CSC Seminar
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. Toroidal Core Design
4. Material Comparison
Perm. (I) Bs (kG) Core Loss Relative Cost Temp. Stability Curie Temp [℃]
Materials
DC Bias
Bpk=(LDC x ΔI x 100) / (2 x N x Ae) : LDC=Biased Inductance, ΔI=Ripple Current,
N=No. of Turns, Ae=Core Cross Section Area [cm2] DC Application (Normal Inductor, Output Choke) Use ΔB = Bpk AC Application (PFC, Sine wave Application, Inverter) Use ΔB = 2Bpk DC Application AC Application
3. Manufacturing process
Powder Making Ceramic Insulation Pressing
Core
Annealing
Core Finish
Inspection
Material High Flux Sendust Mega Flux MPP
Composition Ni + Fe Alloy Fe + Si +Al Alloy Fe + Si Alloy Ni + Fe + Mo Alloy
1. Toroidal Core Design
1. Soft Magnetic Materials
Soft Magnetic Materials
Ferrite
Metals
Powder
Strip
MPP
(Ni-Fe-Mo)
Fe-Si
High Flux
(Ni-Fe)
Amorphous
SENDUST
(Fe-Si-Al)
1. Toroidal Core Design
8. Winding
(3) Winding Method vs Impedance
1. Toroidal Core Design
9. Temperature Rising
(1) Total Loss
High Flux Mega Flux MPP Sendust
High Flux Mega Flux MPP Sendust
MPP High Flux Sendust Mega Flux
MPP High Flux Mega Flux Sendust
Ferrite, Iron
Permalloy
Mega Flux
(Fe-Si)
Iron
(Fe)
1. Toroidal Core Design
2. What is Powder Core ?
Powder Cores are distributed air gap cores made from ferrous alloy powders for low losses at elevated frequencies. Small air gaps distributed evenly throughout the cores increase the amount of DC that can be passed through the winding before core saturation occurs.
1. Toroidal Core Design
8. Winding
(1) Winding Layer
• Single Layer Winding : Low Winding Capacitance Good High Freq. Response Winding is Easy but Need more Large Size Core for Same L • Multi Layer Winding : Small Size Core for Same L but Winding is Hard
1. Toroidal Core Design
6. Material Selection
•When you design and select the right material, core cost is the most important factor
but there need many other consideration
High Winding Capacitance Need Special Winding Method
Stray Capacitance=Distributed Capacitance
1. Toroidal Core Design
8. Winding
(2) Split Winding
1. Toroidal Core Design
10. Inductor Design Tool
2. Special Shape Powder Core
Ni-Fe alloy
Khaki Color Lower Core Loss,Excellent DC Bias Large Energy Storage Capability Perm 26, 60, 125, 147, 160u
1. Toroidal Core Design
5. Core Design Required Information
(1) Inductance[μH or mH], Current [A] For Calculating LI2, Core Loss, Wire Size, Copper Loss
Better Best Good Best Poor Better Better Poor
High Medium Low Low Lowest Lowest Medium Lowest
Best Better Good Better Poor Good Good Poor
450 500 500 700 770 740 399 100~300
Part No. CH330060 CH330060E14 CH330060E18 CH330060 2Stack
B.F HT 10.67mm 14.0mm 18.0mm 10.67mm X2
AL Value 61mH 80mH 103mH 61 x 2 =122mH
Storage Capacity 25 32 42 50
Selmag Enterprise Co.,LTD.
2011年 韓國昌星(CSC) 磁性元件應用設計說明會
Changsung Corp.
Soft Magnetic Power Core
1. Toroidal Core Design 2. Special Shape Power Core 3. Solar Inverter & Magnetic Materials 4. Q & A 5. CSC’S Design Center 6. About Core Materials 7. Experimental Comparison Of Ellipse Core 8. Simulatio & Experimental Comparison of Mega Flux Inductor for HEV/EV Application
EQ CORE
Ni-Fe-Mo alloy
Gray Color Lowest Core Loss Excellent Temperature Stabiliy Perm 26, 60, 125, 147, 160, 173, 200u
• P=f(B, f) : P=Core Loss[mW/cc], B=Flux Density[kGauss], f=Switching Frequency[kHz] Core Loss Curve fit Equation P=aΔBbfc (a, b, c = constants) • Bpk=f(L, I) : Bpk= B=Flux Density[kGauss], L=Inductance[μH], I=Current[A]
(2) Current Density (A/cm2 or A/mm2)
For Calculating Wire Size, Copper Loss
(3) Ripple Rate (%)
For Calculating ΔI, Core Loss
(4) Switching Frequency (kHz) For Calculating Core Loss
MPP High Flux Sendust Mega Flux Iron Fe-Si Strip (Gap) Amorphous (Gap)26-125 26-90 10-100
7 15 10 16 10 20 15 3-5
Lower Low Low Medium High High Low Lowest
• No. of Turns↑ Copper Loss↑, Core Loss↓
Loss[Watts] Copper losses + Core losses Copper losses + Core losses Copper losses Copper losses Core losses
Core losses No. of turns
Copper loss =
I2•R(R
: resistance of copper, I : rated current)
(2) Temperature Rising
1. Toroidal Core Design
9. Temperature Rising
(3) Core Loss
• Energy Storage Capacity : LI2 [L=Inductance(mH), I=Current(A)]
1. Toroidal Core Design
7. Inductance
(2) Height Change & Stack
• Energy Storage Capacity : LI2 [L=Inductance(mH), I=Current(A)] • Increase Energy Storage Capacity with same OD, ID size Height Increase or Stacking
• Purpose : Minimize Stray Capacitance Good High Freq. Response • Two Layer Winding Two Split Winding, Three Layer Winding Three Split Winding Two Split Winding Three Split Winding
Core Cost Low Small Good
Core Size (DCB)
Winding Turns (DCB)
Temp. Rising (Core Loss)
Temp. Stability
Ferrite, Iron
Sendust Mega Flux High Flux MPP High Large Bad
Iron
Iron
Ferrite, Iron
1. Toroidal Core Design
7. Inductance
• After selecting material, core size and permeability should be selected
(1) Core Selection Chart