机的整合,逐步形成对函数概念的整体性认识,逐步提高从函数图象中获取数学信息的能力,提高学生的感知水平,逐步形成从函数视角处理问题的意识,体验数形结合的数学思想方法.
教师应从现实情境和学生已有的知识经验出发,以本章三维教学目标为标准来考查学生的学习情况,考查学生对反比例函数的定义,图象,性质及其应用掌握的程度,以及从函数图象中敏锐地获取相关信息、分析问题、解决问题的能力.
二、教学任务分析
函数是在探索具体问题中数量关系和变化规律的根底上抽象出来的数学概念, 是研究现实世界变化规律的重要内容及数学模型, 学生已经在七年级下册和八年级上册学习过变量之间的关系、一次函数等内容, 对函数已有了初步的认识, 在此根底上讨论反比例函数, 可以进一步领悟函数的概念,并积累研究函数性质的方法及用函数观点处理和解决实际问题的经验,为后继学习二次函数等产生积极的影响。
教学目标
(一)知识与能力
1.经历抽象反比例函数概念的过程,理解反比例函数的概念.
2.会作反比例函数的图象,并探索和掌握反比例函数的主要性质.
3.会从函数图象中获取信息,能运用反比例函数的概念、图象和主要性质解决实际问题.
(二)过程与方法
1.熟练掌握本章的整体知识结构,培养学生的概括和归纳能力,形成知识体系.
2.在经历抽象反比例函数概念的过程中,领会反比例函数的意义,理解反比例函数的概念,进一步培养学生的抽象思维能力.
3.经历一次函数的图象及其性质的探索过程,在合作与交流中开展学生的合作意识和交流能力.
4.能根据所给信息确定反比例函数的表达式、会作反比例函数的图象,并能运用数形结合思想解决与反比例函数相关的数学问题和实际应用问题.
(三)情感与价值观
通过本章内容的回忆与思考,开展学生的数学应用能力,经历函数图象信息的识别与应用过程,开展学生的形象思维能力,激发学生学习的热情,培养学生学习数学的兴趣。
教学重点
本章知识的网络结构体系.
反比例函数的概念.
会作反比例函数的图象,并掌握其性质.
反比例函数的相关应用.
教学难点
利用反比例函数的图像,探索反比例函数的主要性质.
反比例函数的相关应用.
教学方法
自主探究、合作交流.
三、教学过程分析
本节课设计了五个教学环节:第一环节:复习提问,引人入胜;第二环节:知识串联,形成体系;第三环节:例题精练,稳固新知;第四环节:交流探讨、收获小结;第五环节:课后作业
第一环节:复习提问,引人入胜
活动目的给学生设置疑问,激发学生的思考和回忆,明确本节课的学习任务。
活动过程:本章的内容已全部学完,请大家先回忆一下,本章学习了哪些主要内容?
学生答复预设:反比例函数的定义;反比例函数的图象及性质;反比例函数的应用。
. 教师引入:下面我们就来系统全面地对本章内容进行复习。
.
第二环节:知识串联,形成体系
活动目的:引导学生对本章的所学的根底知识进行系统的归纳和整理,使学生明确各个知识点之间的联系, 将根底知识网络化,形本钱章知识的框架结构体系。
活动过程: 〔一〕本章知识结构
引导学生构造本章知识结构图。
(可课前让学生自己制作本章知识的内容框架或思维导图,上课进行展示和交流)
本章内容框架
活动效果:学生可以根据以上内容框架,对自己整理的知识框架进行补充和整理,完善自己的知识体系,并能用自己的语言归纳总结本章内容.
考前须知:1. 应以学生自主总结和归纳为主,教师要在适时适当的给予指导; 2.对于学生个性化的结构框架的整理设计,只要合理,老师都应给予肯定。
(二)举出现实生活中有关反比例函数的实例,并归纳出反比例函数概念. 学生答复预设:
例:当三角形的面积是16 cm 2
时,它的底边a(cm)是这个底边上的高h(cm)的函数. 解:a =
h
32
. 在上式中,任意给定h 一个值,相应地就确定了一个a 的值.因此a 是h 的函数。
所以一般地,如果两变量x ,y 之间的关系可以表示成y=
x
k
(k 是常数,k ≠0)的形式,那么称y
是 x 的反比例函数. 〔三〕说说函数y =
x 2和y =-x
2
的图象的联系和区别. 联系:(1)图象都是由两支曲线组成; (2)它们都不与坐标轴相交;
(3)它们都不过原点,既是中心对称图形,又是轴对称图形. (4)虽然y =
x 2和y=-x
2
的图象不同,但是在这两个函数图象上任取—点,过这两点分别作x 轴、y 轴的平行线,与坐标轴围成的矩形面积相等,都为2. 区别:(1)它们所在的象限不同,y=x 2的两支曲线在第一象限和第三象限;y=-x
2
的两支曲线在第二象限和第四象限. (2)y =
x 2的图象在每个象限内,y 随x 的增大而减小;y=-x
2
的图象在每个象限内,y 随x 的增大而增大.
〔四〕回忆反比例函数图象的作图步骤及反比例函数图象的性质
画函数图象的步骤有列表、描点、连线.在作反比例函数的图象时应注意:列表时自变量的取值应选取绝对值相等而符号相反的—对一对的数值,并尽量多取一些点,连线时要连成光滑的曲线,而不是折线.
反比例函数图象的性质有〔课件演示〕: 1.形状:反比例函数的图象是两支双曲线.
2.位置:当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.
3.增减性:当k>0时.在每一个象限内,y 随x 的增大而减小;当k<0时,在每一个象限,y 随x 的增大而增大.
4.因为在y=
x
k
(k ≠0)中,x 不能为0,y 也不能为0,所以反比例函数的图象不可能与x 轴相交,也不可能与y 轴相交.
5.在一个反比例函数图象上任取两点P ,Q ,过点P ,Q 分别作x 、轴,y 轴的平行线,与坐标轴围成的矩形面积为S 1,S 2那么S 1=S 2
6.对称性: 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点.
第三环节:例题精练,稳固新知
活动目的:使学生运用反比例函数的概念、图象和主要性质熟练的解决实际问题,提高学生获取信息、分析问题、解决问题的能力。
活动过程:课件展示
例一
1.以下函数中,其图象位于第一、三象限的有哪些?在其图象所在象限内,y 的值随x 值的增大而增大的是哪些 ( )
(1)y=
x 31 (3)y=x 2.0 (2)y= x
10 (4)y=-x 1007
2.在函数y =x
3
的图象上任取一点P ,过P 分别作x 轴、y 轴的平行线,与坐标轴围成
的矩形面积是多少?
分析:根据反比例函数图象的性质,当k >0时,图象位于第一、三象限,在每一个象限内,y 随x 的增大而减小;当k<0时,正好相反,但在y =
x
31
中,形式虽然和反比例函数的形式不相同,但可以化成y=x
31
的形式。
答案:1.图象位于第一、三象限的有(1)(2).在其图象所在象限内,y 的值随x 值的增大而增大的有(3)(4).
2. S=|k |=
3. 例二
4
1
,当下底面放在桌子上时,对桌面的压强是200 Pa ,倒过来放,对桌面的压强是多少?
2
,当体积v =5米3
ρ=1.98千克/米3
,求(1)ρ与v 的函数关系式;(2)当v=9米3
时,
CO 2的密度.
分析:压强p 、受力面积S 、压力F 三者之间的关系为p=S
F
,因为是同一物体,所以F 是一定的,由于受力面积不同,因此压强也不同. 质量m 、密度ρ、体积v 三者之间的关系为:ρ=
v
m ,由v=5米3,ρ=1.98千克/米3
,可知质量m ,实际代表反比例函数中的k ,求出m ,就确定了反比例函数的关系式. 答案:
解:1.当下底面放在桌面上时,对桌面的压强为p 1=S
F
=200Pa,所以倒过来放时,对桌面的压强p 2=
S F
S F 44
1=
=800Pa. 2
的质量为m 千克,将v=5米3
,ρ=1.98千克/米3
代入公式ρ=
v
m
中,得m=9.9千克. 故所求ρ与v 间的函数关系式为ρ=
v
9.9. (2)当v =9米3
时,ρ=
v
9.9=1.1(千克/米3
)。
课堂练习 课件演示: 1.对于函数y=
x 2,当x>0时,y_______0,这局部图象在第______象限;对于y =-x
2,当x<0时,y____0,这局部图象在第_____象限.
2.函数y=
x
10
的图象在第____象限内,在每一个象限内,y 随x 的增大而______. 3.根据以下条件,分别确定函数y =x
k
的表达式
(1)当x=2时,y =-3; (2)点(-3
1
,21-
)在双曲线y =x k 上.
答案:1.> 一、三 < 二、四 2.一、三 减小 3.(1)y=
x
6
- (2)y=x 61;
考前须知:在本环节教学中,教师可以引导学生首先进行独立思考,防止替代思维,然后可以通过小组讨论、合作交流等形式,启发学生对问题进行探究,分析,完善解题思路,进而感悟和总结解决此类问题的一般方法和规律。
第四环节:交流探讨 收获小结
活动内容: 教师引导学生进行回忆和整理,然后通过师生交流和生生交流,答复以下问题:本节课我们都一起回忆和复习了哪些内容?
交流预设: 1.反比例函数概念
2.反比例函数图像的做法及性质
3.反比例函数在生活中的应用
4.做题时要注意数形结合
5.具体题目的解题思路
活动目的:使学生通过再次的回忆和总结,完善自己知识框架,进一步培养了学生归纳和交流能力。
第五环节:课后作业 〔一〕复习题 〔二〕活动与探究
反比例函数图象与矩形的面积 假设点A 是反比例函数y=
x
k
(k ≠0)图象上的任意一点,且AB 垂直于x 轴,垂足为B ,AC 垂直于y 轴,垂足为C,那么矩形面积S ABOC =|k |.如图(1).
1.如图(2),P 是反比例函数)y=
x
k
(k ≠O)图象上的一点,由P 点分别向x 轴,y 轴引垂线,得阴影局部(矩形)的面积为3,那么 这个反比例函数的表达式______.
2. 如图〔3〕过双曲线y=
x
2
上两点A 、B 分别作x 轴,y 轴的垂线,假设矩形ADDC 与矩形BFOE 的面积分别为S 1,S 2,那么S 1与S 2的关系是_____.
答案:
1.解:由题意得|k |=3.
又双曲线的两支分布在第二、四象限,所以k<0,故k =-3. ∴k=
x
3 . 2.解:由题意得 S 1=S 2=|k |=2.
〔三〕补充练习(课件展示〕
〔四〕反比例函数与正比例函数图象性质比拟分析
K<0
双曲线的两个分支分别位于第象限;
,y随着x。
双曲线的两个分支分别位于第象限;在,y随着的增大而。
四、板书设计
回忆与思考
一、本章知识结构
二、课堂练习
三、课时小节
四、课后作业
五、教学反思
本节作为本章的复习课,涉及到了中学数学里所有的数学思想方法,包括待定系数法、数形结合法、方程思想等等,这些方法相互渗透,相互融合,构成了函数应用的广泛性,解法的多样性,和思维的创造性。
函数的性质、图象及函数与方程、不等式知识的联系和综合应用是命题的热点,尤以探索性题型考查较多,其主要特点是要求学生能够建立数学模型,对相关知识进行综合应用。